JPS5844620B2 - Hikarif Aibano Seizou Sochi - Google Patents

Hikarif Aibano Seizou Sochi

Info

Publication number
JPS5844620B2
JPS5844620B2 JP15524375A JP15524375A JPS5844620B2 JP S5844620 B2 JPS5844620 B2 JP S5844620B2 JP 15524375 A JP15524375 A JP 15524375A JP 15524375 A JP15524375 A JP 15524375A JP S5844620 B2 JPS5844620 B2 JP S5844620B2
Authority
JP
Japan
Prior art keywords
optical fiber
transmission loss
optical
manufacturing
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15524375A
Other languages
Japanese (ja)
Other versions
JPS5278448A (en
Inventor
知夫 柳瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP15524375A priority Critical patent/JPS5844620B2/en
Publication of JPS5278448A publication Critical patent/JPS5278448A/en
Publication of JPS5844620B2 publication Critical patent/JPS5844620B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 この発明は通信用に用いられる低損失光ファイバの製造
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for manufacturing a low-loss optical fiber used for communications.

光ファイバを用いる光通信は光ファイバの伝送損失の低
減および光半導体の性能の向上により、きわめて有望視
されている。
Optical communication using optical fibers is viewed as extremely promising due to the reduction in transmission loss of optical fibers and the improvement in the performance of optical semiconductors.

このような光フアイバ通信に用いられる光ファイバの最
も重要な特性である伝送損失の測定は従来製造と同時に
は行なえなかった。
Conventionally, it has not been possible to measure the transmission loss, which is the most important characteristic of optical fibers used in such optical fiber communications, at the same time as manufacturing.

すなわち、まず光ファイバを製造し、しかる後製造され
た光ファイバについて伝送損失を測定していた。
That is, an optical fiber is first manufactured, and then the transmission loss of the manufactured optical fiber is measured.

このような従来の光ファイバの製造と伝送損失測定とを
別工程で行なうような方法では以下に述べる問題点が生
じる。
Such a conventional method in which optical fiber manufacturing and transmission loss measurement are performed in separate processes causes the following problems.

第一の問題点は製造された光ファイバの伝送損失の長さ
方向の変化は光ファイバを破壊試験しないと求まらない
点である。
The first problem is that the longitudinal change in transmission loss of a manufactured optical fiber cannot be determined without destructive testing of the optical fiber.

これは光ファイバの伝送損失の測定法に起因する。This is due to the method used to measure optical fiber transmission loss.

一般に伝送損失は光ファイバへ入射する光の強度と光フ
ァイバより出射する光の強度の比から求められる。
Generally, transmission loss is determined from the ratio of the intensity of light entering an optical fiber and the intensity of light exiting from the optical fiber.

このような測定法では被測定物である光ファイバに部分
的に伝送損失が大きい部分があっても光フアイバ全体の
伝送損失が求められるだけであり、ファイバの長さ方向
の伝送損失の変化は求められない。
In this measurement method, even if there is a part of the optical fiber under test with a large transmission loss, only the transmission loss of the entire optical fiber is determined, and the change in transmission loss in the length direction of the fiber is calculated. Not asked for.

そこで従来は、長さ方向の伝送損失の変化を求めたい場
合は光ファイバを破断することによって求めた。
Therefore, in the past, when it was desired to determine the change in transmission loss in the longitudinal direction, it was determined by breaking the optical fiber.

すなわち、被測定物である光ファイバに光を入射し、出
射光の強度を測定する作業を、順次光ファイバの出射端
側から光ファイバを破断していくたびにくりかえし、こ
のとき測定された光強度の変化の割合から長さ方向の伝
送損失の変化を求めた。
In other words, the process of inputting light into the optical fiber that is the object to be measured and measuring the intensity of the emitted light is repeated each time the optical fiber is broken from the output end of the optical fiber. The change in transmission loss in the longitudinal direction was determined from the rate of change in intensity.

しかしこの方法は破壊試験であるために、製品の検査法
とはなり得ない。
However, since this method is a destructive test, it cannot be used as a product inspection method.

第2の問題点は、光ファイバの製造と伝送損失測定を同
時に行なえないことによって、光ファイバを製品とする
までに時間が多くかかることである。
The second problem is that it takes a lot of time to manufacture an optical fiber into a product because it is not possible to simultaneously manufacture the optical fiber and measure the transmission loss.

第3の問題点は、伝送損失測定が製造と同時に行なえな
いことによって、光ファイバの製造条件を製造中に適切
に変えることが出来ないことである。
The third problem is that the transmission loss measurement cannot be carried out at the same time as manufacturing, and therefore the manufacturing conditions of the optical fiber cannot be appropriately changed during manufacturing.

したがって、この発明の目的は、従来出来得なかった、
非破壊による光ファイバの伝送損失の長さ方向の変化の
測定を可能とし、光ファイバの製造と伝送損失測定を同
時に行なえることによって工程の時間短縮がはかられ、
かつ光ファイバの製造条件を伝送損失が一様に低く、な
るように製造中に変えることが出来る光フアイバ製造装
置を提供することにある。
Therefore, the purpose of this invention is to
It enables non-destructive measurement of changes in optical fiber transmission loss in the longitudinal direction, and by being able to manufacture optical fibers and measure transmission loss at the same time, the process time can be shortened.
Another object of the present invention is to provide an optical fiber manufacturing apparatus that can change optical fiber manufacturing conditions during manufacturing so that transmission loss is uniformly low.

この発明によれば、光フアイバ素材を加熱引伸するため
の加熱部と光ファイバを巻取るための巻取りドラムを備
えた光フアイバ製造装置において、加熱された光フアイ
バ素材から紡糸された光ファイバを伝搬してきた光の強
度を測定する光強度測定部を備えていることを特徴とす
る光ファイバ製造装置を得ることが出来る。
According to the present invention, in an optical fiber manufacturing apparatus equipped with a heating section for heating and stretching an optical fiber material and a winding drum for winding up the optical fiber, an optical fiber spun from a heated optical fiber material is spun. It is possible to obtain an optical fiber manufacturing apparatus characterized in that it includes a light intensity measurement section that measures the intensity of propagated light.

次にこの発明について図面を参照して説明しよう。Next, this invention will be explained with reference to the drawings.

図は本発明の一実施例を示す構成図で、11は光フアイ
バ素材、12は光フアイバ素材11を加熱する加熱部、
13は巻取りドラム、14は光ファイバ 15は光ファ
イバの先端部、16は集光レンズ、17は光チョッパ、
18は光フィルタ19は光電変換素子、20は同期増幅
器、21は対数変換器、22は記録計である。
The figure is a configuration diagram showing an embodiment of the present invention, in which 11 is an optical fiber material, 12 is a heating unit that heats the optical fiber material 11,
13 is a winding drum, 14 is an optical fiber, 15 is a tip of the optical fiber, 16 is a condensing lens, 17 is an optical chopper,
18 is an optical filter 19 which is a photoelectric conversion element, 20 is a synchronous amplifier, 21 is a logarithmic converter, and 22 is a recorder.

光フアイバ素材を加熱引伸する場合には光フアイバ素材
の一端が加熱され高温に保たれる。
When heating and stretching an optical fiber material, one end of the optical fiber material is heated and kept at a high temperature.

そのため加熱された光フアイバ素材は熱輻射をする。Therefore, the heated optical fiber material emits heat radiation.

この熱射光の一部が加熱引伸されている光ファイバを伝
搬する。
A portion of this thermal radiation propagates through the heated and stretched optical fiber.

この光ファイバの先端15をファイバ巻取りドラム13
0回転軸とほぼ一致するように巻取りドラム13にセッ
トする。
The tip 15 of this optical fiber is wrapped around the fiber winding drum 13.
It is set on the winding drum 13 so that it almost coincides with the zero rotation axis.

このためファイバ巻取りドラム13が回転しても光ファ
イバの先端15の位置はほとんど変らない。
Therefore, even if the fiber winding drum 13 rotates, the position of the optical fiber tip 15 hardly changes.

この光ファイバの先端部15から出射された光の強度は
集光レンズ16、光フィルタ18、光チョッパ17、同
期増幅器20、対数変換器21.記録計22を使うこと
によって記録される。
The intensity of the light emitted from the tip 15 of this optical fiber is determined by a condenser lens 16, an optical filter 18, an optical chopper 17, a synchronous amplifier 20, a logarithmic converter 21. It is recorded by using a recorder 22.

巻取りドラム13を回転させると光ファイバは製造され
始め、ファイバの距離が長くなると同時に光ファイバを
伝搬してきた光の強度は減衰して行く。
When the winding drum 13 is rotated, the optical fiber begins to be manufactured, and as the distance of the fiber increases, the intensity of the light propagating through the optical fiber attenuates.

この光の強度の減衰の様子が一様であるときは光ファイ
バは一様な伝送損失を有し、減衰の様子が変化するとき
は光ファイバの伝送損失が一様でない。
When the attenuation of the light intensity is uniform, the optical fiber has a uniform transmission loss, and when the attenuation changes, the optical fiber has an uneven transmission loss.

このようにして光ファイバの長さ方向の伝送損失の変動
を光ファイバを非破壊で測定でき、また伝送損失測定と
光ファイバの製造が同時に行なえるために工程が短縮さ
れ、かつ伝送損失の増大が製造中に知れるために光ファ
イバの製造条件を製造中に適切に変えることが出来る。
In this way, variations in transmission loss along the length of an optical fiber can be measured non-destructively, and since transmission loss measurement and optical fiber manufacturing can be performed simultaneously, the process is shortened and the transmission loss is increased. Since this is known during manufacturing, the manufacturing conditions of the optical fiber can be appropriately changed during manufacturing.

前記実施例で示した光フアイバ素材はシリカガラスでも
低融点ガラスでも良く、加熱方法は高周波加熱、直流加
熱、レーザ加熱、バーナ加熱でも良い。
The optical fiber material shown in the above embodiments may be silica glass or low melting point glass, and the heating method may be high frequency heating, direct current heating, laser heating, or burner heating.

このような光フアイバ製造装置を用いて光ファイバを製
造すると、伝送損失の長さ方向の変化が非破壊で求まり
、伝送損失が一部分だけ悪いような光ファイバは光ファ
イバのどこで伝送損失が劣化しているかがわかるため、
悪い部分だけを切りすて、良い部分はそのまま使用する
ことが可能となり、製品の歩留りが上がる。
When optical fibers are manufactured using such optical fiber manufacturing equipment, changes in transmission loss along the length can be determined non-destructively, and if the transmission loss is bad in only one part of the optical fiber, it is possible to determine where in the optical fiber the transmission loss deteriorates. In order to know whether
It becomes possible to cut out only the bad parts and use the good parts as is, increasing the yield of the product.

また、伝送損失測定と光ファイバの製造が同時に行なえ
るため、工程の時間短縮がはかられ、工業上置するとこ
ろが太きい。
In addition, since transmission loss measurement and optical fiber manufacturing can be carried out simultaneously, the process time can be shortened, making it suitable for industrial applications.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明による光フアイバ製造装置の一実施例を示
す構成図で、11は光フアイバ素材、12は加熱部、1
3は巻取りドラム、14は光ファイバ 15は光ファイ
バの先端部、16は集光レンズ、17は光チョッパ、1
8は光フィルタ、19は光電変換素子、20は同期増幅
器、21は対数変換器、22は記録計である。
The figure is a configuration diagram showing an embodiment of an optical fiber manufacturing apparatus according to the present invention, in which 11 is an optical fiber material, 12 is a heating section, 1
3 is a winding drum, 14 is an optical fiber, 15 is a tip of the optical fiber, 16 is a condensing lens, 17 is an optical chopper, 1
8 is an optical filter, 19 is a photoelectric conversion element, 20 is a synchronous amplifier, 21 is a logarithmic converter, and 22 is a recorder.

Claims (1)

【特許請求の範囲】[Claims] 1 光フアイバ素材を加熱引伸するための加熱部と光フ
ァイバを巻取るための巻取りドラムを備えた光フアイバ
製造装置において、加熱された光フアイバ素材から紡糸
された光ファイバを伝搬してきた光の強度を測定する光
強度測定部を設けたことを特徴とする光ファイバの製造
装置。
1. In an optical fiber manufacturing device equipped with a heating unit for heating and stretching the optical fiber material and a winding drum for winding the optical fiber, the light propagating through the optical fiber spun from the heated optical fiber material is 1. An optical fiber manufacturing device characterized by being provided with a light intensity measuring section for measuring intensity.
JP15524375A 1975-12-25 1975-12-25 Hikarif Aibano Seizou Sochi Expired JPS5844620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15524375A JPS5844620B2 (en) 1975-12-25 1975-12-25 Hikarif Aibano Seizou Sochi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15524375A JPS5844620B2 (en) 1975-12-25 1975-12-25 Hikarif Aibano Seizou Sochi

Publications (2)

Publication Number Publication Date
JPS5278448A JPS5278448A (en) 1977-07-01
JPS5844620B2 true JPS5844620B2 (en) 1983-10-04

Family

ID=15601652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15524375A Expired JPS5844620B2 (en) 1975-12-25 1975-12-25 Hikarif Aibano Seizou Sochi

Country Status (1)

Country Link
JP (1) JPS5844620B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52121335A (en) * 1976-04-06 1977-10-12 Nippon Telegr & Teleph Corp <Ntt> Optical fiber drawing apparatus
US4081258A (en) * 1976-05-12 1978-03-28 International Telephone And Telegraph Corporation Method for using on line optic fiber loss monitor
JPS53111740A (en) * 1977-03-11 1978-09-29 Nippon Telegr & Teleph Corp <Ntt> Wire drawing device for optical fiber
JPS62207928A (en) * 1986-03-10 1987-09-12 Kazumasa Sasaki Method and device for measuring optical propagation loss of optical fiber
KR102554595B1 (en) * 2018-11-07 2023-07-12 현대모비스 주식회사 Active air flap of vehicle

Also Published As

Publication number Publication date
JPS5278448A (en) 1977-07-01

Similar Documents

Publication Publication Date Title
CN107907239B (en) Temperature sensing device based on chalcogenide glass material and construction method thereof
US4556875A (en) Irradiated power monitoring system for optical fiber
CN108225416A (en) A kind of production method of multi-parameter sensor for measuring multiple parameters
JPS5844620B2 (en) Hikarif Aibano Seizou Sochi
CN111307747A (en) Spectrum measuring device, preparation method, measuring system and measuring method thereof
US5949935A (en) Infrared optical fiber coupler
JPH02150722A (en) Optical fiber sensing system
JP2020190498A (en) Broad-band pulse light source device, spectroscopic measuring device and spectroscopic measuring method
Blanchet et al. Investigation of High Temperature Measurements Repeatability with Sapphire Fiber Bragg Gratings
KR0135407B1 (en) Optical fiber coupler and its manufacturing method
CN212722598U (en) Spectrum measuring device and measuring system
RU2723979C1 (en) Method of producing surface axial nanophotonics
JP2003262592A (en) Optical-fiber light source
Han et al. Simultaneous measurement of torsion and temperature based on π-phase-shifted long-period fiber grating inscribed on double-clad fiber
JPH01114727A (en) Radiation temperature measuring instrument
Mullaney et al. Monitoring the fabrication of tapered optical fibres
JPS63125906A (en) Inspecting method for optical fiber coupler
JPH07244002A (en) Monitor and monitoring method for optical fiber, and manufacturing method for the same fiber
JPH0510642B2 (en)
JPH0368825A (en) Distribution type strain sensor
TW202417822A (en) A dual-fiber sensing apparatus with a brillouin optical time domain analysis system (botda) and a measurement method thereof
Yuan et al. Tensile strain and temperature characterization of FBGs in preannealed polymer optical fibers
JPH0418780B2 (en)
CN118068480A (en) Nested liquid core antiresonance optical fiber and temperature measuring device
JPS60153136A (en) Electrode probe for photo irradiation