JPS6312567B2 - - Google Patents

Info

Publication number
JPS6312567B2
JPS6312567B2 JP58014583A JP1458383A JPS6312567B2 JP S6312567 B2 JPS6312567 B2 JP S6312567B2 JP 58014583 A JP58014583 A JP 58014583A JP 1458383 A JP1458383 A JP 1458383A JP S6312567 B2 JPS6312567 B2 JP S6312567B2
Authority
JP
Japan
Prior art keywords
wire mesh
seawater
seaweed bed
seabed
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58014583A
Other languages
Japanese (ja)
Other versions
JPS59140822A (en
Inventor
Masaue Mori
Harutoshi Sasaki
Koichi Kasahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP58014583A priority Critical patent/JPS59140822A/en
Publication of JPS59140822A publication Critical patent/JPS59140822A/en
Publication of JPS6312567B2 publication Critical patent/JPS6312567B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Artificial Fish Reefs (AREA)
  • Cultivation Of Seaweed (AREA)
  • Farming Of Fish And Shellfish (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は藻類が繁茂する藻場の形成方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for forming a seaweed bed where algae flourish.

〔従来技術〕[Prior art]

海洋に秘められた資源は膨大であり、そのなか
でも特に水産資源は食料、蛋白質資源として重要
である。この水産資源は生物資源の一つであるか
ら、繁殖成長により資源の数量が増大する反面、
自然減耗もあつて動的な均衡を保つている。しか
しながら、近年の工業の発達に伴う環境汚染等に
より、この均衡が特に沿岸海域において破壊され
つつある。
There are vast resources hidden in the ocean, and marine resources are particularly important as food and protein resources. This marine resource is one of the biological resources, so while the quantity of the resource increases due to reproduction and growth,
A dynamic equilibrium is maintained due to natural attrition. However, due to environmental pollution caused by recent industrial development, this balance is being disrupted, especially in coastal waters.

藻場はこのような水産資源を保護するうえで非
常に大切なものである。これは例えば多年性顕花
植物のアマモの扁平細長の葉が叢生し微細な動物
が生息するため、幼稚魚の生育場や魚の隠れ場と
なるからである。このため従来、陸上において採
取された砕石等を船舶により輸送した後に海中に
投下して人工的に藻場を形成し、藻場育成に努め
ている。
Seaweed beds are extremely important in protecting these marine resources. This is because, for example, the flat and long leaves of eelgrass, a perennial flowering plant, grow in clusters and are inhabited by minute animals, providing a breeding ground for young fish and a hiding place for fish. For this reason, conventional efforts have been made to cultivate seaweed beds by transporting crushed stones and the like collected on land by ship and then dropping them into the sea to artificially form seaweed beds.

しかるにこの種従来の藻場の形成方法において
は、砕石等が漂砂等により埋没してしまうため
に、定期的に新しい砕石等を海中に投下しなけれ
ばならないという不具合があり、材料費、輸送費
等が嵩むという不都合も生じる。
However, in this type of conventional seaweed bed formation method, there is a problem in that crushed stones, etc. are buried by drifting sand, etc., and new crushed stones, etc. must be periodically dropped into the sea, which increases material and transportation costs. There also arises the inconvenience that the amount of paper, etc. increases.

〔発明の概要〕[Summary of the invention]

本発明はこのような事情に鑑みなされたもの
で、波形状の金網を海底に設置すると共に、これ
に近接して電極部材を配置し、これらをマイナス
およびプラス側に接続して通電するというきわめ
て簡単な構成により、砂中に埋没することがない
藻場を安価に形成できる藻場の形成方法を提供す
るものである。以下、その構成等を図に示す実施
例により詳細に説明する。
The present invention has been developed in view of the above circumstances, and it is extremely effective in that a corrugated wire mesh is installed on the seabed, electrode members are placed close to this, and these are connected to the negative and positive sides to conduct electricity. To provide a method for forming a seaweed bed that can inexpensively form a seaweed bed that will not be buried in sand with a simple configuration. Hereinafter, its configuration and the like will be explained in detail with reference to embodiments shown in the drawings.

〔実施例〕〔Example〕

第1図は本発明に係る藻場の形成方法について
説明するための概略図で同図において符号1で示
すものは、海底を示し2は海水を示す。この海水
2中には重量比で約3.5%の無機塩類すなわち鉱
物が溶け込んでおり、それはほとんど完全にイオ
ンに解離している。主成分はナトリウム、マグネ
シウム、カルシウム、カリウム、ストロンチウ
ム、塩素、硫黄、臭素、炭素の9種類のイオンで
あり、前記塩類の99.9%以上を占めている。
FIG. 1 is a schematic diagram for explaining the method of forming a seaweed bed according to the present invention. In the figure, the reference numeral 1 indicates the seabed, and 2 indicates seawater. Approximately 3.5% by weight of inorganic salts, ie minerals, are dissolved in this seawater 2, and these are almost completely dissociated into ions. The main components are nine types of ions: sodium, magnesium, calcium, potassium, strontium, chlorine, sulfur, bromine, and carbon, which account for more than 99.9% of the salts.

3は例えば鉄などの線材から形成された金網
で、この金網3は波や流れによつて移動する漂砂
に埋没しない高さを有する波形状に折曲げられた
後に海底1に設置される。このとき金網3は網目
を有しているから海水2から受ける抵抗などの影
響が少なく、容易に所定位置に設置することがで
きる。4は例えば鉄と鉛との合金などから棒状に
形成された電極部材で、この電極部材4,4,…
…は前記金網3に平均的に近接するような位置に
配置される。
Reference numeral 3 denotes a wire mesh made of a wire material such as iron, and the wire mesh 3 is installed on the seabed 1 after being bent into a wave shape having a height that will not be buried in drifting sand moved by waves and currents. At this time, since the wire mesh 3 has a mesh, it is less affected by resistance from the seawater 2 and can be easily installed at a predetermined position. Reference numeral 4 denotes an electrode member formed into a rod shape from, for example, an alloy of iron and lead, and these electrode members 4, 4, . . .
... are arranged at positions that are close to the wire mesh 3 on average.

5は例えば12ボルトのバツテリなどの直流電源
で、この直流電源5のマイナス側側は絶縁された
ケーブル6により前記金網3に接続され、プラス
側は図示しないスイツチや電圧調整器などを介し
てケーブル6,6……により前記電極部材4,4
……に並列に接続される。そしてこれら金網3お
よび電極部材4,4……間には海水2中の鉱物を
金網3に電着させるために数ボルトの直流電圧が
印加され、数mA〜数10Aの直流電流が通電され
る。
5 is a DC power source such as a 12-volt battery, and the negative side of this DC power source 5 is connected to the wire mesh 3 through an insulated cable 6, and the positive side is connected to the cable via a switch or voltage regulator (not shown). 6, 6..., the electrode members 4, 4
...is connected in parallel. A DC voltage of several volts is applied between the wire mesh 3 and the electrode members 4, 4, in order to electrodeposit the minerals in the seawater 2 onto the wire mesh 3, and a DC current of several mA to several tens of A is applied. .

このように構成された藻場の形成方法において
は、金網3と電極部材4,4……との間に直流電
流が流れるために、金網3を陰極、電極部材4,
4……を陽極、海水2を電解質溶液として海水2
の電気分解が行われる。すなわち、陽極となる電
極部材4,4……側ではイオン価が増加する酸化
反応が起こり、陰極となる金網3側ではイオン価
が減少する還元反応が起こる。このため電極部材
4,4……側では酸素および塩素の気体が発生
し、金網3側では水素の気体が発生すると共に、
海水2中に溶け込んでほとんど完全にイオンに解
離している無機塩類のカルシウムやマグネシウム
の陽イオンが還元される化学反応が起こる。その
結果第2図に示すように炭酸カルシウム、
(CaCO3)や水酸化マグネシウム(Mg(OH)2
が析出され金網3の表面に一様に電着し、電着形
成物7を形成する。このとき金網3と電極部材
4,4……間の電流が数mA〜数10Aと電流密度
が小さくなるように設定されているので、電着形
成物7は金網3の表面に緻密に付着し、また環境
に悪影響を与えるようなことはない。
In the method for forming a seaweed bed configured as described above, since a direct current flows between the wire mesh 3 and the electrode members 4, 4, etc., the wire mesh 3 is used as a cathode, and the electrode members 4, 4, .
4... as an anode, seawater 2 as an electrolyte solution, seawater 2
electrolysis is carried out. That is, an oxidation reaction occurs on the side of the electrode members 4, 4, . Therefore, oxygen and chlorine gases are generated on the electrode members 4, 4... side, hydrogen gas is generated on the wire mesh 3 side, and
A chemical reaction occurs in which the cations of calcium and magnesium, which are inorganic salts dissolved in seawater 2 and almost completely dissociated into ions, are reduced. As a result, as shown in Figure 2, calcium carbonate,
(CaCO 3 ) and magnesium hydroxide (Mg(OH) 2 )
is precipitated and uniformly electrodeposited on the surface of the wire mesh 3 to form an electrodeposited product 7. At this time, the current density between the wire mesh 3 and the electrode members 4, 4, . , and will not have any negative impact on the environment.

電流を流し続けると前記電着形成物7は金網3
を包み込むようなかたちで徐々に成長する。実験
によれば約6週間で10ミリメートル程度の厚さに
なることがわかつている。金網3の海底1に接し
ている底部3a,3a……においては海底1の砂
等が網目内に入り込んでおり、電着形成物7はこ
れらの砂等を含み込むように、すなわち金網3を
固定しながら成長する。このため海水2の流動や
海底1上を高さHの範囲で移動する漂砂8により
移動するようなことがない。また電着形成物7は
通電停止後においても徐々に緻密な組織に変化し
ていく性質があるので、前記漂砂8に埋没しない
金網3で配筋されたきわめて堅固な波形状の海中
構造物が形成される。
When the current continues to flow, the electrodeposited material 7 becomes the wire mesh 3.
It gradually grows in a way that envelops the body. Experiments have shown that it grows to a thickness of about 10 mm in about 6 weeks. In the bottom parts 3a, 3a... of the wire mesh 3 that are in contact with the seabed 1, sand etc. from the seabed 1 have entered the mesh, and the electrodeposited material 7 is formed so as to contain these sands, etc., that is, the wire mesh 3 is Grows while staying fixed. Therefore, there is no possibility of movement due to the flow of seawater 2 or drifting sand 8 moving on the seabed 1 within the range of height H. Furthermore, since the electrodeposited material 7 has a property of gradually changing into a dense structure even after the electricity supply is stopped, an extremely solid wave-shaped underwater structure reinforced with wire mesh 3 that will not be buried in the drifting sand 8 can be constructed. It is formed.

さらに電着形成物7は藻類の着床性に優れてお
り、実験によれば前記電着形成物7から形成され
た構造物を海中に沈めた場合、72時間後にその構
造物の表面に青緑の藻類の成長が見られ、その
190〜280時間後に8センチメートルの長さに成長
することがわかつている。すなわち前記波形状の
海中構造物の表面には藻9,9……が繁茂し藻場
が形成され、この藻場は漂砂8に埋没するような
ことがない。
Furthermore, the electrodeposited material 7 has excellent ability for algae to settle, and experiments have shown that when a structure formed from the electrodeposited material 7 is submerged in the sea, a blue color appears on the surface of the structure after 72 hours. Green algae growth can be seen;
They are known to grow to a length of 8 centimeters after 190 to 280 hours. That is, on the surface of the wave-shaped underwater structure, algae 9, 9... flourish and a seaweed bed is formed, and this seaweed bed is not buried in drifting sand 8.

なお海水2が流動するために金網3の設置が困
難なときは、適宜簡単に仮固定すればよいのはい
うまでもない。
It goes without saying that if it is difficult to install the wire mesh 3 because of the flowing seawater 2, it may be simply temporarily fixed as appropriate.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば波形状の金
網を海底に設置し、これに近接させて電極部材を
配置し、これら金網、電極部材を直流電源に接続
して通電し、海水中に溶け込んでおり藻類の着床
性に優れた鉱物を陰極となる金網に電着させるよ
うにしたから、前記金網を配筋として堅固な海中
構造物を形成することができる。
As explained above, according to the present invention, a corrugated wire mesh is installed on the seabed, an electrode member is placed close to the wire mesh, and the wire mesh and electrode member are connected to a DC power source and energized to dissolve into the seawater. Since minerals that have excellent attachment properties for algae are electrodeposited on the wire mesh that serves as the cathode, a sturdy underwater structure can be formed using the wire mesh as reinforcement.

したがつて、その表面には藻類が繁茂するの
で、藻場が形成できるという効果がある。また従
来の砕石のように砂中に埋没するようなことがな
いから、半永久的に藻場として活用することがで
きる。さらにわずかな電力で海水中に溶け込んで
いる鉱物を構造材とするため比較的安価に形成で
きるという効果もある。
Therefore, algae grow on the surface, which has the effect of forming a seaweed bed. Also, unlike conventional crushed stone, it does not get buried in the sand, so it can be used semi-permanently as a seaweed bed. Another advantage is that it can be formed relatively inexpensively using only a small amount of electricity and using minerals dissolved in seawater as the structural material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る藻場の形成方法について
説明するための概略図、第2図は同じく形成され
た藻場を示す概略図である。 1……海底、3……金網、4……電極部材、5
……直流電源、7……電着形成物。
FIG. 1 is a schematic diagram for explaining the method for forming a seaweed bed according to the present invention, and FIG. 2 is a schematic diagram showing a similarly formed seaweed bed. 1... Seabed, 3... Wire mesh, 4... Electrode member, 5
...DC power source, 7...Electrodeposited product.

Claims (1)

【特許請求の範囲】[Claims] 1 波形状に折曲げられた金網を海底に設置する
と共に、この金網に近接するように電極部材を配
置し、記前金網を直流電源のマイナス側に、前記
電極部材をプラス側にそれぞれ接続して通電し、
海水中の鉱物を金網に電着させることを特徴とす
る藻場の形成方法。
1. A wire mesh bent into a wave shape is installed on the seabed, and an electrode member is placed close to the wire mesh, and the wire mesh is connected to the negative side of a DC power source, and the electrode member is connected to the positive side of the DC power source. energize,
A seaweed bed formation method characterized by electrodepositing minerals in seawater onto a wire mesh.
JP58014583A 1983-02-02 1983-02-02 Formation of algae field Granted JPS59140822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58014583A JPS59140822A (en) 1983-02-02 1983-02-02 Formation of algae field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58014583A JPS59140822A (en) 1983-02-02 1983-02-02 Formation of algae field

Publications (2)

Publication Number Publication Date
JPS59140822A JPS59140822A (en) 1984-08-13
JPS6312567B2 true JPS6312567B2 (en) 1988-03-19

Family

ID=11865182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58014583A Granted JPS59140822A (en) 1983-02-02 1983-02-02 Formation of algae field

Country Status (1)

Country Link
JP (1) JPS59140822A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054626A (en) * 1983-09-06 1985-03-29 日本防蝕工業株式会社 Steel cage type fish bank
JPH0347490Y2 (en) * 1986-03-25 1991-10-09
JPS63173533A (en) * 1987-01-14 1988-07-18 四国電力株式会社 Method for forming submarine forest fish bank
JPH0751031B2 (en) * 1987-07-01 1995-06-05 三井造船株式会社 How to attach algae zoospores
JP2763356B2 (en) * 1989-12-08 1998-06-11 旭化成工業株式会社 Artificial reefs for infants
JP5566842B2 (en) * 2010-10-05 2014-08-06 三菱重工鉄構エンジニアリング株式会社 Coral cultivation method

Also Published As

Publication number Publication date
JPS59140822A (en) 1984-08-13

Similar Documents

Publication Publication Date Title
JPS5925038B2 (en) Manufacturing method for structural members
Shen et al. Development of an aluminium/sea water battery for sub-sea applications
JP2006218385A (en) Hydrogen recovering electrolysis type water quality improving device and method
JP2014168422A (en) Spawning bank, artificial fishing bank, and method for providing spawning site for marine life
JP3061860B2 (en) How to prevent the formation of aquatic organisms
Schuhmacher et al. Integrated electrochemical and biogenic deposition of hard material—a nature-like colonization substrate
JP2007267699A (en) Structure for forming coral reef
JPS6312567B2 (en)
JP5566842B2 (en) Coral cultivation method
Sale et al. The vertical distribution of dissolved oxygen and the precipitation by salt water in certain tidal areas
JP4931047B2 (en) 珊瑚 Larvae capture and breeding equipment
CN206680192U (en) A kind of device for improving coral growth speed on shipwreck fishing bank
JPS6054626A (en) Steel cage type fish bank
JPH06206804A (en) Man-made gathering-place for fish of sea area cleaning type and structure of man-made gathering-place for fish
JP2003080260A (en) Water or soil quality improving method and system
JP6151825B1 (en) Seabed improver 3 that promotes binding of radioactive pollutants and heavy metal substances in seawater
JPH07102059B2 (en) How to eliminate red tide
JPH0423406Y2 (en)
JP4942422B2 (en) Coral cultivation structure
JP4510387B2 (en) Seabed sediment improvement method and apparatus using crystallization method with electrolysis electrode
JPH03224427A (en) Algae-proofing fish preserve
JPH0325135B2 (en)
JPH08151617A (en) Constant-current flow type marine organism adherence preventing method and constant-current control device
Stark et al. A Marine Building Material of the Future
TW302413B (en) Construction method for the corrosion prevention of steel plate piles or steel pipe piles by external electric current