JPS62239875A - Drive control method for ultrasonic vibrator - Google Patents

Drive control method for ultrasonic vibrator

Info

Publication number
JPS62239875A
JPS62239875A JP61080090A JP8009086A JPS62239875A JP S62239875 A JPS62239875 A JP S62239875A JP 61080090 A JP61080090 A JP 61080090A JP 8009086 A JP8009086 A JP 8009086A JP S62239875 A JPS62239875 A JP S62239875A
Authority
JP
Japan
Prior art keywords
drive power
power source
amplitude
diaphragm
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61080090A
Other languages
Japanese (ja)
Inventor
Shoji Mishiro
三代 祥二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taga Electric Co Ltd
Original Assignee
Taga Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taga Electric Co Ltd filed Critical Taga Electric Co Ltd
Priority to JP61080090A priority Critical patent/JPS62239875A/en
Publication of JPS62239875A publication Critical patent/JPS62239875A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/003Driving devices, e.g. vibrators using longitudinal or radial modes combined with bending modes
    • H02N2/004Rectangular vibrators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/0075Electrical details, e.g. drive or control circuits or methods
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/026Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors by pressing one or more vibrators against the driven body

Abstract

PURPOSE:To increase an efficiency of vibration at the maximum torque by applying a driving power so that an output end face of diaphragm performs a composite vibration synthesized in its axial and flexible directions. CONSTITUTION:Vertically polarized electrostriction element plates 2-3 are made to adhere to both faces of a longitudinally central part of rectangular diaphragm 1 and cable terminals 6-8 are taken out from respective electrodes 4-5 and so on to constitute an ultrasonic vibrator. Also, the diaphragm 1 is formed in the manner of making its longitudinal and flexiblie resonance frequencies correspond with each other. In this vibrator, moreover, the cable terminals 6-7 are connected in parallel so that an AC power is applied between said terminals and the common cable terminal 8 to make the vibrator perform a resonance vibration in axial and flexible directions. In this manner, various composite vibration modes can be created by a rectangular synthesis of sine- wave vibration.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超音波モータに適用して有用な超音波振動子の
駆動制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling the drive of an ultrasonic vibrator that is useful when applied to an ultrasonic motor.

〔従来の技術〕[Conventional technology]

従来、軸方向に共振振動する縦型振動子に、軸方向振動
をねじり方向に変換する変換部材を一体に設け、得られ
た出力端部の楕円振動によるロータなどの回転体や移動
体との摩擦接触によって駆動する超音波モータが知られ
ている。
Conventionally, a vertical vibrator that resonantly vibrates in the axial direction is integrated with a conversion member that converts the axial vibration into the torsional direction, and the resulting elliptical vibration of the output end causes a vibration between the rotor and other rotating bodies or moving bodies. Ultrasonic motors driven by frictional contact are known.

その−例として特公昭59−37672号公報に記載さ
れた超音波振動を利用した回転駆動装置を用いたものが
ある。この回転駆動装置は、ケーシング本体内に、単数
または複数の超音波振動子の一端面に設けられた振動板
と、回転軸の一端面とを対向配置し、両者間に回転軸の
軸方向に対して傾斜角度を有する振動片を回転軸または
振動板のいずれか一方と一体形成することにより、超音
波振動子の往復運動を回転軸の回転運動に変換すること
を特徴とするものであって、軸方向振動子の出力端部に
振動片を設け、ロータなどの可動部材の接合面の法線を
振動子の軸と僅かに傾斜させて加圧すると、振動片先端
部が楕円振動を生じてロータなど可動部材を摩擦駆動す
るようにしたものである。
An example of this is a rotary drive device using ultrasonic vibrations, which is described in Japanese Patent Publication No. 59-37672. This rotary drive device has a diaphragm provided on one end surface of one or more ultrasonic transducers and one end surface of a rotating shaft facing each other in a casing main body, and a diaphragm provided on one end surface of one or more ultrasonic transducers and one end surface of a rotating shaft are arranged facing each other, and the diaphragm is disposed between the two in the axial direction of the rotating shaft. The ultrasonic transducer is characterized by converting the reciprocating motion of the ultrasonic transducer into rotational motion of the rotating shaft by integrally forming a vibrating piece having an inclination angle with either the rotating shaft or the diaphragm. When a vibrating piece is installed at the output end of an axial vibrator and pressure is applied with the normal line of the joint surface of a movable member such as a rotor slightly inclined to the axis of the vibrator, the tip of the vibrating piece generates elliptical vibration. The movable members such as the rotor are driven by friction.

また、第15図に示すような超音波モータもある。この
超音波モータは、縦型振動子60と、一方の面に幅の広
い溝61を設け、他方の面に前記溝61とある角度をも
って梁状突起62を設けたねじり変換体63を一体に締
着し、前記梁状突起62の中央に設けられた雌ねじに螺
合するボルト64とコイルばね65によりロータ66を
梁状突起62に押圧させたもので、縦振動がねじり変換
体63に加わると、該変換体63は曲げ振動を生じ、そ
のたわみ角に応じて梁状突起62はその両端で逆方向に
傾き、図中矢印の方向の楕円振動を発生するため、それ
に接するロータ66は矢印67のように時計方向に回転
するものである。
There is also an ultrasonic motor as shown in FIG. This ultrasonic motor integrates a vertical vibrator 60 and a torsion transducer 63, which has a wide groove 61 on one surface and a beam-shaped protrusion 62 at a certain angle with the groove 61 on the other surface. The rotor 66 is pressed against the beam-like projection 62 by a bolt 64 that is tightened and screwed into a female thread provided at the center of the beam-like projection 62 and a coil spring 65, and longitudinal vibration is applied to the torsion converter 63. Then, the converter 63 generates bending vibration, and the beam-like protrusion 62 tilts in the opposite direction at both ends according to the bending angle, generating elliptical vibration in the direction of the arrow in the figure. 67, it rotates clockwise.

以上のように単一方向振動子の振動方向を変換体によっ
て複合振動に変換させるものに対して、軸方向及びねじ
り方向振動をそれぞれ個別に駆動して複合振動を発生さ
せる方法として、本出願人により出願された特開昭61
−28482号公報に開示された方法がある。即ち、こ
の発明は、ねじり振動子のノード部分に位置させて軸に
直角でその共振周波数をねじり共振周波数と同一に設定
した径方向又は長さ方向共振体とその駆動素子を一体的
に締着した振動子において、それぞれの振幅又は相対位
相、或いは振幅と相対位相を変えることにより出力端部
における合成複合振動の姿態を制御するもので、このよ
うな振動子をもって例えば超音波モータを構成したもの
として、同じく本出願人によって出願された特開昭61
−30972号公報に開示されたものがある。
In contrast to the above-described method in which the vibration direction of a unidirectional vibrator is converted into a complex vibration by a converter, the present applicant proposed a method in which the axial direction and torsional direction vibrations are individually driven to generate a complex vibration. Japanese Unexamined Patent Application Publication No. 1986, filed by
There is a method disclosed in Japanese Patent No.-28482. That is, the present invention provides a system for integrally fastening a radial or longitudinal resonator located at a node portion of a torsional vibrator and having its resonance frequency set to be the same as the torsional resonance frequency at right angles to the axis, and its driving element. In such a vibrator, the state of the composite vibration at the output end is controlled by changing the amplitude or relative phase, or the amplitude and relative phase of each vibrator, and such a vibrator constitutes, for example, an ultrasonic motor. , JP-A-61, which was also filed by the present applicant.
There is one disclosed in Japanese Patent No. -30972.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

然しながら、前記の振動片型や、第15図に示した縦ね
じり変換型のものは、その出力端部の振動姿態である楕
円振動の楕円率がねじり変換体63の形状によって一律
に決まってしまうものであり、摩擦駆動に最適な楕円率
への制御やその回転方向を制御することは不可能である
。即ち、いずれもロータの単一方向のみの駆動であり、
更に。
However, in the vibrating piece type described above and the vertical torsion conversion type shown in FIG. Therefore, it is impossible to control the ellipticity to the optimum ellipticity for frictional drive or to control the direction of rotation. In other words, both drive the rotor in a single direction,
Furthermore.

接触面の摩耗を少なく、最大トルクでの駆動を効率良く
行うために必要な楕円形状に制御できないものである。
It is not possible to control the elliptical shape required to reduce contact surface wear and efficiently drive at maximum torque.

さらに前記特開昭61−28482号公報及び特開昭6
1−30972号公報に開示されたものにおいては、ね
じり方向と軸方向を個別に駆動できるため、それぞれの
振幅と相対位相を制御することにより多様な複合振動を
得ることができるが、ねじり振動子に対して径方向又は
長さ方向共振体の構成要素が大きくなり、従って振動子
或いはモータとして大型となる欠点がある。
Furthermore, the above-mentioned JP-A-61-28482 and JP-A-6
In the device disclosed in Publication No. 1-30972, since the torsional and axial directions can be driven separately, various complex vibrations can be obtained by controlling the amplitude and relative phase of each. In contrast, the components of the resonator in the radial or longitudinal direction are larger, resulting in a larger vibrator or motor.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上述のような従来技術の問題点を解決すること
を目的としてなされたもので、その構成は、振動板の両
側面に電歪素子板を装着してなる超音波振動子において
、前記振動板の出力端面がその軸方向及びたわみ方向の
合成された複合振動をなすように、対となったそれぞれ
の電極に位相の反転したたわみ方向駆動電源と、それぞ
れに重畳させた軸方向駆動電源を印加することを主な特
徴とするもので、上記によりそれぞれの振幅又は相対位
相、もしくはそれぞれの振幅と相対位相を制御しようと
するものである。
The present invention has been made with the aim of solving the problems of the prior art as described above, and is configured to provide an ultrasonic vibrator in which electrostrictive element plates are attached to both sides of a diaphragm. In order to make the output end face of the diaphragm generate a composite vibration in the axial and flexural directions, a flexural drive power source with a reverse phase is applied to each pair of electrodes, and an axial drive power source is superimposed on each electrode. The main feature is that the amplitude or relative phase of each, or the amplitude and relative phase of each are controlled by the above.

〔作 用〕[For production]

上記手段により、振動板出力端面にねじり又は軸と直角
方向振動と、軸方向振動の合成された直線振動、円振動
及び楕円振動が任意の方向に発生させることができる。
By means of the above means, it is possible to generate torsional or perpendicular vibration to the axis, and linear vibration, circular vibration, and elliptical vibration, which are a combination of axial vibration, in any direction on the output end face of the diaphragm.

〔実施例〕〔Example〕

次に、本発明の実施例を図により説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図に示すものは、金属などの弾性体からなる矩形状
振動板1の長さ方向中央部両面に、厚さ方向に分極され
その両面に電極の設けられた電歪素子板2及び3を導電
性接着剤などにより接着したものであり、電歪素子板2
の一方の電極4及び電歪素子板3の一方の電極5から半
田付けなどで接続されたリード端子6及び7が引き出さ
れ、それぞれの電歪素子板2及び3の他方の電極は振動
板1と電気的に接続されて共通リード端子8として取り
出される。
What is shown in FIG. 1 is electrostrictive element plates 2 and 3 which are polarized in the thickness direction and provided with electrodes on both sides of the central part in the length direction of a rectangular diaphragm 1 made of an elastic body such as metal. are bonded with conductive adhesive or the like, and the electrostrictive element plate 2
Lead terminals 6 and 7 connected by soldering etc. are pulled out from one electrode 4 of the electrostrictive element plate 3 and one electrode 5 of the electrostrictive element plate 3, and the other electrode of each electrostrictive element plate 2 and 3 is connected to the diaphragm 1. It is electrically connected to and taken out as a common lead terminal 8.

上記のように構成された超音波振動子は、そのリード端
子6及び7を並列に接続して共通リード端子8との間に
交流電圧を印加し、その周波数を振動板1の長さ方向共
振周波数に調節すると、従来良く知られているように、
振動板1の両端面9及び10が矢印Aのように最大変位
をもって軸方向に共振振動する。
The ultrasonic vibrator configured as described above connects its lead terminals 6 and 7 in parallel, applies an AC voltage between it and the common lead terminal 8, and sets the frequency to resonance in the longitudinal direction of the diaphragm 1. As is well known, when adjusting the frequency,
Both end surfaces 9 and 10 of the diaphragm 1 resonate in the axial direction with maximum displacement as indicated by arrow A.

一方、リード端子6及び7に印加する交流f!注の位相
差を180度、即ち位相を反転させて、その周波数をた
わみ共振周波数に合わせると、振動板1の端面9及び1
0は第1図の矢印Bに示すように、たわみ方向即ち軸と
直角方向に直線状に振動する。
On the other hand, the AC f! applied to lead terminals 6 and 7! If the phase difference in Note is 180 degrees, that is, the phase is inverted, and the frequency is matched to the flexural resonance frequency, the end faces 9 and 1 of the diaphragm 1
0 vibrates linearly in the direction of deflection, that is, in the direction perpendicular to the axis, as shown by arrow B in FIG.

ここで、電歪素子板2及び3を含めて振動板1は、その
長さ方向共振周波数とたわみ共振周波数とが一致するよ
うに形成される。
Here, the diaphragm 1 including the electrostrictive element plates 2 and 3 is formed so that its longitudinal resonant frequency and flexural resonant frequency match.

第2図に、上記の超音波振動子を駆動する時の結線図を
示す。振動子の共通リード端子8は駆動電源11のアー
ス側端に接続されアースされる。
FIG. 2 shows a wiring diagram when driving the above ultrasonic transducer. The common lead terminal 8 of the vibrator is connected to the ground side end of the drive power source 11 and grounded.

リード端子6及び7は、それぞれトランス12の二次コ
イル両端13及び14に接続され、又、センタータップ
15は駆動電源11に、さらに−次コイル16は駆動電
源17に接続されて一方がアースされる。
The lead terminals 6 and 7 are connected to both ends 13 and 14 of the secondary coil of the transformer 12, respectively, the center tap 15 is connected to the drive power supply 11, and the secondary coil 16 is connected to the drive power supply 17, and one end is grounded. Ru.

そこで、駆動電源11と17とを共振周波数を以て同相
で駆動すると、出力端部9の点Cの振動は、第3図に示
すように、軸方向振動20とたわみ方向振動21とは互
いに直角であるからその合成振動は直線22となり、相
対位相を反転させて軸方向振動を点線23とすると、そ
の合成振動は点線24となってその振動方向は90度変
化する。
Therefore, when the drive power supplies 11 and 17 are driven in the same phase at a resonant frequency, the vibration at point C of the output end 9 will be such that the axial vibration 20 and the flexural vibration 21 are at right angles to each other, as shown in FIG. Therefore, the resultant vibration becomes a straight line 22, and if the relative phase is reversed and the axial vibration is shown as a dotted line 23, the resultant vibration becomes a dotted line 24, and the vibration direction changes by 90 degrees.

又、相対位相を90度とすると、合成振動は円振動25
となり、進相或いは遅相によってその回転方向は反転す
る。さらにその相対振幅を変化させることにより楕円振
動に、又、相対振幅と相対位相の組み合せにより傾斜楕
円となるなど、正弦波振動を直角合成することにより、
従来より良く知られているように、多様な複合振動姿態
を作り出すことができる。
Also, if the relative phase is 90 degrees, the resultant vibration is circular vibration 25
The direction of rotation is reversed depending on whether the phase is advanced or delayed. Furthermore, by changing the relative amplitude, it becomes an elliptical vibration, and by combining the relative amplitude and relative phase, it becomes an inclined ellipse, etc. By orthogonally synthesizing the sinusoidal vibration,
As is well known in the past, various complex vibration states can be created.

それらの振動姿態を第4図ないし第10図に示す。まず
駆動電源17の振幅をOとして、駆動電源11のみを駆
動すると、出力端部9の点Cの振動は第4図(d)のよ
うに、軸方向に振動する。そこで駆動電源17の駆動電
源11に対する相対位相を90度としてその振幅を増加
して行くと、同図(c)から(b)、更に(a)のよう
に横長楕円、円。
Their vibration states are shown in FIGS. 4 to 10. First, when the amplitude of the drive power source 17 is set to O and only the drive power source 11 is driven, the vibration at the point C of the output end 9 vibrates in the axial direction as shown in FIG. 4(d). Therefore, if the relative phase of the drive power source 17 with respect to the drive power source 11 is set to 90 degrees and the amplitude is increased, a horizontally oblong ellipse and a circle are formed as shown in FIG.

縦長楕円へとその振動姿態が変化して行く。又、相対位
相を一90度とすると同図(e)、(f)、(g)のよ
うに回転方向を前記と反転させてその振動姿態が変化し
てゆく。
Its vibration shape changes to a vertically elongated ellipse. Furthermore, when the relative phase is set to 190 degrees, the rotational direction is reversed and the vibration mode changes as shown in FIGS.

次に、駆動電源11の振幅をOとして、駆動電源17の
みを印加すると、前記点Cは第5図(d)のように軸と
直角方向にたわみ振動する。そこで駆動電源11の゛振
幅を上げて行くと、その振幅と相対位相90度の進相又
は遅相により同図(C)、(b)、(a)或いは(e)
、(f)、(g)のように楕円率と回転方向を変化させ
た振動姿態が得られる。
Next, when the amplitude of the drive power source 11 is set to O and only the drive power source 17 is applied, the point C deflects and vibrates in the direction perpendicular to the axis as shown in FIG. 5(d). Therefore, when the amplitude of the drive power source 11 is increased, the amplitude and the relative phase of 90 degrees lead or lag, as shown in Figures (C), (b), (a), or (e).
, (f), and (g), vibration states in which the ellipticity and rotation direction are changed are obtained.

次に、駆動電源11の振幅を一定として、駆動型g17
の位相を同相としたまま、その振幅を0から増加して行
くと、第6図(a)から(e)のように、軸方向からそ
の傾斜角を変えながら振動振幅が増加して行く。又、開
駆動電源間の位相を反転させて、駆動電源17の振幅を
0から増加させて行くと、第7図(、)から(e)のよ
うに軸方向振動からその傾斜角を第6図とは反対に変え
ながら振動振幅が増加して行く。
Next, with the amplitude of the drive power source 11 constant, the drive type g17
When the amplitude is increased from 0 while keeping the phase of the vibrations in the same phase, the vibration amplitude increases while changing the inclination angle from the axial direction, as shown in FIGS. 6(a) to (e). Furthermore, when the phase between the open drive power sources is inverted and the amplitude of the drive power source 17 is increased from 0, the inclination angle changes from the axial vibration to the 6th angle as shown in FIGS. 7(,) to (e). The vibration amplitude increases as the vibration is changed in the opposite direction to the diagram.

次に、駆動電源17のたわみ駆動信号を一定として、駆
動電源11の軸方向駆動信号の位相を同相としたまま、
その振幅を0から増加して行くと、第8図(a)から(
e)のように、たわみ方向振動からその傾斜角を変えな
がら振動振幅が増大して行く。
Next, while keeping the deflection drive signal of the drive power source 17 constant and the phase of the axial drive signal of the drive power source 11 kept in the same phase,
When the amplitude is increased from 0, from Fig. 8(a) to (
As shown in e), the vibration amplitude increases from the vibration in the deflection direction while changing the inclination angle.

又、開駆動電源間の位相を反転させて、駆動電源11の
振幅を0から増加して行くと、第9図(a)から(e)
のように、たわみ方向振動からその傾斜角を反対に変え
ながら振動振幅が増加して行く。
Furthermore, when the phase between the open drive power supplies is inverted and the amplitude of the drive power supply 11 is increased from 0, the results shown in FIGS. 9(a) to (e)
As shown in FIG.

次に、軸方向、たわみ方向振動振幅が同じとなるように
、それぞれ駆動電源11及び17を制御し、面駆動電源
の相対位相を0度とすると、第10図(e)のように、
軸にたいして45度の傾斜直線振動が得られるが、その
相対位相の制御により傾斜楕円、円、反対傾斜楕円そし
て、反対傾斜直線が(d)、(c)、(b)、(a)の
ように得られ、又、相対位相を反転すると、同様に(f
)から(i)のように回転方向の逆転した振動が得られ
る。
Next, if the drive power supplies 11 and 17 are respectively controlled so that the vibration amplitudes in the axial direction and the deflection direction are the same, and the relative phase of the surface drive power supply is set to 0 degrees, as shown in FIG. 10(e),
A linear vibration tilted at 45 degrees with respect to the axis is obtained, but by controlling the relative phase, tilted ellipses, circles, oppositely tilted ellipses, and oppositely tilted straight lines can be created as shown in (d), (c), (b), and (a). is obtained, and if the relative phase is reversed, similarly (f
), vibrations with the rotational direction reversed as shown in (i) are obtained.

第11図に示すものは、矩形状振動板31の長さ方向中
央部に設けられた電歪素子板32及び33の外面側電極
を軸方向中心で電極34及び35と、電極36及び37
に分割し、それぞれの電極からリード端子38,39,
40及び41を、さらに振動板31から共通リード端子
42を導出した超音波振動子であって、そのリード端子
39と41.38と40即ち対角位置の電極同士をそれ
ぞれ並列に接続して第2図と同様に接続し、それぞれの
駆動電源11及び17を共振周波数に調節して相対位相
を90度とすると、振動板31の四隅の振動姿態は矢印
に示すように、幅方向両端ではその回転方向が反転した
楕円振動をなすのである。
In the device shown in FIG. 11, electrodes 34 and 35 and electrodes 36 and 37 are connected to the outer surface electrodes of electrostrictive element plates 32 and 33 provided at the center in the longitudinal direction of a rectangular diaphragm 31 at the center in the axial direction.
The lead terminals 38, 39,
40 and 41 are ultrasonic transducers in which a common lead terminal 42 is further led out from the diaphragm 31, and the lead terminals 39 and 41, and 38 and 40, that is, diagonally located electrodes, are connected in parallel. If the connections are made in the same manner as shown in Figure 2, and the respective drive power supplies 11 and 17 are adjusted to the resonance frequency to set the relative phase to 90 degrees, the vibration mode at the four corners of the diaphragm 31 will be the same at both ends in the width direction as shown by the arrows. This produces elliptical vibration with the direction of rotation reversed.

その振動状態を理解しやすくするために示したものが第
12図で、振動板31の厚み方向最大変位状態を二点鎖
線で表わしている。即ち、ある半周期には中心軸に対し
て幅方向右半分が上向きに、同じく左半分が下向きに反
り返り、次の半周期には互いに逆向きに反転しながらそ
れと90度の位相差をもって軸方向の伸縮を行っている
。但し、ここでは理解しやすく説明するために、第一次
のたわみ振動で例示したが、それは振動体の構成に依っ
て決まるものであり、高次のものであっても良い。
FIG. 12 is shown to facilitate understanding of the vibration state, in which the maximum displacement state of the diaphragm 31 in the thickness direction is indicated by a chain double-dashed line. In other words, in one half cycle, the right half in the width direction curves upward and the left half curves downward with respect to the central axis, and in the next half cycle, it curves in opposite directions and curves in the axial direction with a phase difference of 90 degrees. is expanding and contracting. However, in order to make the explanation easy to understand, the first-order flexural vibration is exemplified here, but it is determined depending on the configuration of the vibrating body, and higher-order vibrations may be used.

更に、第13図は第11図と同じ構成でリード端子の組
み合せを変えたものであり、リード端子39と40.3
8と41をそれぞれ並列に接続し、第2図と同様にそれ
ぞれの駆動電源11及び17を共振周波数に調節して相
対位相を90度とすると、上記と同様の原理により幅方
向両端は矢印のようにそれぞれの面で一様に楕円振動を
行う。
Furthermore, FIG. 13 shows the same configuration as FIG. 11 but with a different combination of lead terminals, with lead terminals 39 and 40.3.
8 and 41 are connected in parallel, and the respective drive power supplies 11 and 17 are adjusted to the resonant frequency to set the relative phase to 90 degrees as shown in Fig. 2. According to the same principle as above, both ends in the width direction are as shown by the arrows. Elliptical vibration is performed uniformly on each surface.

以上詳細に述べた原理説明により明らかなように、振動
板の軸方向端面における振動姿態は、軸方向及びたわみ
方向の複合振動である直線、円及び楕円とその回転方向
を、対となった電極にそれぞれ位相の反転したたわみ方
向駆動電源と、それに重畳させた軸方向駆動電源の、そ
れぞれの振幅又は相対位相、もしくはそれぞれの振幅と
相対位相により自由に制御できるのである。
As is clear from the detailed explanation of the principle described above, the vibration state at the axial end face of the diaphragm is such that the combination vibration of the axial direction and the deflection direction, which is a straight line, circle, and ellipse, and their rotational direction are It is possible to freely control the amplitude or relative phase of the deflection direction drive power source whose phase is inverted, and the axial drive power source superimposed thereon, or by the amplitude and relative phase of each of them.

従って、超音波振動子を上記のように構成し、振動板の
出力端面をロータなどの回転体や移動体に圧接させて、
上記の駆動方法により前記振動子を駆動するようにすれ
ば、その回転方向の制御や回転体等との最適な駆動条件
即ち、最大の摩擦係数と最小の摩耗で、最大のトルクを
もって駆動する楕円振動の形状の制御が可能となるので
ある。
Therefore, the ultrasonic vibrator is configured as described above, and the output end face of the diaphragm is brought into pressure contact with a rotating body such as a rotor or a moving body.
If the vibrator is driven by the above driving method, the rotation direction can be controlled and the optimal driving conditions with the rotating body, i.e., an ellipse that can be driven with the maximum torque with the maximum coefficient of friction and minimum wear, can be achieved. This makes it possible to control the shape of vibration.

因に、第1図に示した振動子を用い、本発明方法よりそ
れを駆動してリニアモータを構成する例について説明す
れば、次の通りである。
An example of constructing a linear motor by using the vibrator shown in FIG. 1 and driving it according to the method of the present invention will be described as follows.

即ち、第14図は第1図に示した超音波振動子における
振動板の出力側にR段部を設けてステップホーン形状の
振動体1を構成し、前記振動板1の出力端面9の振動姿
態を図中矢印のように制御して対向するレールRの面に
押圧すると、超音波振動子は太矢印の方向に移動するの
である。
That is, FIG. 14 shows a stepped horn-shaped vibrating body 1 by providing an R step on the output side of the diaphragm in the ultrasonic transducer shown in FIG. When the ultrasonic transducer is controlled in its position as shown by the arrow in the figure and pressed against the surface of the opposing rail R, the ultrasonic transducer moves in the direction of the thick arrow.

上記実施例においては、出力端部が一状に形成された振
動子について説明したが、たわみ共振にて振動を発生し
、出力端部において軸振動との合成振動として取り出す
振動板の両側面に電歪素子板を装着した振動子即ち、本
出願人によりすでに出願された特願昭60−27164
4号及び特願昭60−293110号に記載された全て
の振動子についても同様に適用できる。
In the above embodiment, a vibrator in which the output end is formed into a single shape has been described. A vibrator equipped with an electrostrictive element plate, that is, the patent application No. 60-27164 already filed by the present applicant.
The same applies to all the vibrators described in No. 4 and Japanese Patent Application No. 60-293110.

尚、本発明においてそれぞれの振幅又は相対位相、或い
はそれぞれの振幅と相対位相を制御する駆動電源は、従
来良く知られた定電圧駆動或いは定電流駆動のいずれに
ついても同様であることは勿論であり、定電圧駆動は並
列共振周波数にて、定電流駆動は直列共振周波数にてそ
れぞれ適用されるのが好ましい。従って駆動電源の振幅
或いは相対位相とは、駆動電圧又は駆動電流の振幅或い
は相対位相を意味するものである。
In the present invention, it goes without saying that the drive power source for controlling each amplitude or relative phase, or each amplitude and relative phase, is the same for both conventionally well-known constant voltage drive and constant current drive. Preferably, the constant voltage drive is applied at a parallel resonant frequency, and the constant current drive is applied at a series resonant frequency. Therefore, the amplitude or relative phase of the drive power source means the amplitude or relative phase of the drive voltage or drive current.

〔発明の効果〕〔Effect of the invention〕

本発明は上述の通りであるから、超音波モータに使用す
る振動子の駆動制御方法として、極めて有用である。
Since the present invention is as described above, it is extremely useful as a drive control method for a vibrator used in an ultrasonic motor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法により駆動制御される超音波振動子
の一例の斜視図、第2図は前記振動子を駆動するときの
結線図、第3図は本発明方法の原理を説明するための図
、第4図乃至第10図は本発明方法による振動子の振動
姿態を示す図、第11図は本発明方法により駆動制御さ
れる超音波振動子の別個の斜視図、第12図は第11図
々示の振動子の振動状態の説明図、第13図は第11図
々示の振動子のリード端子の組み合せを変えた振動子の
斜視図、第14図は第1図々示の超音波振動子を用い、
本発明方法により駆動してリニアモータを構成した例の
斜視図、第15図は従来の超音波モータの一例の斜視図
である。
FIG. 1 is a perspective view of an example of an ultrasonic transducer driven and controlled by the method of the present invention, FIG. 2 is a wiring diagram when driving the transducer, and FIG. 3 is for explaining the principle of the method of the present invention. , FIGS. 4 to 10 are diagrams showing the vibration state of the transducer according to the method of the present invention, FIG. 11 is a separate perspective view of the ultrasonic transducer driven and controlled by the method of the present invention, and FIG. FIG. 11 is an explanatory diagram of the vibration state of the vibrator shown in FIG. 11, FIG. 13 is a perspective view of the vibrator shown in FIG. 11 with a different combination of lead terminals, and FIG. Using an ultrasonic transducer,
FIG. 15 is a perspective view of an example of a linear motor driven by the method of the present invention, and FIG. 15 is a perspective view of an example of a conventional ultrasonic motor.

Claims (1)

【特許請求の範囲】 1 振動板の両側面に電歪素子板を装着してなる超音波
振動子において、前記振動板の出力端面がその軸方向及
びたわみ方向の合成された複合振動をなすように、対と
なったそれぞれの電極に位相の反転した駆動電源と、そ
れぞれに重畳させた駆動電源を印加することを特徴とす
る超音波振動子の駆動制御方法。 2 それぞれの駆動電源の振幅、又は相対位相、或いは
振幅と相対位相を制御することを特徴とする特許請求の
範囲第1項記載の超音波振動子の駆動制御方法。 3 それぞれの駆動電源の相対位相を90度とし、それ
ぞれの振幅を制御することを特徴とする特許請求の範囲
第1項記載の超音波振動子の駆動制御方法。 4 振動板の両側面に電歪素子板を装着してなる超音波
振動子において、前記振動板の出力端面がその軸方向及
びたわみ方向の合成され幅方向両端部または軸方向両端
部が互いに逆方向の複合振動をなすように、対となった
それぞれの電極に位相の反転した駆動電源と、それぞれ
に重畳させた駆動電源を印加することを特徴とする超音
波振動子の駆動制御方法。 5 それぞれの駆動電源の振幅、又は相対位相、或いは
振幅と相対位相を制御することを特徴とする特許請求の
範囲第4項記載の超音波振動子の駆動制御方法。 6 それぞれの駆動電源の相対位相を90度とし、それ
ぞれの振幅を制御することを特徴とする第4項記載の超
音波振動子の駆動制御方法。 7 振動板の両側面に電歪素子板を装着してなる超音波
振動子において、前記振動板の出力端面がその軸方向及
びたわみ方向の合成された複合振動をなすように、対と
なったそれぞれの電極に、トランスの二次コイルの両端
を接続し、トランスの二次コイルの中点に軸方向駆動電
源を、さらにトランスの一次コイルにたわみ方向駆動電
源を印加することを特徴とする超音波振動子の駆動制御
方法。 8 それぞれの駆動電源振幅又は相対位相、或いは振幅
と相対位相を制御することを特徴とする特許請求の範囲
第7項記載の超音波振動子の駆動制御方法。 9 それぞれの駆動電源の相対位相を90度とし、それ
ぞれの振幅を制御することを特徴とする特許請求の範囲
第7項記載の超音波振動子の駆動制御方法。 10 振動板の両側面に電歪素子板を装着してなる超音
波振動子において、前記振動板の出力端面がその軸方向
及びたわみ方向の合成され幅方向両端部または軸方向両
端部が互いに逆方向の複合振動をなすように、対となっ
たそれぞれの電極にトランスの二次コイルの両端を接続
し、トランスの二次コイルの中点に軸方向駆動電源を、
さらにトランスの一次コイルにたわみ方向駆動電源を印
加することを特徴とする超音波振動子の駆動制御方法。 11 それぞれの駆動電源の振幅、又は相対位相、或い
は振幅と相対位相を制御することを特徴とす特許請求の
範囲第10項記載の超音波振動子の駆動制御方法。 12 それぞれの駆動電源の相対位相を90度とし、そ
れぞれの振幅を制御することを特徴とする特許請求の範
囲第10項記載の超音波振動子の駆動制御方法。
[Scope of Claims] 1. An ultrasonic vibrator including electrostrictive element plates mounted on both sides of a diaphragm, such that the output end face of the diaphragm generates compound vibration in its axial direction and deflection direction. A method for controlling the drive of an ultrasonic transducer, characterized in that a drive power source having an inverted phase and a superimposed drive power source are applied to each pair of electrodes. 2. A drive control method for an ultrasonic transducer according to claim 1, characterized in that the amplitude or the relative phase, or the amplitude and relative phase of each drive power source is controlled. 3. The ultrasonic transducer drive control method according to claim 1, wherein the relative phase of each drive power source is set to 90 degrees and the amplitude of each is controlled. 4. In an ultrasonic vibrator in which electrostrictive element plates are attached to both sides of a diaphragm, the output end face of the diaphragm is a combination of the axial direction and the deflection direction, and both widthwise ends or axial ends are opposite to each other. A method for controlling the drive of an ultrasonic transducer, characterized in that a drive power source having an inverted phase and a superimposed drive power source are applied to each pair of electrodes so as to form a complex vibration in a direction. 5. The method for controlling the drive of an ultrasonic transducer according to claim 4, characterized in that the amplitude or relative phase of each drive power source, or the amplitude and relative phase of each drive power source is controlled. 6. The ultrasonic transducer drive control method according to item 4, wherein the relative phase of each drive power source is 90 degrees and the amplitude of each is controlled. 7. In an ultrasonic vibrator in which electrostrictive element plates are attached to both sides of a diaphragm, the output end face of the diaphragm is paired such that the output end face of the diaphragm generates a composite vibration in the axial direction and the deflection direction. Both ends of the secondary coil of the transformer are connected to each electrode, and an axial drive power is applied to the midpoint of the transformer's secondary coil, and a flexural drive power is applied to the transformer's primary coil. A method for controlling the drive of a sound wave vibrator. 8. A drive control method for an ultrasonic transducer according to claim 7, characterized in that the amplitude or relative phase of each drive power source, or the amplitude and relative phase of each drive power source is controlled. 9. The ultrasonic transducer drive control method according to claim 7, wherein the relative phase of each drive power source is set to 90 degrees and the amplitude of each is controlled. 10 In an ultrasonic vibrator in which electrostrictive element plates are attached to both sides of a diaphragm, the output end face of the diaphragm is a composite of its axial direction and deflection direction, and both widthwise ends or axially both ends are opposite to each other. Both ends of the secondary coil of the transformer are connected to each pair of electrodes so as to produce compound vibration in the direction, and an axial drive power source is connected to the midpoint of the secondary coil of the transformer.
A method for controlling the drive of an ultrasonic transducer, further comprising applying a deflection direction drive power to the primary coil of the transformer. 11. The ultrasonic transducer drive control method according to claim 10, characterized in that the amplitude or relative phase of each drive power source, or the amplitude and relative phase of each drive power source is controlled. 12. The ultrasonic transducer drive control method according to claim 10, wherein the relative phase of each drive power source is 90 degrees and the amplitude of each is controlled.
JP61080090A 1986-04-09 1986-04-09 Drive control method for ultrasonic vibrator Pending JPS62239875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61080090A JPS62239875A (en) 1986-04-09 1986-04-09 Drive control method for ultrasonic vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61080090A JPS62239875A (en) 1986-04-09 1986-04-09 Drive control method for ultrasonic vibrator

Publications (1)

Publication Number Publication Date
JPS62239875A true JPS62239875A (en) 1987-10-20

Family

ID=13708499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61080090A Pending JPS62239875A (en) 1986-04-09 1986-04-09 Drive control method for ultrasonic vibrator

Country Status (1)

Country Link
JP (1) JPS62239875A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073739A (en) * 1990-02-27 1991-12-17 Nisca Corporation Vibration-coupling type ultrasonic actuator and method for operating the same
US5200665A (en) * 1990-11-21 1993-04-06 Nisca Corporation Ultrasonic actuator
US5216313A (en) * 1988-12-16 1993-06-01 Alps Electric Co., Ltd. Ultrasonic wave linear motor
US5453653A (en) * 1993-07-09 1995-09-26 Nanomotion Ltd. Ceramic motor
US5548175A (en) * 1989-06-05 1996-08-20 Canon Kabushiki Kaisha Vibration driven motor
US5616980A (en) * 1993-07-09 1997-04-01 Nanomotion Ltd. Ceramic motor
US5682076A (en) * 1993-08-03 1997-10-28 Nanomotion Ltd. Ceramic disc-drive actuator
JP2011160544A (en) * 2010-01-29 2011-08-18 Olympus Corp Ultrasonic motor
JP2011160545A (en) * 2010-01-29 2011-08-18 Olympus Corp Ultrasonic motor
JP2011200061A (en) * 2010-03-23 2011-10-06 Olympus Corp Ultrasonic motor
JP2014117071A (en) * 2012-12-10 2014-06-26 Toyota Industries Corp Robot

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59230473A (en) * 1983-06-13 1984-12-25 Hitachi Ltd Drive device
JPS6091874A (en) * 1983-10-20 1985-05-23 Showa Electric Wire & Cable Co Ltd Supersonic motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59230473A (en) * 1983-06-13 1984-12-25 Hitachi Ltd Drive device
JPS6091874A (en) * 1983-10-20 1985-05-23 Showa Electric Wire & Cable Co Ltd Supersonic motor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216313A (en) * 1988-12-16 1993-06-01 Alps Electric Co., Ltd. Ultrasonic wave linear motor
US5600196A (en) * 1989-06-05 1997-02-04 Canon Kabushiki Kaisha Vibration driven motor
US5548175A (en) * 1989-06-05 1996-08-20 Canon Kabushiki Kaisha Vibration driven motor
US5073739A (en) * 1990-02-27 1991-12-17 Nisca Corporation Vibration-coupling type ultrasonic actuator and method for operating the same
US5200665A (en) * 1990-11-21 1993-04-06 Nisca Corporation Ultrasonic actuator
US5616980A (en) * 1993-07-09 1997-04-01 Nanomotion Ltd. Ceramic motor
US5453653A (en) * 1993-07-09 1995-09-26 Nanomotion Ltd. Ceramic motor
US6064140A (en) * 1993-07-09 2000-05-16 Nanomotion Ltd Ceramic motor
US5682076A (en) * 1993-08-03 1997-10-28 Nanomotion Ltd. Ceramic disc-drive actuator
US5777423A (en) * 1993-08-03 1998-07-07 Nanomotion Ltd. Ceramic motor
JP2011160544A (en) * 2010-01-29 2011-08-18 Olympus Corp Ultrasonic motor
JP2011160545A (en) * 2010-01-29 2011-08-18 Olympus Corp Ultrasonic motor
JP2011200061A (en) * 2010-03-23 2011-10-06 Olympus Corp Ultrasonic motor
JP2014117071A (en) * 2012-12-10 2014-06-26 Toyota Industries Corp Robot

Similar Documents

Publication Publication Date Title
US4812697A (en) Ultrasonic vibrator and a method of controllingly driving same
US4705980A (en) Drive control method of ultrasonic vibrator
JP4119903B2 (en) Flat plate piezoelectric ultrasonic motor
JPS62239875A (en) Drive control method for ultrasonic vibrator
JPS62225182A (en) Oscillatory wave motor
JPS62135279A (en) Ultrasonic motor
JPH11346487A (en) Oscillation wave unit and oscillation wave driver
JPH0514512B2 (en)
JPH0150195B2 (en)
JPH011486A (en) ultrasonic motor
JPS62155782A (en) Ultrasonic vibrator and drive control method thereof
JPS62135278A (en) Drive method of ultrasonic vibrator
JPS62152377A (en) Drive-controlling method for ultrasonic wave vibrator
JPS62141980A (en) Ultrasonic vibrator and drive controlling method thereof
JP3805240B2 (en) Ultrasonic motor
JPH03270679A (en) Ultrasonic oscillator and ultrasonic motor
JPH08149862A (en) Ultrasonic oscillator
JP2971971B2 (en) Ultrasonic actuator
JPH05111268A (en) Piezoelectric actuator
JPH0833370A (en) Ultrasonic motor
JPH01103175A (en) Supersonic drive
JPS61227680A (en) Oscillatory wave motor
JPS63110980A (en) Driving of ultrasonic motor
JPH08163879A (en) Ultrasonic oscillator and ultrasonic motor
JP2534343B2 (en) Ultrasonic linear motor