JPS63125100A - Ultrasonic oscillator - Google Patents

Ultrasonic oscillator

Info

Publication number
JPS63125100A
JPS63125100A JP61272066A JP27206686A JPS63125100A JP S63125100 A JPS63125100 A JP S63125100A JP 61272066 A JP61272066 A JP 61272066A JP 27206686 A JP27206686 A JP 27206686A JP S63125100 A JPS63125100 A JP S63125100A
Authority
JP
Japan
Prior art keywords
ultrasonic
piezoelectric element
frequency
electric
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61272066A
Other languages
Japanese (ja)
Other versions
JPH084360B2 (en
Inventor
Yoshiharu Yamada
祥治 山田
Hitoshi Yoshida
均 吉田
Naoto Iwao
直人 岩尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP61272066A priority Critical patent/JPH084360B2/en
Publication of JPS63125100A publication Critical patent/JPS63125100A/en
Publication of JPH084360B2 publication Critical patent/JPH084360B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To transform an electric input to an ultrasonic oscillation of a constant oscillation frequency with a high efficiency by disposing a separate electric/mechanic transforming element for changing an application force in application mechanism for applying the electric/mechanic transforming element and a resonator. CONSTITUTION:An ultrasonic oscillator 2 is applied to a driving piezoelectric element 4 and elastic members 6, 8 according to the fastening force of a bolt 10 passing on the central axis of the driving piezoelectric element 4 and a nut 12 screwed thereto and a driving plate 14 abuts against the elastic member 6 through an insulating plate 16. On the other surface of the driving piezoelectric element 4, a controlling piezoelectric element 20 on which a controlling electrode plate 18 is tightly closely mounted is interposed between the elastic member 8 and the plate 18. The bot fastening force can be arbitrarily changed according to the extension of the controlling piezoelectric element 20 and the resonance frequency of the ultrasonic oscillator 2 can be varied according to a voltage impressed from a direct current power source 36. Accordingly, the direct current voltage is controlled to make the mechanical resonance frequency of the ultrasonic oscillator 2 coincide with the alternating current frequency from a direct current power source 36, namely, an electric frequency and the ultrasonic oscillation can be excited with high efficiency.

Description

【発明の詳細な説明】 発明の目的 [産業上の利用分野] 本発明は、超音波撮動を効率高く発生することのできる
超音波撮動子に関する。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention [Field of Industrial Application] The present invention relates to an ultrasonic imager that can generate ultrasonic imaging with high efficiency.

[従来の技術] 従来、電気的な信号を機械的な振動に変換して超音波振
動を発生させるために、電気ひずみ素子、磁気ひずみ素
子あるいは圧電素子を利用した電気機械変換素子が用い
られている。超音波振動子はこれらの電気機械変換素子
に共振器を着設し、振幅の大きな超音波撮動を得るよう
に構成されている。
[Prior Art] Conventionally, electromechanical transducers using electrostrictive elements, magnetostrictive elements, or piezoelectric elements have been used to convert electrical signals into mechanical vibrations and generate ultrasonic vibrations. There is. The ultrasonic transducer has a resonator attached to these electromechanical transducers, and is configured to obtain ultrasonic imaging with a large amplitude.

上記超音波振動子においては、電気機械変換素子にその
撮動子の機械的共振周波数に一致する電気入力を与えれ
ば、極めて高効率の超音波撮動が与えられる しかし反面、超音波振動子の温度変動や経時変化により
上記機械的共振周波数の変動が発生すると、その効率は
共振の鋭さくQ)に比例して急減することになる。そこ
で、従来の超音波撮動子では超音波振動子の振幅を検出
し、その振幅が極大となるように電気入力の周波数を帰
還するフィードバック制御が多用されている。
In the above ultrasonic transducer, if an electrical input that matches the mechanical resonance frequency of the transducer is applied to the electromechanical transducer, ultrasonic imaging with extremely high efficiency can be obtained. When the mechanical resonance frequency fluctuates due to temperature fluctuations or changes over time, the efficiency rapidly decreases in proportion to the resonance sharpness Q). Therefore, conventional ultrasonic imagers often use feedback control in which the amplitude of the ultrasonic transducer is detected and the frequency of the electrical input is fed back so that the amplitude is maximized.

[発明が解決しようとする問題点] しかし、上記のごとき超音波振動子にあっても未だに十
分なものではなく、次のような問題点があった。
[Problems to be Solved by the Invention] However, even with the above-mentioned ultrasonic transducer, it is still not sufficient and has the following problems.

すなわち、超音波振動子の共振周波数の変動を電気入力
の周波数により調節するものにあっては、常に超音波振
動子の発生する超音波の振動周波数が定まらず、ある範
囲内で変化することになる。
In other words, in the case where the fluctuation of the resonant frequency of the ultrasonic transducer is adjusted by the frequency of the electrical input, the vibration frequency of the ultrasonic wave generated by the ultrasonic transducer is not always fixed, but changes within a certain range. Become.

これでは、複数の超音波振動子が協動するようなシステ
ム、例えば進行波形超音波モータにあっては所定の周波
数の超音波振動を得ることが不可能であった。
This makes it impossible to obtain ultrasonic vibrations of a predetermined frequency in a system in which a plurality of ultrasonic transducers work together, such as a traveling wave ultrasonic motor.

本発明は、上記問題点を解決するためになされたもので
、超音波の振動周波数は常に一定であり、しかも高効率
で印加される電気入力を超音波振動に変換することので
きる優れた超音波振動子を提供することをその目的とし
ている。
The present invention has been made to solve the above problems, and is an excellent ultrasonic wave in which the vibration frequency of ultrasonic waves is always constant, and which can convert applied electrical input into ultrasonic vibrations with high efficiency. Its purpose is to provide a sound wave transducer.

発明の構成 [問題点を解決するための手段] 上記問題点を解決するための本発明の超音波撮動子の構
成は、電気信号が印加されることにより振動が励起され
る電気機械変換素子に対して共振器を圧着機構を用いて
所定の圧着力で圧着させ、共振器の共振作用を利用して
大振幅の超音波振動を得る超音波撮動子において、前記
電気機械変換素子と前記共振器とを圧着する圧着機構中
に前記圧着力を変化させる別の電気機械変換素子を配置
することを特徴とする。
Configuration of the Invention [Means for Solving the Problems] The configuration of the ultrasonic sensor of the present invention for solving the above problems includes an electromechanical transducer that is excited to vibrate by applying an electric signal. In an ultrasonic sensor that obtains large-amplitude ultrasonic vibration by utilizing the resonance effect of the resonator, the resonator is crimped with a predetermined crimping force using a crimping mechanism. The present invention is characterized in that another electromechanical transducer element that changes the pressing force is disposed in the crimping mechanism that crimps the resonator.

[作用コ 本発明の超音波振動子では、電気機械変換素子と共振器
とを圧着している圧着機構中に他の電気機械変換素子が
存在し、これに所望の電気信号を与えることで、上記圧
着力が制御可能とされる。
[Function] In the ultrasonic transducer of the present invention, another electromechanical transducer is present in the crimping mechanism that crimps the electromechanical transducer and the resonator, and by applying a desired electrical signal to this, The pressing force can be controlled.

[実施例] 以下、本発明をより具体的に説明するために実施例を挙
げて説明する。
[Example] Hereinafter, in order to explain the present invention more specifically, an example will be given and explained.

第1図は、実施例の超音波振動子2の一部を破断した斜
視図に、その駆動電気回路を略記した説明図である。図
より明らかなように本実施例の超音波振動子2はボルト
締めランジュバン型の構成で、中央部にある円板上の駆
動用圧電素子4の両側を肉厚の弾性体6.8で挟み込み
、これらの中心軸上を貫通するボルト10と該ボルト1
0に螺着されるナツト12との締め付は力により、駆動
用圧電素子4と弾性体6,8とを圧着する。上記駆動用
圧電素子4に電気信号を与えるための駆動用電極板14
は、駆動用圧電素子4の上面に電気的に密に着設され、
また弾性体6と電気的に絶縁するために、該駆動用電極
板14の上方に配設される絶縁板16を介して弾性体6
に当接している。
FIG. 1 is a partially cutaway perspective view of an ultrasonic transducer 2 according to an embodiment, and is an explanatory diagram in which the driving electric circuit is briefly illustrated. As is clear from the figure, the ultrasonic transducer 2 of this embodiment has a bolt-fastened Langevin type structure, in which both sides of the driving piezoelectric element 4 on a disk in the center are sandwiched between thick elastic bodies 6.8. , a bolt 10 passing through these central axes and the bolt 1
Tightening with the nut 12 screwed into the drive piezoelectric element 4 and the elastic bodies 6 and 8 is performed by force. Driving electrode plate 14 for giving electrical signals to the driving piezoelectric element 4
is electrically and closely attached to the upper surface of the driving piezoelectric element 4,
In addition, in order to electrically insulate the elastic body 6, the elastic body 6 is
is in contact with.

一方、駆動用圧電素子4の他方面には制御用電極板18
が電気的に密に着設される制御用圧電素子20が弾性体
8との間に介在している。
On the other hand, a control electrode plate 18 is provided on the other side of the driving piezoelectric element 4.
A control piezoelectric element 20 which is electrically and tightly attached is interposed between the elastic body 8 and the elastic body 8 .

換言するならば、本実施例の超音波振動子は上記した制
御用圧電素子20を除けば通常のボルト締めランジュバ
ン型の超音波撮動子と差異はなく、駆動用圧電素子4に
電気入力を効率良く伝える駆動用電極板14に、交流の
駆動用電源30を整合回路32を介して接続する通常の
構成である。
In other words, the ultrasonic transducer of this embodiment has no difference from a normal bolt-fastened Langevin type ultrasonic transducer except for the above-mentioned control piezoelectric element 20. This is a normal configuration in which an AC drive power source 30 is connected via a matching circuit 32 to a drive electrode plate 14 that transmits information efficiently.

実施例の超音波撮動子2に特有の制御用圧電素子20に
は、制御用電極板18に接続される電圧可変の直流電源
36から直流電圧が印加される。
A DC voltage is applied to the control piezoelectric element 20, which is unique to the ultrasonic sensor 2 of the embodiment, from a variable voltage DC power supply 36 connected to the control electrode plate 18.

公知のごとく、圧電素子12は印加される電圧に比例し
た伸縮作用があり、直流電圧を印加するならば制御用圧
電素子20はその印加する電圧値に比例した値の伸びあ
るいは縮みが生じて超音波振動子2全体から見たときの
ボルト締め付力を任意に変更することができる。これは
、超音波振動子2の共振周波数を、直流電源36から印
加する電圧によって可変できることを意味しており、超
音波振動子2の共振周波数は直流電源36の電圧値によ
り制御可能となる。従って、直流電圧を制御して駆動用
電源30の交流周波数、すなわち電気的周波数に超音波
振動子2の機械的共振周波数を一致させ、高効率の超音
波振動の励起が達成される。
As is well known, the piezoelectric element 12 has an expansion and contraction action proportional to the applied voltage, and if a DC voltage is applied, the control piezoelectric element 20 will expand or contract in proportion to the applied voltage value, causing an overflow. The bolt tightening force when viewed from the entire sound wave vibrator 2 can be changed arbitrarily. This means that the resonant frequency of the ultrasonic vibrator 2 can be varied by the voltage applied from the DC power source 36, and the resonant frequency of the ultrasonic vibrator 2 can be controlled by the voltage value of the DC power source 36. Therefore, by controlling the DC voltage to match the mechanical resonance frequency of the ultrasonic vibrator 2 with the AC frequency, ie, the electrical frequency, of the driving power source 30, highly efficient excitation of ultrasonic vibration is achieved.

なお、上記実施例では制御用圧電素子20が超音波撮動
子2のほぼ中央部に配置されているが、これは、超音波
撮動子2の節点近傍に制御用圧電素子20を配置するこ
とにより、僅かな制御用圧電素子20の伸びあるいは縮
みでも大きな共振周波数の変化を招来させるためである
。従って、この実施例の構成に限らずとも制御用圧電素
子20の圧電効果や共振周波数の制御範囲、制御精度等
を考慮して制御用圧電素子20の圧着機構中の配置位置
を変更したり、あるいは複数並設する等適宜改変しても
よい。更には、その電気機械変換素子に使用する素子も
圧電素子に限らず、電歪あるいは磁歪素子を用いる等本
発明の要旨を逸脱しない種々の態様で実現してもよい。
Note that in the above embodiment, the control piezoelectric element 20 is arranged approximately at the center of the ultrasound sensor 2, but this is because the control piezoelectric element 20 is arranged near the node of the ultrasound sensor 2. This is because even a slight expansion or contraction of the control piezoelectric element 20 causes a large change in the resonance frequency. Therefore, without being limited to the configuration of this embodiment, the arrangement position of the control piezoelectric element 20 in the crimping mechanism may be changed in consideration of the piezoelectric effect of the control piezoelectric element 20, the control range of the resonance frequency, the control accuracy, etc. Alternatively, it may be modified as appropriate, such as by arranging a plurality of them in parallel. Furthermore, the element used for the electromechanical transducer is not limited to a piezoelectric element, and may be realized in various forms without departing from the gist of the present invention, such as using an electrostrictive or magnetostrictive element.

第2図は、上記した実施例のように機械的共振周波数が
制御可能な超音波撮動子2を複数用いて、進行波形超音
波モータを構成した応用例である。
FIG. 2 shows an application example in which a traveling wave ultrasonic motor is constructed using a plurality of ultrasonic sensors 2 whose mechanical resonance frequencies can be controlled as in the above embodiment.

2つの超音波振動子2A、2B内に配置されるそれぞれ
の駆動用圧電素子4A、4Bは、同一の駆動用電源30
に接続されているが、一方の駆動用圧電素子4Bは位相
器40により電源30の電気信号に対して90’の位相
差を持たされた電気信号が入力されるように構成されて
いる。相互に90°の位相差を持つ電気信号は、増幅器
42A。
The drive piezoelectric elements 4A and 4B arranged in the two ultrasonic transducers 2A and 2B are powered by the same drive power source 30.
However, one driving piezoelectric element 4B is configured so that an electric signal having a phase difference of 90' with respect to the electric signal of the power supply 30 is inputted by a phase shifter 40. Electric signals having a phase difference of 90 degrees are sent to an amplifier 42A.

42Bおよび整合回路32A、32Bを介して駆動用圧
電素子4A、4Bに供給されるが、更にこの供給される
電気信号の電圧、電流は共振検出回路50Ai 50B
によってその共振状況の検出がなされ、該共振検出回路
50A、50Bの出力に基づき2つの超音波撮動子2A
、2Bの制御用圧電素子2OA、20Bに印加される直
流電源36A、36Bの電圧が制御される。共振検出回
路50A、50Bは共に同一構成であるため、図はその
50Aについてのみ詳細に記載している。公知のごとく
、電気的な共振状態とは回路内のりアクタンス分が零と
なり、その電圧、電流が同相となる状態である。従って
、共振検出回路50A、50Bは駆動用圧電素子2A、
2Bの入力電気信号を定抵抗器Rの両端からピックアッ
プし、両端の電位差を増幅する差動増幅器51で電流波
形を、またいずれか一端のアースからの電位を増幅する
差動増幅器52で電圧波形を、検出している。そして、
この両差増幅器51.52の出力波形の位相を位相比較
器53が比較することにより電気的共振状態からのずれ
量が検出され、その検出値に応じて制御回路54が直流
電源36Aまたは36Bの電位を制御する。これにより
、超音波振動子2A、2Bは駆動用電源30の周波数に
一致した共振周波数を有するべくフィードバック制御さ
れ、高効率の超音波発生が行われる。前述のごとく、そ
れぞれが同一周波数で高効率に駆動される超音波撮動子
2A、2Bの電気信号位相は互いに90°だけずれてい
るため、この2つの超音波振動子2A、2Bを円環状の
ステータ60に固有の進行波の1/4波長間隔を隔てた
位置に配設し、ステータ60を励娠させるならば、図示
するように時計方向の進行波を生起せさることができる
。従って、このステータ60に一定圧力で当接されるロ
ータ70には上記進行波とは逆方向の回転移動力が発生
し、進行波形超音波モータが構成される。
42B and matching circuits 32A, 32B to drive piezoelectric elements 4A, 4B, and the voltage and current of the supplied electric signals are further transmitted to resonance detection circuits 50Ai 50B.
The resonance condition is detected by the two ultrasonic imagers 2A based on the outputs of the resonance detection circuits 50A and 50B.
, 2B, the voltages of the DC power supplies 36A, 36B applied to the control piezoelectric elements 2OA, 20B are controlled. Since the resonance detection circuits 50A and 50B both have the same configuration, only the resonance detection circuit 50A is shown in detail in the figure. As is well known, an electrical resonance state is a state in which the actance in the circuit is zero and the voltage and current are in phase. Therefore, the resonance detection circuits 50A and 50B are driven by the driving piezoelectric element 2A,
The input electrical signal of 2B is picked up from both ends of the constant resistor R, and a current waveform is generated by a differential amplifier 51 that amplifies the potential difference between both ends, and a voltage waveform is generated by a differential amplifier 52 that amplifies the potential from the ground at either end. is being detected. and,
The phase comparator 53 compares the phases of the output waveforms of the difference amplifiers 51 and 52 to detect the amount of deviation from the electrical resonance state. Control the potential. Thereby, the ultrasonic transducers 2A and 2B are feedback-controlled to have a resonance frequency that matches the frequency of the driving power source 30, and highly efficient ultrasonic wave generation is performed. As mentioned above, the electric signal phases of the ultrasonic transducers 2A and 2B, which are each driven with the same frequency and with high efficiency, are shifted by 90 degrees from each other. If the stator 60 is arranged at a distance of 1/4 wavelength of the characteristic traveling wave and the stator 60 is excited, a clockwise traveling wave can be generated as shown in the figure. Therefore, a rotational movement force in the opposite direction to the traveling wave is generated in the rotor 70 which is brought into contact with the stator 60 at a constant pressure, thereby forming a traveling wave ultrasonic motor.

以上のように、本実施例の超音波振動子によれば、発生
する超音波撮動の周波数が常に一定値に安定することに
なり、複数筒の超音波振動子を協動させるシステム等を
簡単に構築することができる。
As described above, according to the ultrasonic transducer of this embodiment, the frequency of the generated ultrasonic imaging is always stable at a constant value, which makes it possible to use a system in which multiple tubes of ultrasonic transducers work together. Can be easily constructed.

発明の効果 以上、実施例を挙げて詳述したように本発明の超音波撮
動子は、所定の周波数で高効率の共振状態を作り出すこ
とが可能となり、複数筒の超音波撮動子を協動させたり
、共振周波数が一定の負荷に簡単に利用できる等、適応
範囲の広い優れた超音波撮動子となる。
Effects of the Invention As described in detail with reference to examples, the ultrasonic sensor of the present invention is capable of creating a highly efficient resonance state at a predetermined frequency, and is capable of producing a multi-tube ultrasonic sensor. It is an excellent ultrasonic sensor with a wide range of applications, as it can be used in conjunction with other devices and can be easily used for loads with a constant resonance frequency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の超音波撮動子の基本的構成を示す基本
構成図、第2図は同実施例の超音波振動子を利用した超
音波モータの構成概略図、を示している。
FIG. 1 is a basic configuration diagram showing the basic configuration of an ultrasonic sensor of the present invention, and FIG. 2 is a schematic diagram of the configuration of an ultrasonic motor using the ultrasonic transducer of the same embodiment.

Claims (1)

【特許請求の範囲】  電気信号が印加されることにより振動が励起される電
気機械変換素子に対して共振器を圧着機構を用いて所定
の圧着力で圧着させ、共振器の共振作用を利用して大振
幅の超音波振動を得る超音波振動子において、 前記電気機械変換素子と前記共振器とを圧着する圧着機
構中に前記圧着力を変化させる別の電気機械変換素子を
配置することを特徴とする超音波振動子。
[Claims] A resonator is crimped with a predetermined crimping force using a crimping mechanism against an electromechanical transducer whose vibrations are excited by the application of an electric signal, and the resonance effect of the resonator is utilized. The ultrasonic transducer that obtains large amplitude ultrasonic vibrations is characterized in that another electromechanical transducer that changes the pressing force is disposed in a crimping mechanism that crimps the electromechanical transducer and the resonator. Ultrasonic transducer.
JP61272066A 1986-11-14 1986-11-14 Ultrasonic transducer Expired - Fee Related JPH084360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61272066A JPH084360B2 (en) 1986-11-14 1986-11-14 Ultrasonic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61272066A JPH084360B2 (en) 1986-11-14 1986-11-14 Ultrasonic transducer

Publications (2)

Publication Number Publication Date
JPS63125100A true JPS63125100A (en) 1988-05-28
JPH084360B2 JPH084360B2 (en) 1996-01-17

Family

ID=17508619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61272066A Expired - Fee Related JPH084360B2 (en) 1986-11-14 1986-11-14 Ultrasonic transducer

Country Status (1)

Country Link
JP (1) JPH084360B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217870A (en) * 1988-06-30 1990-01-22 Honda Electron Co Ltd Ultrasonic driving gear

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217870A (en) * 1988-06-30 1990-01-22 Honda Electron Co Ltd Ultrasonic driving gear

Also Published As

Publication number Publication date
JPH084360B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
US4812697A (en) Ultrasonic vibrator and a method of controllingly driving same
US5656881A (en) Vibration wave driven motor
US4705980A (en) Drive control method of ultrasonic vibrator
JPH04161078A (en) Driver for standing wave ultrasonic motor
JP4119903B2 (en) Flat plate piezoelectric ultrasonic motor
JP3730467B2 (en) Ultrasonic vibrator and composite vibration generating ultrasonic vibrator
JPS62239875A (en) Drive control method for ultrasonic vibrator
JPH07170768A (en) Ultrasonic motor
JPS63125100A (en) Ultrasonic oscillator
JPS61221584A (en) Drive circuit of vibration wave motor
JP2002281770A (en) Piezoelectric actuator
JP3722165B2 (en) Vibration actuator driving apparatus and vibration actuator driving method
JPS61221585A (en) Drive circuit of vibration wave motor
JP3113481B2 (en) Piezo motor
JPS61224885A (en) Vibration wave motor
JPH07274559A (en) Piezoelectric type linear actuator
JPH084356B2 (en) Ultrasonic vibration device
JP3311490B2 (en) Ultrasonic motor drive
JPH02101974A (en) Ultrasonic motor drive
JP2874174B2 (en) Ultrasonic transducer and ultrasonic motor
JP2616953B2 (en) Drive control method for traveling waveform ultrasonic motor
JPH0345174A (en) Ultrasonic oscillator and ultrasonic motor
JPS63194580A (en) Ultrasonic motor
KR100824001B1 (en) Ultrasonic motor
JPH02228269A (en) Ultrasonic vibrator and ultrasonic motor using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees