JPH01172553A - Alloying hot dip galvanized steel sheet and its production - Google Patents

Alloying hot dip galvanized steel sheet and its production

Info

Publication number
JPH01172553A
JPH01172553A JP33058687A JP33058687A JPH01172553A JP H01172553 A JPH01172553 A JP H01172553A JP 33058687 A JP33058687 A JP 33058687A JP 33058687 A JP33058687 A JP 33058687A JP H01172553 A JPH01172553 A JP H01172553A
Authority
JP
Japan
Prior art keywords
alloying
phase
steel sheet
content
galvanized steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33058687A
Other languages
Japanese (ja)
Inventor
Toshio Nakamori
中森 俊夫
Atsuyoshi Shibuya
渋谷 敦義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP33058687A priority Critical patent/JPH01172553A/en
Publication of JPH01172553A publication Critical patent/JPH01172553A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To manufacture an alloying hot dip galvanized steel sheet excellent in corrosion resistance and press formability by subjecting a hot dip galvanized steel sheet to two-stage treatment while changing alloying temp. and also specifying Fe content in a plating layer and alloy structure. CONSTITUTION:A steel sheet after hot dip galvanizing is first heated to 400-520 deg.C and subjected to alloying treatment until eta-phase is dissipated. Subsequently, alloying treatment is continued at 300-500 deg.C, by which alloying treatment is carried out so that average Fe content in a plating layer is regulated to >13-17wt.% and the plating layer is practically composed of delta1-phase and GAMMA1-phase. By this method, the alloying hot dip galvanized steel sheet excellent in powdering resistance and press formability and having high corrosion resistance can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐食性とプレス成形性に優れた合金化溶融亜
鉛めっき鋼板とその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an alloyed hot-dip galvanized steel sheet with excellent corrosion resistance and press formability, and a method for manufacturing the same.

(従来の技術とその問題点) 合金化溶融亜鉛めっき鋼板(以下GAと略す)は、亜鉛
めっき鋼板と比較して溶接性、塗装後の耐食性に優れて
おり、且つ安価なことから防錆鋼板として広く使用され
ている。一般にGAは、皮膜中のFe含有率が9〜13
−1%であり、鋼板素地側から、r” Fl (Fe3
Zn+o) 、r’ 1層(Fe、Zn21)、61層
(PeZnt)等の金属間化合物の層状に近い構造をし
ている。或いは低い合金化温度で処理されたものでは、
最上層にζ層(FeZn13)の金属間化合物を有する
場合もある。
(Conventional technology and its problems) Alloyed hot-dip galvanized steel sheets (hereinafter abbreviated as GA) are superior in weldability and corrosion resistance after painting compared to galvanized steel sheets, and are inexpensive, so they are used as rust-proof steel sheets. It is widely used as Generally, GA has a Fe content of 9 to 13 in the film.
−1%, and from the steel plate base side, r”Fl (Fe3
It has a structure similar to a layered structure of intermetallic compounds such as Zn+o), r' 1 layer (Fe, Zn21), and 61 layers (PeZnt). or those processed at low alloying temperatures,
The uppermost layer may include an intermetallic compound of a ζ layer (FeZn13).

ところで、GAは上記するように溶接性、塗装後の耐食
性において優れているが、プレス成形時にめっき皮膜が
剥離する、いわゆるパウダリング現象が起こることが欠
点とされている。この現象は一般的には、めっき付着量
および皮膜中のFe含有率が増加する程著しくなって、
パウダリング量は急激に増加する。この理由は、めっき
皮膜が一般に圧縮変形に脆い特性を有するためと考えら
れる。
By the way, as mentioned above, GA is excellent in weldability and corrosion resistance after painting, but it has a drawback that a so-called powdering phenomenon occurs in which the plating film peels off during press molding. This phenomenon generally becomes more pronounced as the amount of plating and the Fe content in the film increases.
The amount of powdering increases rapidly. The reason for this is thought to be that the plating film generally has a characteristic of being brittle against compression deformation.

そこで従来公知の技術によれば、皮膜中にたわみ性に富
むη−Znを残存させるか、もしくは3層(FeZn+
、)の構成比率を増加させるかすれば耐パウダリング性
は改善されるとされている。即ち、これら公知技術が指
向するところは皮膜中のPe含有率を低下させて、耐パ
ウダリング性を改善しようとすることにある。しかし、
めっき層中のFe含有率を低下させれば耐食性が低下す
る。特に塗装後の耐食性の低下が大きい。
Therefore, according to conventionally known techniques, highly flexible η-Zn remains in the film, or three layers (FeZn +
It is said that powdering resistance can be improved by increasing the composition ratio of , ). That is, the aim of these known techniques is to reduce the Pe content in the film to improve powdering resistance. but,
If the Fe content in the plating layer is reduced, the corrosion resistance will be reduced. In particular, the corrosion resistance after painting is greatly reduced.

ところで、特に近年、自動車産業において寒冷地の塩害
対策として車体防錆の強化を求める動きが大きく、より
防錆性に優れためっき鋼板が望まれている。めっき鋼板
の防錆性を向上させる即効的な方法としては、めっき付
着量を多くすることが考えられる。GAは比較的経済性
が高く、めっき付着量を増加しても製造コストの上昇は
それ程著しいものではないが、めっき付着量の増加は、
前述するようにパウダリングの増加につながる。
By the way, especially in recent years, there has been a strong movement in the automobile industry to strengthen the rust prevention of car bodies as a countermeasure against salt damage in cold regions, and plated steel sheets with even better rust prevention properties are desired. One possible immediate method for improving the rust prevention properties of plated steel sheets is to increase the amount of plating deposited. GA is relatively economical, and even if the amount of plating is increased, the increase in manufacturing costs is not so significant.
As mentioned above, this leads to an increase in powdering.

このパウダリングの少ない、且つ塗装性、耐食性にも優
れた、特に厚目付けGAの製造が可能になれば、自動車
産業にとっては非常に好ましいことである。
It would be very desirable for the automobile industry if it were possible to manufacture particularly thick GA with less powdering and excellent paintability and corrosion resistance.

しかし、従来知られている製造方法で厚目付けのGAを
、例えば、片面当たりの付着量がFe十Znで50g/
m”以上のものを製造しても、前記する全ての特性を満
足するようなものを製造することは極めて困難である。
However, using conventionally known manufacturing methods to produce thick GA, for example, the amount of deposited Fe and Zn on one side is 50 g/
Even if a material larger than m" is manufactured, it is extremely difficult to manufacture one that satisfies all of the above-mentioned characteristics.

本発明者らはこの点を1lliffするために、従来公
知の製造方法で、下記に示す(1)〜(3)の合金化度
の異なる片面当たりの付着量がFe+Znで55〜65
g/m”の厚目付けGAを製造し、その特性を調べた。
In order to improve this point, the present inventors used a conventionally known manufacturing method to increase the deposition amount per side of Fe+Zn with different degrees of alloying as shown below (1) to (3) from 55 to 65.
A thick GA with a weight of 1.5 g/m" was manufactured and its characteristics were investigated.

(+1皮膜中のFe含有率: 12〜15wt%■合金
化温度 550℃超え ■皮膜層構造 δ、 十r 、 + 「(2)皮膜中の
Fe含有率二8.5〜12誓t%未満■合金化温度 5
00℃未満 ■皮膜層構造 ζ十61+「1 (3)皮膜中のFe含有率:  1〜B、5wt%未満
■合金化温度 450〜550℃ ■皮膜層構造 η+ζが主で61と「、が含まれている
可能性あり。
(+1 Fe content in the film: 12 to 15 wt% ■Alloying temperature exceeds 550°C ■ Film layer structure δ, 10r, + (2) Fe content in the film 28.5 to less than 12 wt% ■Alloying temperature 5
Less than 00℃ ■ Film layer structure ζ 161 + "1 (3) Fe content in the film: 1 to B, less than 5 wt% ■ Alloying temperature 450 to 550 °C ■ Film layer structure η + ζ is mainly 61 and ", It may be included.

その結果、次のような性能上の問題が確認された。As a result, the following performance problems were confirmed.

(])のものは、GAの製造において、従来一般的にと
られている合金化温度で処理したものである。
Items in parentheses ( ) were processed at the alloying temperature conventionally used in the production of GA.

この一般的な方法で製造したものは、縮み変形部でのパ
ウダリングが大量に発生する。(2)のものは、500
℃の低温で合金化処理を行い、皮膜中のFe含有率を8
.5〜1211t%未満に抑制したものである。
Products manufactured using this general method suffer from a large amount of powdering at the shrinkage deformation portion. (2) is 500
Alloying treatment is performed at a low temperature of ℃ to reduce the Fe content in the film to 8.
.. It is suppressed to less than 5 to 1211 t%.

ζ相の構成比率が増加されているので縮み変形部でのパ
ウダリングは少ない。しかし、実際にプレス成形を行う
と金型への焼付きが発生したり、成形時に割れが発生し
たりする。また、フレーク状の剥離物が見られる。(3
)のものは、450〜550℃の温度で合金化処理を行
い皮膜中のFe含有率を7〜8.5wt%未満にしたも
のである。Fe含有量が少なく、η相が残存することか
ら縮み変形部でのパウダリングは殆ど生じない。しかし
、プレス時に若干の焼付けが生じることがあるとともに
、溶接性および塗装後の耐食性が他のものと比べて著し
く劣る。
Since the composition ratio of the ζ phase is increased, there is little powdering at the shrinkage deformation part. However, when press molding is actually performed, seizure may occur in the mold or cracks may occur during molding. In addition, flaky peelings are observed. (3
) was subjected to alloying treatment at a temperature of 450 to 550°C to reduce the Fe content in the film to less than 7 to 8.5 wt%. Since the Fe content is low and the η phase remains, powdering hardly occurs at the shrinkage deformation part. However, some seizure may occur during pressing, and the weldability and corrosion resistance after painting are significantly inferior to other materials.

このように、従来の公知技術を単に厚目付けGAに適用
しても耐パウダリング性、塗装性、耐食性等の全ての特
性を満足するものを製造することは極めて困難である。
As described above, even if conventional known techniques are simply applied to thick GA, it is extremely difficult to produce a GA that satisfies all properties such as powdering resistance, paintability, and corrosion resistance.

本発明は、上記するような実状に鑑み成されたものであ
って、その目的とするところは塗装後の耐食性と溶接性
および耐パウダリング性の二律背反的状況を改善し、こ
れら全ての特性に優れた合金化溶融亜鉛めっき鋼板とそ
の新しい製造方法を提供することを目的とするものであ
る。
The present invention was developed in view of the above-mentioned circumstances, and its purpose is to improve the antinomy situation of corrosion resistance, weldability, and powdering resistance after painting, and to improve all of these properties. The purpose is to provide an excellent alloyed hot-dip galvanized steel sheet and a new method for producing the same.

本発明は、更にプレス成形時の金型への皮膜ビルドアッ
プおよび焼付きを抑止した、フレーキング発生のない厚
目付けの合金化溶融亜鉛めっき鋼板とその製造方法の提
供を目的とする。
Another object of the present invention is to provide a thick alloyed hot-dip galvanized steel sheet that suppresses film build-up and seizure on a mold during press forming and does not cause flaking, and a method for manufacturing the same.

(問題点を解決するための手段) 本発明者らは、上記目的を達成するために厚目付けGA
のプレス成形におけるめっき剥離挙動を、−iにGAの
パウダリングの評価に用いられている円筒深絞り法によ
り調査し、その結果を解析して下記の知見を得た。
(Means for solving the problem) In order to achieve the above object, the present inventors have developed a thick GA
The plating peeling behavior during press forming was investigated using the cylindrical deep drawing method used in the evaluation of powdering of GA in -i, and the following findings were obtained by analyzing the results.

例えば、付着量が片面当たり60g/m”のGA(板厚
0.8m+n)の場合、合金化温度をパラメータにとる
と、その合金化度とパウダリングの関係は第1回のよう
になる。なお、図中○印は、450℃の合金化温度で処
理したもの、[株]印は、500℃の合金化温度で処理
したもの、0印は、550℃の合金化温度で処理したも
のおよび■印は、600℃の合金化温度で処理したもの
である。
For example, in the case of GA (plate thickness 0.8 m+n) with an adhesion amount of 60 g/m'' per side, if the alloying temperature is taken as a parameter, the relationship between the degree of alloying and powdering will be as in the first case. In addition, in the figure, ○ marks are those processed at an alloying temperature of 450°C, [stock] marks are processed at an alloying temperature of 500°C, and 0 marks are processed at an alloying temperature of 550°C. and ■ marks are those processed at an alloying temperature of 600°C.

第1図かられかることは、合金化度を抑制すること、即
ち、めっき皮膜中のFe含有率を少なくすることによっ
て、もしくは合金化温度を低くすることによってパウダ
リングは抑制されて、パウダリング量が減少することで
ある。このことは、従来から知られている知見でもある
。このようなことから、η層が残存しない程度に合金化
度を抑えたGAを作ることが望ましいと考えられる。
What can be seen from Figure 1 is that powdering can be suppressed by suppressing the degree of alloying, that is, by reducing the Fe content in the plating film, or by lowering the alloying temperature. This means that the amount will decrease. This is also a conventionally known knowledge. For this reason, it is considered desirable to produce GA with a suppressed degree of alloying to such an extent that no η layer remains.

しかし、このようなGAを作り実際にプレス成形すると
、前述したように金型への大量のビルドアップや焼付き
が生しる。この理由は、円筒絞りでは面摺動の影響が小
さくて著しい焼付き現象が生じないのに対して、実際の
プレス成形では面摺動の影響がかなり強く現れるために
焼付き現象が生じることであることが判明した。そこで
本発明者らは、付着量が片面当たり60g/m”のGA
 (板厚0.8mm)を用いて、プレス成形における面
摺動の影響を調査したところ、下記のことが明らかとな
った。
However, when such a GA is produced and actually press-molded, a large amount of build-up and seizure occurs on the mold, as described above. The reason for this is that in cylindrical drawing, the influence of surface sliding is small and no significant seizure occurs, whereas in actual press forming, the influence of surface sliding is quite strong, causing seizure. It turns out that there is something. Therefore, the present inventors developed a method using GA with an adhesion amount of 60 g/m" per side.
(plate thickness 0.8 mm) was used to investigate the influence of surface sliding during press forming, and the following became clear.

調査は0.5mmRのビード先端径による■型ビード引
き抜き法で行った。第2図はその結果を合金化温度をパ
ラメータにとり合金化度とパウダリングとの関係でまと
めたものである。図中O印は、450゛Cの合金化温度
で処理したもの、■印は、500℃の合金化温度で処理
したもの、0印は、550℃の合金化温度で処理したち
である。
The investigation was conducted using a ■-shaped bead drawing method using a bead tip diameter of 0.5 mmR. Figure 2 summarizes the results in terms of the relationship between alloying degree and powdering using alloying temperature as a parameter. In the figure, O marks are those processed at an alloying temperature of 450°C, ■ marks are processed at an alloying temperature of 500°C, and 0 marks are processed at an alloying temperature of 550°C.

第2図かられかることは、合金化度を抑制した場合にお
いてさえも、皮膜中におけるFe含有率が9.5〜13
wt%の範囲で極めて剥離量の多い領域があり、面摺動
による焼付きが発生し易くなることである。この範囲で
、特異的にパウダリング量が増加する理由は明らかでは
ないが、表層に形成されたζ層の存在と関係があるもの
と考えられる。
It can be seen from Figure 2 that even when the degree of alloying is suppressed, the Fe content in the film is between 9.5 and 13.
There is a region where the amount of peeling is extremely large within the wt% range, and seizure due to surface sliding is likely to occur. The reason why the amount of powdering specifically increases in this range is not clear, but it is thought to be related to the presence of the ζ layer formed on the surface layer.

また、本発明者らは、480℃の低温で合金化処理した
合金化度の異なる付着量が片面当たりのZnで55”6
0g/m”のGA(板厚0.8mm)を用いて、円筒深
絞り法で合金化度と成形荷重との関係を調査した。第3
回は、その結果を示したものである。皮膜中におけるF
e含有率が9〜13bit%の領域では成形荷重が異常
に増大し、割れ発生の危険が高いことが言える。
In addition, the present inventors have found that the amount of Zn deposited on one side with different degrees of alloying after alloying at a low temperature of 480°C is 55"6
The relationship between the degree of alloying and forming load was investigated using a cylindrical deep drawing method using a GA of 0g/m'' (plate thickness 0.8mm).Part 3
The results are shown here. F in the film
It can be said that in the range where the e content is 9 to 13 bit%, the molding load increases abnormally and the risk of cracking is high.

以上の結果から、従来の一般材(Fe含有量が9ないし
13wt%のGA)よりもFe含有率を多(すれば、パ
ウダリングの少ない、且つプレス時に焼付きおよび割れ
発生の少ない厚目付けのGAが得られること、また、こ
のようなGAは合金化温度を変えて2段階処理すること
で製造できることを見出し、本発明を完成した。
From the above results, it is clear that the Fe content is higher than that of conventional general materials (GA with Fe content of 9 to 13 wt%). The present invention was completed by discovering that GA can be obtained and that such GA can be manufactured by changing the alloying temperature and performing a two-step process.

ここに本発明の要旨は下記の輸)および(11)の合金
化溶融亜鉛めっき鋼板とその製造方法にある。
The gist of the present invention lies in the following items (1) and (11): the alloyed hot-dip galvanized steel sheet and its manufacturing method.

(i)めっき層の平均Fe含有率が13wt%超え、1
7wt%以下で、該めっき層が実質的に61相とrl相
とからなることを特徴とする合金化溶融亜鉛めっき鋼板
(i) The average Fe content of the plating layer exceeds 13 wt%, 1
An alloyed hot-dip galvanized steel sheet, characterized in that the plating layer substantially consists of a 61 phase and an RL phase at a content of 7 wt% or less.

(ii)溶融亜鉛めっき後の鋼板を、400〜520’
Cの温度範囲でη相が消失するまで合金化処理し、しか
る後300〜500 ’Cの温度範囲で合金化処理を継
続して、めっき層の平均Fe含有率がl:%t%超え、
17wt%以下で、該めっき層が実質的に61相と「1
相とからなるように合金化処理することを特徴とする合
金化溶融亜鉛めっき鋼板の製造方法。
(ii) The steel plate after hot-dip galvanizing is 400 to 520'
The alloying process is carried out in the temperature range of C until the η phase disappears, and then the alloying process is continued in the temperature range of 300 to 500'C, so that the average Fe content of the plating layer exceeds l:%t%,
When the amount is 17 wt% or less, the plating layer substantially has 61 phases and “1
1. A method for producing an alloyed hot-dip galvanized steel sheet, the method comprising alloying the steel sheet so that it consists of a phase.

(作用) 以下、本発明にかかる合金化溶融亜鉛めっき鋼板とその
製造方法について詳細に説明する。
(Function) Hereinafter, the alloyed hot-dip galvanized steel sheet and the manufacturing method thereof according to the present invention will be explained in detail.

まず、本発明にかかる合金化溶融亜鉛めっき鋼板を、上
記するような組成および相構成のめっき層とする理由に
ついて説明する。
First, the reason why the alloyed hot-dip galvanized steel sheet according to the present invention has a plating layer having the above composition and phase structure will be explained.

めっき層の組成を、平均Fe含有率で13wt%超え、
17wt%以下とする理由は、この範囲より外れると下
記のような問題が生じやすくなって好ましくないからで
ある。即ち、前述した第1回ないし第3図から明らかな
ように、13wt%以下の平均Fe含有率では、例えば
、平均Fe含有率が約9〜13wt%の範囲内のものは
、パウダリングが著しく多く、プレス時に面摺動による
焼付きが発生しやすく、また、成形荷重が異常に増大し
て割れが発生し易い。
The composition of the plating layer exceeds 13 wt% in average Fe content,
The reason for setting the content to 17 wt% or less is that if it deviates from this range, the following problems tend to occur, which is not preferable. That is, as is clear from the above-mentioned Figures 1 to 3, when the average Fe content is less than 13 wt%, for example, when the average Fe content is in the range of about 9 to 13 wt%, powdering is significant. In most cases, seizure occurs due to surface sliding during pressing, and the forming load is abnormally increased, which tends to cause cracks.

平均Fe含有率がこれよりも少ない、9wL%未溝のも
のは、前記するような問題は少ないが、溶接性および耐
食性が著しく劣る。
Ungrooved steels with an average Fe content of 9 wL% less than this have fewer problems as described above, but are significantly inferior in weldability and corrosion resistance.

一方、皮膜中の平均Fe含有率が17wt%を超えるも
のは、耐パウダリング性に劣る。
On the other hand, when the average Fe content in the film exceeds 17 wt%, the powdering resistance is poor.

また、めっき層を実質的に61相と「1相とからなる相
構成とする理由は、めっき層がこれ以外のη相、ζ相お
よび「相のいずれか或いは全部を含む場合は、次に述べ
るような問題が発生しやすくなり好ましくないからであ
る。
In addition, the reason why the plating layer is made to have a phase composition consisting essentially of 61 phases and 1 phase is that when the plating layer contains any or all of the η phase, ζ phase, and 1 phase, the following This is because the problems described above tend to occur, which is not desirable.

例えば、η相が残存すればパウダリングは少ないが、塗
装後の耐食性および溶接性が低下することになる。ζ相
が含まれると焼付きが発生し易くなる。また「相が含ま
れるとパウダリングが著しく多くなる。
For example, if the η phase remains, there will be less powdering, but the corrosion resistance and weldability after painting will deteriorate. If the ζ phase is included, seizure is likely to occur. Also, ``If phase is included, powdering will be significantly increased.

しかし、これらの相を含まない、めっき層を実質的にδ
、相と「1相とからなるものとすれば、表面の摩擦係数
を低下して摺動抵抗を低減できる。
However, a plating layer that does not contain these phases is substantially δ
, phase and one phase, the friction coefficient of the surface can be lowered and the sliding resistance can be reduced.

且つ「1相の存在によりδ、相の脆弱化を防止できる。And, ``The presence of one phase can prevent the weakening of the δ phase.

このような理由からパウダリング、焼付き、割れは起こ
らない。
For this reason, powdering, seizure, and cracking do not occur.

なお、一般に13wt%超えの合金化度のものでは「相
が形成されるが、本発明のGAの場合は合金化温度を抑
制して極力η相が形成されないよう配慮しているからこ
のようなことない。
Generally, when the degree of alloying exceeds 13 wt%, a phase is formed, but in the case of the GA of the present invention, the alloying temperature is suppressed to prevent the formation of the η phase as much as possible. Never.

なお、「相の存在はEPMA (エレクトロンプローブ
マイクロアナライザー)等の物理的検出手段によって検
出することができるが、測定誤差の問題もあるので、本
発明では「相の厚み(22wt%以上のFe含存相の厚
み)が0.5μm以下のものを指す。
The presence of a phase can be detected by physical detection means such as EPMA (electron probe microanalyzer), but there is also the problem of measurement error. Refers to those whose thickness (existing thickness) is 0.5 μm or less.

このような本発明にかかる合金化溶融亜鉛めっき鋼板は
、通常手段により得られた溶融亜鉛めっき後の鋼板を合
金化処理するに際し、その処理を2回に分けて行うこと
により製造することができる。即ち、第1段階では亜鉛
めっき後の鋼板を(400〜520℃の温度範囲に加熱
してη相が消失するまで合金化処理し、第2段階では3
00〜500℃の温度範囲に加熱して合金化処理するこ
とで、めっき層の平均Fe含有率が13wt%超え、1
7iit%以下で、該めっき層が実質的にδ1相および
Γ1相からなる合金化溶融亜鉛めっき鋼板とすることが
できる。
Such an alloyed hot-dip galvanized steel sheet according to the present invention can be manufactured by performing alloying treatment on a hot-dip galvanized steel sheet obtained by ordinary means in two steps. . That is, in the first stage, the steel plate after galvanizing is heated to a temperature range of 400 to 520 °C to alloy it until the η phase disappears, and in the second stage, the steel plate is alloyed with 3
By heating to a temperature range of 00 to 500°C for alloying treatment, the average Fe content of the plating layer exceeds 13 wt%, and 1
When the content is 7iit% or less, an alloyed hot-dip galvanized steel sheet can be obtained in which the plating layer substantially consists of a δ1 phase and a Γ1 phase.

第1段階の合金化温度を400〜520℃とする理由は
、400℃より低い温度ではη相が消失するまでに長時
間を要し、経済的に好ましくないからである。上限を5
20℃とする理由は、これを超える合金化温度では、「
相が形成され易くなるからである。
The reason why the alloying temperature in the first stage is set to 400 to 520°C is that at a temperature lower than 400°C, it takes a long time for the η phase to disappear, which is economically unfavorable. Upper limit is 5
The reason for setting the temperature at 20°C is that at alloying temperatures exceeding this temperature,
This is because phases are more likely to be formed.

また、この第1段階の合金化をη相が消失するまで行う
理由は、この段階でη相が存在すると引き続き行われる
合金化処理でのムラを生じ易(するからである。
Further, the reason why this first stage of alloying is performed until the η phase disappears is that if the η phase is present at this stage, unevenness is likely to occur in the subsequent alloying process.

本発明において、このη相が消失するまでとは、必ずし
もη相消失直後を意味するものではなく、極端に合金化
が進行しない限り、即ち、Fe含有率が124%程度以
上にならない限り、若干の合金化反応が進行してもよい
し、且つ片面当たり5 g/m”以下のη相が残っても
次の合金化処理で著しいムラが生じないのでη相が5 
g/m”以下となった程度以上でFe含有率が12wt
%未満の合金化度の水準をいう。但し、合金化反応を1
211t%越えのFe含有率にまで進行させるとη相が
形成されやすくなる。
In the present invention, "until the η phase disappears" does not necessarily mean immediately after the η phase disappears, but as long as alloying does not progress to an extreme degree, that is, unless the Fe content reaches about 124% or more, The alloying reaction of
Fe content is 12wt at or above the level where it is less than “g/m”
It refers to the level of alloying degree of less than %. However, if the alloying reaction is 1
When the Fe content is allowed to increase to more than 211 t%, the η phase is likely to be formed.

なお、η相消失の判断は、鋼板表面の色調を肉眼観察す
るか、光学的に反射率を測定するか或いは蛍光X線法に
よる測定で行うことができる。
The disappearance of the η phase can be determined by visually observing the color tone of the surface of the steel sheet, optically measuring the reflectance, or measuring by a fluorescent X-ray method.

第2段階の合金化温度を300〜500℃とする理由は
、300″Cより低い温度ではめっき層のFe富化の反
応がほとんど進行せず、13wt%以上の平均Fe含有
率とすることが困難であるからである。上限の合金化温
度を500℃とする理由は、これを超える合金化温度で
は、Fe富化が促進されて「層が形成されやすくなるか
らである。第2段階の合金化温度を300〜500℃の
範囲に調整することで、「相の形成が抑制されてΓ1相
が成長するとともに13〜17wt%の平均Fe含有率
とすることができる。
The reason why the alloying temperature in the second stage is set to 300 to 500°C is that at temperatures lower than 300″C, the Fe enrichment reaction in the plating layer hardly progresses, making it impossible to achieve an average Fe content of 13 wt% or more. The reason why the upper limit alloying temperature is set at 500°C is because at an alloying temperature exceeding this, Fe enrichment is promoted and a layer is easily formed. By adjusting the alloying temperature to a range of 300 to 500°C, the formation of the phase is suppressed, the Γ1 phase grows, and an average Fe content of 13 to 17 wt% can be achieved.

好ましい第2段階の合金化温度は350〜470℃であ
る。
The preferred second stage alloying temperature is 350-470°C.

さらに本発明において合金化処理方法を2回に分けて行
う理由は、平均Fe含有率が13−1%を超え、17w
t%以下でη相、ζ相及び「相を含まない実質的にδ、
相と「1相とからなる前記のGAを経済的に且つ効率良
く得るためである。
Furthermore, in the present invention, the reason why the alloying treatment method is performed in two steps is that the average Fe content exceeds 13-1% and 17w
At t% or less, η phase, ζ phase, and substantially δ phase-free,
This is to economically and efficiently obtain the above-mentioned GA consisting of one phase and one phase.

溶融亜鉛めっき後の鋼板を本発明に依らず例えば、52
0’Cを超える合金化温度で1回のみの処理しても平均
Fe含有率を13wt%越えとすることは可能であるが
、そのめっき層は「相を含んだものとなる。或いは、本
発明における第2段階の合金化温度で1回だけ処理して
も、13wt%越えの平均Pe含有率とすることができ
て且つδ、相および「。
For example, regardless of the present invention, the steel plate after hot-dip galvanization is
Although it is possible to increase the average Fe content to more than 13 wt% with only one treatment at an alloying temperature exceeding 0'C, the plating layer will contain "phases". Even if treated only once at the second stage alloying temperature in the invention, an average Pe content of more than 13 wt% can be achieved, and δ, phase and ".

相からなる相構成とすることは可能である。しかし、こ
のようなGAとするには長時間を要し、経済的に好まし
くない。
It is possible to have a phase configuration consisting of phases. However, such a GA requires a long time and is economically unfavorable.

しかし、本発明の製造方法のように溶融亜鉛めっき後の
鋼板を、まず比較的高い温度で第1段処理して12wt
%以下の平均Fe含有率のものを作り、その後r相ので
ない低温で第2段処理して13wt%越え、17wt%
の範囲に平均Fe含存率を調整すれば、r相が0.5μ
m以下の実質的にめっき層がδ1相およびr1相とから
なるGAを経済的に且つ効率良く製造することができる
のである。
However, as in the manufacturing method of the present invention, the steel sheet after hot-dip galvanization is first subjected to a first stage treatment at a relatively high temperature.
% or less, and then perform a second stage treatment at low temperature without r phase to exceed 13 wt% and 17 wt%.
If the average Fe content is adjusted to the range of
It is possible to economically and efficiently produce a GA in which the plating layer is substantially composed of the δ1 phase and the r1 phase.

なお、本発明において前記第1段階と第2段階の合金化
処理における保持時間は特に限定されるものではない、
最適な保持時間は、Znの付着量、母材鋼板の鋼種、Z
n中のAN濃度に応じて設定される。例えば、付着量が
55g/m”以上のものでは第1段階の合金化処理の保
持時間は10〜100秒とし、第2段階の保持時間を2
0〜180000秒とするのが合金化度の点から好まし
い。
In addition, in the present invention, the holding time in the first and second stage alloying treatments is not particularly limited.
The optimal holding time depends on the amount of Zn deposited, the steel type of the base steel plate, and the Zn
It is set according to the AN concentration in n. For example, if the coating weight is 55 g/m or more, the holding time for the first stage alloying treatment is 10 to 100 seconds, and the holding time for the second stage is 2.
It is preferable to set it as 0-180000 seconds from a point of alloying degree.

第2段階の合金化処理のより好ましい保持時間は60〜
36000秒である。
A more preferable holding time for the second stage alloying treatment is 60~
It is 36000 seconds.

さらに、本発明において第1段階と第2段階の合金化処
理は、全て溶融亜鉛めっきライン内の加熱炉で行う必要
はなく、例えば、温度条件に応して第2段階の合金化処
理をオフラインの箱型焼鈍炉で行ってもよいことは言う
までもない。
Furthermore, in the present invention, the first and second stage alloying treatments do not need to be performed entirely in a heating furnace in the hot-dip galvanizing line; for example, the second stage alloying process can be performed offline depending on the temperature conditions. Needless to say, the annealing may be carried out in a box-type annealing furnace.

次に、実施例により本発明を更に説明する。Next, the present invention will be further explained by examples.

(実施例) lを0.1.ht%添加した浴温464〜470℃の亜
鉛めっき浴で処理した片面当たり亜鉛付着量が60〜7
2g/m2の溶融亜鉛めっき鋼板を作り、これから0.
8mm厚X 100mm幅X 200mm長さの試験片
を作成し、これを竪型の赤外線加熱炉を存する溶融めっ
きシミュレータにて、第1表に示す加熱条件で合金化処
理した。
(Example) l is 0.1. Zinc coating amount per side treated in a zinc plating bath with addition of ht% at a bath temperature of 464 to 470°C is 60 to 7.
A 2g/m2 hot-dip galvanized steel sheet was made, and then 0.
A test piece with a thickness of 8 mm, a width of 100 mm, and a length of 200 mm was prepared, and it was alloyed under the heating conditions shown in Table 1 in a hot-dip plating simulator equipped with a vertical infrared heating furnace.

このようにして得た試験片に対して、V型ビード引抜試
験と円筒絞り試験を行うとともに「相の厚みおよびζ層
の有無を調べた。
The test pieces thus obtained were subjected to a V-shaped bead drawing test and a cylindrical drawing test, and the thickness of the phase and the presence or absence of the ζ layer were also investigated.

■型ビード引抜試験では0.5mmRの■型ビードによ
る引き抜き試験でめっき剥離量を測定して評価した。引
抜き試験における摺動距離は125mmで25mm幅X
 215mm長さの試験片を用いた。円筒絞り試験は試
験片5枚を90mmφブランク円筒絞りして、絞り時の
成形割れ発生枚数をもって評価した。
In the (2) type bead pull-out test, the amount of plating peeled off was measured and evaluated using a (2) type bead of 0.5 mm radius. The sliding distance in the pullout test was 125 mm and the width was 25 mm.
A test piece with a length of 215 mm was used. In the cylindrical drawing test, five test pieces were drawn into a 90 mmφ blank cylinder, and evaluation was made based on the number of pieces in which molding cracks occurred during drawing.

「相の厚みはEPMAで、またζ層の有無はX線回折に
より測定した。
“The thickness of the phase was measured by EPMA, and the presence or absence of the ζ layer was measured by X-ray diffraction.

これらの結果を同しく第1表に示す。These results are also shown in Table 1.

第1表より明らかなように、本発明例(A、 B)のも
のは、比較例(C,D)および従来例(E、 F)のも
のに比べ、めっきの剥離量は少なく、且つ割れは全く発
生していない。
As is clear from Table 1, the inventive examples (A, B) have less peeling of the plating and less cracking than the comparative examples (C, D) and the conventional examples (E, F). has not occurred at all.

なお、以上の説明では、主に厚目付けのGAを対象にし
て説明してきたが、本発明は何らこれに限定されるもの
ではない。これより薄い付着量、例えば50g/lo”
以下のものでも同様の作用効果が得られることは言うま
でもないことである。さらには、本発明にかかるGAは
片面或いは両面めっき鋼板の両方ともを含むものである
In addition, although the above description has mainly focused on thick GA, the present invention is not limited to this in any way. A thinner coating amount, e.g. 50g/lo”
It goes without saying that similar effects can be obtained with the following. Furthermore, the GA according to the present invention includes both single-sided and double-sided plated steel plates.

(発明の効果) 以上説明した如く、本発明にかかる合金化溶融亜鉛めっ
き鋼板は、耐パウダリング性、プレス成形性に優れ、従
って耐食性も高い。また、その製造方法は合金化温度を
変えて2段階処理するだけでよいから製造コストの上昇
はそれ程大きくはない。
(Effects of the Invention) As explained above, the alloyed hot-dip galvanized steel sheet according to the present invention has excellent powdering resistance and press formability, and therefore also has high corrosion resistance. Moreover, since the manufacturing method requires only two steps of processing by changing the alloying temperature, the increase in manufacturing cost is not so large.

さらに、本発明にかかる合金化溶融亜鉛めっき鋼板の上
に、Fe−Zn或いはFe−Pなどの合金めっきを施せ
ば、リン酸塩化成処理性は大きく向上するという効果も
ある。
Furthermore, if alloy plating such as Fe-Zn or Fe-P is applied on the alloyed hot-dip galvanized steel sheet according to the present invention, there is also the effect that the phosphate chemical conversion treatment properties are greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、付着量60g/n+”の合金化溶融亜鉛めっ
き鋼板の円筒絞り試験における、合金化温度をパラメー
タとしたときのめっき皮膜中のFed度とパウダリング
量との関係を示す図、 第2図は、付着ff160g/m”の合金化溶融亜鉛め
っき鋼板の■型ビード引き抜き試験における、合金化温
度をパラメータとしたときのめっき皮膜中のFe濃度と
パウダリング量との関係を示す図、第3図は、円筒絞り
試験におけるめっき皮膜中のFe濃度と成形荷重との関
係を示す図、である。
FIG. 1 is a diagram showing the relationship between the degree of Fed in the plating film and the amount of powdering when the alloying temperature is used as a parameter in a cylindrical drawing test of an alloyed hot-dip galvanized steel sheet with a coating weight of 60 g/n+", Figure 2 is a diagram showing the relationship between the Fe concentration in the plating film and the powdering amount when the alloying temperature is taken as a parameter in the ■-type bead pull-out test of an alloyed hot-dip galvanized steel sheet with an adhesion ff of 160 g/m''. , FIG. 3 is a diagram showing the relationship between the Fe concentration in the plating film and the forming load in the cylindrical drawing test.

Claims (2)

【特許請求の範囲】[Claims] (1)めっき層の平均Fe含有率が13wt%超え、1
7wt%以下で、該めっき層が実質的にδ_1相とΓ_
1相とからなることを特徴とする合金化溶融亜鉛めっき
鋼板。
(1) The average Fe content of the plating layer exceeds 13 wt%, 1
7wt% or less, the plating layer is substantially composed of δ_1 phase and Γ_
An alloyed hot-dip galvanized steel sheet characterized by comprising one phase.
(2)溶融亜鉛めっき後の鋼板を、400〜520℃の
温度範囲でη相が消失するまで合金化処理し、しかる後
300〜500℃の温度範囲で合金化処理を継続して、
めっき層の平均Fe含有率が13wt%超え、17wt
%以下で、該めっき層が実質的にδ_1相とΓ_1相と
からなるように合金化処理することを特徴とする合金化
溶融亜鉛めっき鋼板の製造方法。
(2) Alloying the hot-dip galvanized steel sheet at a temperature range of 400 to 520°C until the η phase disappears, and then continuing the alloying process at a temperature range of 300 to 500°C,
The average Fe content of the plating layer exceeds 13 wt% and is 17 wt%
.
JP33058687A 1987-12-25 1987-12-25 Alloying hot dip galvanized steel sheet and its production Pending JPH01172553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33058687A JPH01172553A (en) 1987-12-25 1987-12-25 Alloying hot dip galvanized steel sheet and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33058687A JPH01172553A (en) 1987-12-25 1987-12-25 Alloying hot dip galvanized steel sheet and its production

Publications (1)

Publication Number Publication Date
JPH01172553A true JPH01172553A (en) 1989-07-07

Family

ID=18234306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33058687A Pending JPH01172553A (en) 1987-12-25 1987-12-25 Alloying hot dip galvanized steel sheet and its production

Country Status (1)

Country Link
JP (1) JPH01172553A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483859A (en) * 1990-07-24 1992-03-17 Nippon Steel Corp Galvannealed steel sheet excellent in adhesive strength against low temperature impact
JP2001279409A (en) * 2000-03-28 2001-10-10 Nisshin Steel Co Ltd Galvannealed high tension steel sheet excellent in workability and its production method
JP2001279408A (en) * 2000-03-28 2001-10-10 Nisshin Steel Co Ltd Galvannealed steel sheet excellent in workability and its producing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483859A (en) * 1990-07-24 1992-03-17 Nippon Steel Corp Galvannealed steel sheet excellent in adhesive strength against low temperature impact
JP2001279409A (en) * 2000-03-28 2001-10-10 Nisshin Steel Co Ltd Galvannealed high tension steel sheet excellent in workability and its production method
JP2001279408A (en) * 2000-03-28 2001-10-10 Nisshin Steel Co Ltd Galvannealed steel sheet excellent in workability and its producing method

Similar Documents

Publication Publication Date Title
TWI314955B (en) Hot-dip galvanizing steel sheet and method for manufacturing a coated steel sheet
MX2014001118A (en) Alloyed hot-dip zinc coat layer, steel sheet having same, and method for producing same.
JP2013542325A (en) Method for producing an iron-tin alloy layer on a wrapping steel substrate
US9708703B2 (en) High-manganese hot-rolled galvanized steel sheet and manufacturing method thereof
TW201932618A (en) Hot-dipped galvanized steel and method of forming the same
JPH01172553A (en) Alloying hot dip galvanized steel sheet and its production
US5409553A (en) Process for manufacturing galvannealed steel sheets having high press-formability and anti-powdering property
JP6205759B2 (en) High-strength galvannealed steel sheet with excellent plating adhesion
JPH0266148A (en) Multi-layer played steel sheet excellent in flaking resistance
JP5206114B2 (en) Alloyed hot-dip galvanized steel sheet with excellent workability, plating adhesion, corrosion resistance, and appearance quality
JP2525165B2 (en) Method for manufacturing high strength galvanized steel sheet
JPH09137267A (en) Alloyed zinc-magnesium base plated steel sheet excellent in corrosion resistance and its production
JPH04235266A (en) Manufacture of alloying galvannealed steel sheet excellent in workability and corrosion resistance
JPH0319297B2 (en)
JPS5834168A (en) Treatment for fe-zn alloying of zinc hot dipped steel plate
JP3838277B2 (en) Alloyed hot-dip galvanized steel sheet with excellent powdering resistance
JP2709174B2 (en) Multi-layer alloyed hot-dip galvanized steel sheet with excellent powdering resistance, sliding properties and cratering resistance
JP3494058B2 (en) Alloyed hot-dip galvanized steel sheet with excellent workability and method for producing the same
KR0146886B1 (en) Method for manufacturing hot-dipped zn-alloy coated steel sheet for the good machinability and anti-corrossion
JPH07292436A (en) Surface treated steel sheet for deep drawing, excellent in corrosion resistance, and its production
JP3016333B2 (en) Cold drawn steel sheet for deep drawing excellent in corrosion resistance and method for producing the same
JPH0544006A (en) Production of alloyed hot dip galvanized steel sheet having excellent workability and corrosion resistance
JP2541380B2 (en) Method for producing iron-zinc alloy-plated steel sheet having a plurality of iron-zinc alloy plating layers having excellent electrodeposition coatability
KR100241307B1 (en) The method of making zn alloying coating sheet
KR101461744B1 (en) Manufacturing method for hot press formed products of coated steel and hot press formed products using the same