JPS63125906A - Inspecting method for optical fiber coupler - Google Patents

Inspecting method for optical fiber coupler

Info

Publication number
JPS63125906A
JPS63125906A JP27199986A JP27199986A JPS63125906A JP S63125906 A JPS63125906 A JP S63125906A JP 27199986 A JP27199986 A JP 27199986A JP 27199986 A JP27199986 A JP 27199986A JP S63125906 A JPS63125906 A JP S63125906A
Authority
JP
Japan
Prior art keywords
optical fiber
light
heating
light source
fiber coupler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27199986A
Other languages
Japanese (ja)
Inventor
Kazunori Senda
千田 和憲
Itaru Yokohama
横浜 至
Kazumasa Takada
和正 高田
Juichi Noda
野田 壽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP27199986A priority Critical patent/JPS63125906A/en
Publication of JPS63125906A publication Critical patent/JPS63125906A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To measure the wavelength characteristics of the degree of coupling of an optical fiber coupler in a short time by using a heat ray generated by heating an incidence-side optical fiber as a light source, branching it at a welding and elongation part, and measuring the intensity of projection light appearing on a projection side and inspecting the coupling rate. CONSTITUTION:The optical fiber is heated from its side face and then the optical fiber reaches certain constant temperature and considered to be a kind of black body to become a light source which has a spectrum based on the Planck's rule of thermal radiation. When the temperature of the optical fiber is sufficiently high, it becomes a light source which generates light in a wavelength range (0.6-1.6mum) used for optical fiber transmission. This light is propagated in the core part of the optical fiber coupler, branched at the welding and elongation part, and projected from core parts 3 and 4 in the end surfaces of the fibers 1 and 2. This method allows the heating length of the optical fiber to be set optionally long and the energy generated by the heating is found by using the Planck's expression and Wien's displacement law and proportional to the value obtained by raising the heating temperature to the 5th power, so light with high energy is made incident on the optical fiber. Consequently, the light can easily be made incident on the optical fiber as compared with a conventional inspecting method, the measurement time can be shortened, and the measurement accuracy is excellent.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光ファイバカップラの結合比の波長依存性を
安価に検査する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for inexpensively testing the wavelength dependence of the coupling ratio of an optical fiber coupler.

[従来の技術] 複数本の光ファイバを融着した後、融着部をテーバ状に
延伸して構成する光ファイバカップラは、光通信用伝送
線路の光分配、光結合用として使用され、今後ますます
需要が多くなるものと考えられる。また、波長多重伝送
用の光分配、光結合用としては、広い波長範囲にわたっ
て、使用波長に合致した光ファイバカップラが必要にな
ってくる。
[Prior Art] Optical fiber couplers, which are constructed by fusing multiple optical fibers and then stretching the fused portion into a tapered shape, are used for optical distribution and optical coupling in transmission lines for optical communications, and will continue to be used in the future. It is thought that demand will continue to increase. Furthermore, for optical distribution and optical coupling for wavelength multiplexed transmission, an optical fiber coupler that matches the wavelength used over a wide wavelength range is required.

第4図は、2木の同一光ファイバを融着・延伸して作製
した2x2光フアイバカツプラの結合比を検査する従来
の方法例を示す。第4図において、1.la、2,2a
はそれぞれ光ファイバ、3,3a、4゜4aは各光ファ
イバのコア部、5.5a、6,6aはそれぞれクラッド
部である。光ファイバ1とlaおよび2と2aは融着・
延伸前にはそれぞれ1木の光ファイバであったものであ
り、これらが融着・延伸部7で一体化されている。この
光ファイバカップラの一端のコア部3aに、レンズ12
を介して、光源11からの光を入射すると、融着・延伸
部7で入射光が分岐されて、ファイバ1.2の端面のコ
ア部3.4から分岐された光が出射する。今、このコア
部3からの出射光強度をIl、コア部4からの出射光強
度をI2とすると、この光ファイバカップラのファイバ
1aから入射し、ファイバ1に結合する場合の結合比R
1は で定められる。融着・延伸部7の延伸の程度によって、
結合比R1は0〜1.0の範囲で制御できる。
FIG. 4 shows an example of a conventional method for inspecting the coupling ratio of a 2×2 optical fiber coupler manufactured by fusing and drawing two identical optical fibers. In FIG. 4, 1. la, 2, 2a
are optical fibers, 3, 3a, 4.4a are core portions of each optical fiber, and 5.5a, 6, 6a are cladding portions, respectively. Optical fibers 1 and la and 2 and 2a are fused and
Before drawing, each optical fiber was one piece of optical fiber, and these are integrated at the fusion/drawing section 7. A lens 12 is attached to the core portion 3a at one end of this optical fiber coupler.
When light from the light source 11 is incident through the fiber 1.2, the incident light is branched at the fusion/stretching section 7, and the branched light is emitted from the core section 3.4 of the end face of the fiber 1.2. Now, assuming that the intensity of the light emitted from the core part 3 is Il and the intensity of the light emitted from the core part 4 is I2, the coupling ratio R when the light enters the fiber 1a of this optical fiber coupler and is coupled to the fiber 1
1 is determined by . Depending on the degree of stretching of the fusion/stretching section 7,
The coupling ratio R1 can be controlled within a range of 0 to 1.0.

第4図に示した8と9は、コア部3.4からの出射光強
度を検出する受光素子であり、10は結合比R1を算出
する演算回路である。
Reference numerals 8 and 9 shown in FIG. 4 are light receiving elements that detect the intensity of light emitted from the core portion 3.4, and 10 is an arithmetic circuit that calculates the coupling ratio R1.

従来の結合比検査系は、第4図に示したように、光源1
1からの特定の波長の光をレンズ12を介して光ファイ
バlaのコア部3aに入射させている。
The conventional coupling ratio inspection system has a light source 1 as shown in FIG.
1 is made to enter the core portion 3a of the optical fiber la through the lens 12.

光源11としては、半導体レーザまたは発光ダイオード
を用いており、波長としては、これら光源が発振する0
、85μm帯、 1.3 μm V、1.55 μm 
Hの特定の波長でしか測定できない。一方、波長多重伝
送方式の進展にともなって、使用波長帯が広い範囲の光
ファイバカップラが開発されている(D、B、Mort
imore、Electrorics Letters
、Vol、21゜No、17.P、742.1985)
。このような広波長帯域動作光ファイバカップラの結合
比を測定するには、光源11の代りにハロゲンランプ等
の白色光源と分光器とを用いることにより任意の波長の
光を得、ついでレンズ12で集光して光ファイバ1aの
コア3aに入射する必要がある。しかし、車−モート光
ファイバのコア径が小さく、かつ開口数が小さいため、
入射光量を増加させることは困難であり、ロックイン検
出等の方法で低レベルに対する検出を行うため、測定に
は30分〜60分と長時間を要するという問題があった
As the light source 11, a semiconductor laser or a light emitting diode is used, and the wavelength is 0, which is oscillated by these light sources.
, 85 μm band, 1.3 μm V, 1.55 μm
It can only be measured at specific wavelengths of H. On the other hand, with the development of wavelength division multiplexing transmission systems, optical fiber couplers that can be used in a wide range of wavelength bands have been developed (D, B, Mort
imore, Electronics Letters
, Vol, 21°No., 17. P, 742.1985)
. To measure the coupling ratio of such a wide wavelength band operating optical fiber coupler, use a white light source such as a halogen lamp and a spectrometer instead of the light source 11 to obtain light of an arbitrary wavelength, and then use the lens 12 to measure the coupling ratio. It is necessary to condense the light and input it into the core 3a of the optical fiber 1a. However, since the core diameter of the car-moat optical fiber is small and the numerical aperture is small,
It is difficult to increase the amount of incident light, and since low levels are detected using methods such as lock-in detection, there is a problem in that measurement takes a long time, 30 to 60 minutes.

[発明が解決しようとする問題点] 本発明は上述した従来の欠点、すなわち特定波長でしか
検査できないことまたは広い波長帯域の検査に長時間を
要することを解消し光ファイバカップラの結合度の波長
特性を、短時間で測定する方法を提供することを目的と
する。
[Problems to be Solved by the Invention] The present invention solves the above-mentioned conventional drawbacks, that is, the fact that it can only be tested at a specific wavelength or that it takes a long time to test a wide wavelength band, The purpose is to provide a method for measuring characteristics in a short time.

[問題点を解決するための手段] このような目的を達成するために、本発明の光ファイバ
カップラの検査方法はコア部およびクラッド部を有する
複数本の光ファイバを融着・延伸して成る光ファイバカ
ップラの検査方法において、入射側光ファイバを加熱し
て発生させた熱線を光源とし、融着・延伸部で分岐され
、出射側に現われた出射光の強さを測定して結合比を検
査することを特徴とする。
[Means for Solving the Problems] In order to achieve such an object, the optical fiber coupler inspection method of the present invention involves fusing and stretching a plurality of optical fibers each having a core portion and a cladding portion. In the inspection method for optical fiber couplers, the light source is a hot ray generated by heating the optical fiber on the input side, and the intensity of the emitted light that is branched at the fusion/stretching part and appears on the output side is measured to determine the coupling ratio. It is characterized by inspecting.

[作 用] 光ファイバを側面から加熱すると、光ファイバはある一
定温度となり、一種の黒体とみなせ、ブランクの放射法
則に従ったスペクトルをもつ光源となる。この光源は、
光ファイバの温度が十分高ければ、光フアイバ伝送に使
用される波長域(0,6μm〜1.6 μm)の光を発
生する光源となる。この光が光ファイバカップラのコア
部を伝播し、融着・延伸部で分岐され、ファイバ1.2
の端面のコア部から出射する。
[Operation] When an optical fiber is heated from the side, the optical fiber reaches a certain temperature and can be regarded as a kind of black body, becoming a light source with a spectrum according to Blank's radiation law. This light source is
If the temperature of the optical fiber is high enough, it becomes a light source that generates light in the wavelength range (0.6 μm to 1.6 μm) used for optical fiber transmission. This light propagates through the core part of the optical fiber coupler, is split at the fusion/stretching part, and becomes the fiber 1.2.
The light is emitted from the core portion of the end face.

この方法は光ファイバの加熱長を任意に長く設定でき、
また、加熱によって発生するエネルギはブランクの式と
ウィーンの変位側から求められ、加熱温度の5乗に比例
するため、ハロゲンランプ等により光フアイバ端面に入
射させる場合に比較して簡単にエネルギの強い光を光フ
ァイバに入射することができる。このため、従来に比較
して、信号処理系が簡略化でき、また測定時間を大幅に
短縮することも可能である。
This method allows the heating length of the optical fiber to be set arbitrarily long,
In addition, the energy generated by heating can be calculated from Blank's equation and Wien's displacement side, and is proportional to the fifth power of the heating temperature. Light can be input into an optical fiber. Therefore, compared to the conventional method, the signal processing system can be simplified and the measurement time can be significantly shortened.

[実施例] 以下、図面に示す実施例によって本発明の詳細な説明す
る。
[Example] Hereinafter, the present invention will be explained in detail by referring to an example shown in the drawings.

実施例1 第1図は本発明の詳細な説明する図である。Example 1 FIG. 1 is a diagram explaining the present invention in detail.

1、la ; 2.2aはそれぞれ同一寸法の単一モー
ト光ファイバであり、例えば長さ2m、外径は125 
μm。
1, la; 2.2a are single mote optical fibers of the same size, e.g. 2 m long, outer diameter 125
μm.

コア3,3a、4,4aの径は8.0μm、屈折率差は
0.3%で、カットオフ波長は1.1μm、クラッドは
5in2組成、コアは5i02−GeO□組成である。
The diameters of the cores 3, 3a, 4, and 4a are 8.0 μm, the refractive index difference is 0.3%, the cutoff wavelength is 1.1 μm, the cladding has a 5in2 composition, and the core has a 5i02-GeO□ composition.

中心部は、融着・延伸法によって、2木の光ファイバは
一体化されており、融着・延伸部7の外径は30μm程
度である。この光ファイバカップラの結合比は、波長1
.3μmの半導体レーザを用いた従来法で測定した結果
、la−+1の場合で50.2%。
At the center, two optical fibers are integrated by a fusion/drawing method, and the outer diameter of the fusion/drawing section 7 is about 30 μm. The coupling ratio of this optical fiber coupler is wavelength 1
.. The result of measurement using a conventional method using a 3 μm semiconductor laser was 50.2% in the case of la-+1.

la→2の場合で49.8%であった。この光ファイバ
カップラの1a部分の被覆材を長さ10cmにわたって
除き内径1cm、長さ5c+nの円筒状カーボン発熱体
20を内蔵した電気炉21の中に挿入した。発熱体の温
度は1000℃とし、±0.5℃の温度変動範囲になる
ように制御した。
In the case of la→2, it was 49.8%. The coating material on the portion 1a of this optical fiber coupler was removed over a length of 10 cm, and the optical fiber coupler was inserted into an electric furnace 21 containing a cylindrical carbon heating element 20 having an inner diameter of 1 cm and a length of 5c+n. The temperature of the heating element was 1000°C, and was controlled to have a temperature fluctuation range of ±0.5°C.

光ファイバカップラの出射端コア部3,4からの光を光
導電素子、ホトトランジスタ、ホトダイオードなどの受
光素子8,9で受光し、光スペクトラムアナライザ22
を用い、測定波長範囲1.18〜1.6μmでスペクト
ルをそれぞれ測定し、結合比を式(1)で算出した。測
定に要した時間は、全部で約5分であった。測定結果を
第2図に示した。この第2図が示すように、カットオフ
波長1.1μm近傍から1.6μmの領域で出射端コア
部3での結合比が、74%から0%まで変化し、波長1
.3μmでは50±0.1%を示している。本実施例で
示したように、従来の検査方法に比較して、簡単に、光
ファイバへ光を入射でき、測定時間が短縮でき、測定精
度も良好である。
The light from the output end core portions 3 and 4 of the optical fiber coupler is received by light receiving elements 8 and 9 such as photoconductive elements, phototransistors, and photodiodes, and is then analyzed by an optical spectrum analyzer 22.
The spectra were each measured in a measurement wavelength range of 1.18 to 1.6 μm using the following, and the coupling ratio was calculated using equation (1). The total time required for the measurement was about 5 minutes. The measurement results are shown in Figure 2. As shown in FIG. 2, the coupling ratio at the output end core portion 3 changes from 74% to 0% in the region from near the cutoff wavelength of 1.1 μm to 1.6 μm, and
.. At 3 μm, it shows 50±0.1%. As shown in this embodiment, compared to conventional inspection methods, light can be easily introduced into an optical fiber, measurement time can be shortened, and measurement accuracy is also good.

以上の実施例では、阜−モードファイバでカットオフ波
長が、1.1μmの場合について示したが、より短波長
側(例えば、0.6μm)で使用する光ファイバカップ
ラについても応用できる。また、マルチモード光ファイ
バの場合には、単一モード光ファイバの場合以上に光を
入射することが容易であり、より正確な測定が可能であ
ることは言うまでもない。さらに、2×2の光ファイバ
カップラに限らず、I XIo、  I X100など
のスターカップラについても同様に測定が可能である。
In the above embodiments, the case where the cutoff wavelength is 1.1 .mu.m in a 0-mode fiber is shown, but the present invention can also be applied to an optical fiber coupler used at a shorter wavelength (for example, 0.6 .mu.m). Furthermore, in the case of a multimode optical fiber, it is easier to input light than in the case of a single mode optical fiber, and it goes without saying that more accurate measurement is possible. Furthermore, it is possible to measure not only 2×2 optical fiber couplers but also star couplers such as IXIo and IX100.

実施例2 第2の実施例として、光ファイバカップラを融着・延伸
法で製造中の結合比を測定した実施例について説明する
Example 2 As a second example, an example will be described in which the coupling ratio was measured during manufacturing of an optical fiber coupler by a fusion bonding/drawing method.

第1図に示した実施例における電気炉21に替えて酸水
素火炎23を用い、ファイバの加熱温度を第1の実施例
と同様に1000℃とし、±1℃の範囲内に制御した。
An oxyhydrogen flame 23 was used in place of the electric furnace 21 in the example shown in FIG. 1, and the heating temperature of the fiber was set to 1000°C as in the first example, and was controlled within the range of ±1°C.

さらに第3図に示すように光ファイバカップラの出射端
コア部3,4と受光素子8.9の間に帯域通過形波長フ
ィルター24.25を挿入し、酸水素火炎の加熱によっ
て発生した光源の中の光から、0.6 μm 、 0.
7 μm 、 0.8 μm 、 0.9μm 、 1
.0 μm、1.1 μm 、 1.2 μm 、 1
.3 μm 。
Furthermore, as shown in FIG. 3, a bandpass type wavelength filter 24.25 is inserted between the output end core parts 3, 4 of the optical fiber coupler and the light receiving element 8.9, and the light source generated by the heating of the oxyhydrogen flame is removed. From the light inside, 0.6 μm, 0.
7 μm, 0.8 μm, 0.9 μm, 1
.. 0 μm, 1.1 μm, 1.2 μm, 1
.. 3 μm.

1.4 μm 、 1.5 μm 、 1.6 μmを
中心通過波長としてそれぞれ受光素子8.9で検出した
。これらの検出の際には当然のことながら延伸のための
加熱を中止している。11枚の帯域通過径波長フィルタ
ーは、回転する円板の円周上に、中心から等距離で、等
間隔に設置し、回転形モータによって1rpmの速度で
回転させた。それぞれの受光素子の出力信号1.、I2
は、電流電圧変換器26を介しついで電圧増幅して、演
算回路10によってそれぞれの帯域通過波長フィルタに
対応した結合比時間を要した。光ファイバカップラの使
用波長が例えば1.3μmの場合には、中心波長が1.
3μmの帯域通過形波長フィルタを用い、光ファイバカ
ップラ製造工程において、加熱延伸工程と次の加熱延伸
工程の間の加熱していない時間帯に結合比を測定した。
They were detected by the light receiving element 8.9 with center passing wavelengths of 1.4 μm, 1.5 μm, and 1.6 μm, respectively. At the time of these detections, as a matter of course, heating for stretching is stopped. Eleven band-pass diameter wavelength filters were placed on the circumference of the rotating disk at equal intervals from the center and rotated at a speed of 1 rpm by a rotary motor. Output signal of each light receiving element 1. ,I2
The voltage is then amplified via the current-voltage converter 26, and the arithmetic circuit 10 requires a coupling ratio time corresponding to each bandpass wavelength filter. For example, when the wavelength used by the optical fiber coupler is 1.3 μm, the center wavelength is 1.3 μm.
Using a 3 μm band-pass wavelength filter, the coupling ratio was measured during the non-heating period between one heating drawing step and the next heating drawing step in the optical fiber coupler manufacturing process.

そして、結合比が3dBカツプラで、50±0.1%で
ある光ファイバカップラを実現できた。
An optical fiber coupler with a coupling ratio of 50±0.1% was realized with a 3 dB coupler.

[発明の効果] 以上説明したように、本発明は、光ファイバ力′ ツブ
シの結合度の波長依存性を短時間に、精度よく、測定で
きるため、光ファイバカップラ結合度検査法として、製
品検査および製造工程中の検査法として有効である。
[Effects of the Invention] As explained above, the present invention is capable of measuring the wavelength dependence of the degree of coupling of an optical fiber coupler in a short time and with high accuracy. It is also effective as an inspection method during the manufacturing process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す模式図、第2図は本発明
の方法により得られた結合比測1、la・・・単一モー
ド光ファイバ、2,2a・・・単一モード光ファイバ、
3.3a、4,4a・・・コア部、 5.5a、6,6a・・・クラッド部、7・・・融着・
延伸部、 8.9・・・受光素子、 lO・・・演算回路、 11・・・光源、 12・・・レンズ、 20・・・カーボン発熱体、 21・・・電気炉、 22・・・光スペクトラムアナライザ、24.25・・
・フィルター、 26・・・電流電圧変換器。 第2図
Fig. 1 is a schematic diagram showing an embodiment of the present invention, Fig. 2 is a coupling ratio measurement obtained by the method of the present invention 1, la...single mode optical fiber, 2, 2a... single mode optical fiber,
3.3a, 4, 4a... Core part, 5.5a, 6, 6a... Clad part, 7... Fusion bonding.
Extension part, 8.9... Light receiving element, lO... Arithmetic circuit, 11... Light source, 12... Lens, 20... Carbon heating element, 21... Electric furnace, 22... Optical spectrum analyzer, 24.25...
- Filter, 26... Current-voltage converter. Figure 2

Claims (1)

【特許請求の範囲】 1)コア部およびクラッド部を有する複数本の光ファイ
バを融着・延伸して成る光ファイバカップラの検査方法
において、入射側光ファイバを加熱して発生させた熱線
を光源とし、融着・延伸部で分岐され、出射側に現われ
た出射光の強さを測定して結合比を検査することを特徴
とする光ファイバカップラの検査方法。 2)前記光ファイバの出射側端面と、前記出射光を受光
する受光素子との間に帯域通過波長フィルタを挿入し、
前記光源の中から、所望の波長の光のみを前記受光素子
に導いて結合比を検査することを特徴とする特許請求の
範囲第1項に記載の光ファイバカップラの検査方法。
[Claims] 1) In a method for inspecting an optical fiber coupler formed by fusing and drawing a plurality of optical fibers each having a core portion and a cladding portion, a heat ray generated by heating an input side optical fiber is used as a light source. A method for inspecting an optical fiber coupler, characterized in that the coupling ratio is inspected by measuring the intensity of the emitted light that is split at the fusion/stretching part and appears on the output side. 2) inserting a bandpass wavelength filter between the output side end face of the optical fiber and a light receiving element that receives the output light;
2. The method of inspecting an optical fiber coupler according to claim 1, wherein the coupling ratio is inspected by guiding only light of a desired wavelength from the light source to the light receiving element.
JP27199986A 1986-11-17 1986-11-17 Inspecting method for optical fiber coupler Pending JPS63125906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27199986A JPS63125906A (en) 1986-11-17 1986-11-17 Inspecting method for optical fiber coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27199986A JPS63125906A (en) 1986-11-17 1986-11-17 Inspecting method for optical fiber coupler

Publications (1)

Publication Number Publication Date
JPS63125906A true JPS63125906A (en) 1988-05-30

Family

ID=17507737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27199986A Pending JPS63125906A (en) 1986-11-17 1986-11-17 Inspecting method for optical fiber coupler

Country Status (1)

Country Link
JP (1) JPS63125906A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7197199B2 (en) 2003-07-09 2007-03-27 Heraeus Electro-Nite International N.V. Calibration and measurement of temperatures in melts by optical fibers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7197199B2 (en) 2003-07-09 2007-03-27 Heraeus Electro-Nite International N.V. Calibration and measurement of temperatures in melts by optical fibers

Similar Documents

Publication Publication Date Title
US5765948A (en) Light-temperature distribution sensor using back scattering light produced by incident light pulse and temperature distribution measuring method
US5154512A (en) Non-contact techniques for measuring temperature or radiation-heated objects
JP2740206B2 (en) Thermal radiation type low temperature measuring instrument
CN107907239B (en) Temperature sensing device based on chalcogenide glass material and construction method thereof
KR950033445A (en) Temperature measuring method and apparatus using optical fiber
AU592889B2 (en) Method of measuring the refractive index profile of optical fibers
JPS61105431A (en) Method and device for measuring beam wavelength and wavelength compensating beam output from monochromatic beam source
GB2077421A (en) Displacement sensing
US8172470B2 (en) Methods and apparatus for measuring insertion loss in a fiber optic cable connection
CN112013988A (en) Dual-wavelength laser temperature measuring device based on optical fiber transmission signals
JPS63125906A (en) Inspecting method for optical fiber coupler
CN106403833A (en) Method utilizing fiber core mismatch interference structure to measure strain
US6608276B2 (en) Apparatus for heating a small area of an object to a high temperature and for accurately maintaining this temperature
JPS5844620B2 (en) Hikarif Aibano Seizou Sochi
JP2504763B2 (en) Optical fiber core detection method
CN212721824U (en) Dual-wavelength laser temperature measuring device based on optical fiber transmission signals
JP3143846B2 (en) Contact type optical fiber sensor
JPH05231943A (en) Method and equipment for measuring heating temperature of optical fiber
Katagiri et al. Direct core observation method using thermal radiation of silica fibers with dopants
JPS63205531A (en) Measuring method for temperature by optical fiber
KR970004605Y1 (en) Fluorescence fiber temperature sensor probe
JPS58139038A (en) Temperature measuring device using optical fiber
Madruga et al. Error estimation in a fiber-optic dual waveband ratio pyrometer
JPH03225251A (en) Method for measuring loss of optical fiber coupler
JPS60244833A (en) Measuring method of structure of single-mode optical fiber