JPS63124937A - Method for stabilizing liquid level in icp emission analysis - Google Patents

Method for stabilizing liquid level in icp emission analysis

Info

Publication number
JPS63124937A
JPS63124937A JP27211886A JP27211886A JPS63124937A JP S63124937 A JPS63124937 A JP S63124937A JP 27211886 A JP27211886 A JP 27211886A JP 27211886 A JP27211886 A JP 27211886A JP S63124937 A JPS63124937 A JP S63124937A
Authority
JP
Japan
Prior art keywords
chamber
tank
sub
waste liquid
liquid level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27211886A
Other languages
Japanese (ja)
Inventor
Yoshihisa Omori
敬久 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP27211886A priority Critical patent/JPS63124937A/en
Publication of JPS63124937A publication Critical patent/JPS63124937A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To smoothly discharge a waste liquid and to stably maintain the liquid level in a chamber by dropping a surfactant to a drain part of at least a sub-tank at the time of an analysis. CONSTITUTION:A soln. sample is atomized by a nebulizer 4 and is sprayed into the chamber 2 at the time of the ICP (high frequency inductively coupled plasma) emission analysis. The atomized sample is subjected to the uniformization of particles and stabilization of gaseous flow in the chamber 2 and is then introduced into a plasma torch 6. On the other hand, the excess sample sticks to the inside wall of the chamber 2, drops along the wall surface and is stored from a drain part 2a into the sub-tank 10. The surfactant is adsorbed to the inside walls of the sub-tank 10 and a waste liquid pipe 14 and part thereof is diffused into the waste liquid when the surfactant is dropped from a storage tank 16 by slightly opening a valve 18 at the time of the analysis. As a result, the waste liquid is gradually discharged from the sub-tank 10 according to the amt. to flow into the drain part 2a. The liquid level in the chamber 2 is thus stabilized and the plasma torch is stabilized as well.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、I CP(高周波誘導結合プラズマ)発光分
析において、噴霧室を構成するチェンバ内に貯溜された
液面を安定化させる方法に関する。
Detailed Description of the Invention (a) Industrial Application Field The present invention relates to a method for stabilizing a liquid level stored in a chamber constituting a spray chamber in ICP (high frequency inductively coupled plasma) emission spectroscopy. .

(ロ)従来技術とその問題点 一般に、ICP発光分析は、試料をネプライザで霧化し
てチェンバ内に導入し、ここで均一、安定化された霧化
試料をプラズマトーチに導いてプラズマ発光させ、試料
からのプラズマ光を分光してその光強度を測定すること
により、試料に含まれる元素の定性、定量分析を行なう
(b) Prior art and its problems In general, in ICP emission spectrometry, a sample is atomized with a nebulizer and introduced into a chamber, where the atomized sample, which is homogeneous and stabilized, is guided to a plasma torch to emit plasma. Qualitative and quantitative analysis of elements contained in a sample is performed by spectroscopy of plasma light from the sample and measuring its light intensity.

このようなlCP発光分析において、チェンバ内の雰囲
気とプラスマの安定化のためには、分析時においてチェ
ンバ内を一定容積に保っておく必要がある。そのため、
従来、第3図に示すように、チェンバaのドレイン部に
廃液管Cを介して逆V字状のサブタンクdを接続し、こ
のサブタンクdをチェンバaに対して所定の高さに設置
することで、余剰液をサブタンクdから排出しつつ、常
にチェンバa内の液面Qが一定に保たれるようにしてい
る。
In such lCP emission analysis, in order to stabilize the atmosphere and plasma within the chamber, it is necessary to maintain a constant volume within the chamber during analysis. Therefore,
Conventionally, as shown in Fig. 3, an inverted V-shaped sub-tank d is connected to the drain section of chamber a via a waste liquid pipe C, and this sub-tank d is installed at a predetermined height with respect to chamber a. While draining the excess liquid from the sub-tank d, the liquid level Q in the chamber a is always kept constant.

なお、eはサブタンクdの空気抜き部、fは試料霧化用
のネプライザである。
In addition, e is an air vent part of the sub-tank d, and f is a nebulizer for sample atomization.

ところで、分析対象となる試料は、塩酸、硫酸、ふり酸
等の各種の薬品で溶解されるので、廃液管Cやサブタン
クdは、テフロン等の耐薬品性の材料が使用される。と
ころが、このような耐薬品性の材料は一般的に親水性に
乏しい。そのため、廃液管Cからサブタンクdに渡って
貯溜されている廃液はサブタンクdから徐々に排出され
ず、廃液の貯合量がある値を越えた時に一塊りgとなっ
て一気に流れ出してしまう。すると、その影響でチェン
バa内の液面σが揺動し、その揺動がプラズマトーチま
で伝わって測光強度の変動をもたらす。その結果、分析
を精度良く行なえないなどの不具合を生じていた。
Incidentally, since the sample to be analyzed is dissolved with various chemicals such as hydrochloric acid, sulfuric acid, and fluoric acid, chemically resistant materials such as Teflon are used for the waste liquid pipe C and the sub-tank d. However, such chemically resistant materials generally have poor hydrophilicity. Therefore, the waste liquid stored from the waste liquid pipe C to the sub-tank d is not gradually discharged from the sub-tank d, but when the accumulated amount of waste liquid exceeds a certain value, it becomes a lump g and flows out at once. Then, due to this influence, the liquid level σ in the chamber a fluctuates, and the fluctuation is transmitted to the plasma torch, causing fluctuations in the photometric intensity. As a result, problems such as inability to perform analysis with high accuracy have occurred.

本発明は、このような事情に鑑みてなされたものであっ
て、ICP発光分析において、分析時にチェンバ内の液
面が安定に保たれるようにして、常に精度良い分析が行
なえるようにすることを目的とする。
The present invention has been made in view of the above circumstances, and is intended to maintain a stable liquid level in a chamber during analysis in ICP emission spectrometry, so that highly accurate analysis can be performed at all times. The purpose is to

(ハ)問題点を解決するための手段 本発明は、上記の目的を達成するために、102発光分
析において、噴霧室を構成するチェンバからこのチェン
バに貯溜する液面の高さを一定に保つために設けられた
サブタンクを経て廃液タンクに至る一連の排出路の内の
、少なくともサブタンクのドレイン部に対して界面活性
剤を滴下するようにしている。
(C) Means for Solving the Problems In order to achieve the above object, the present invention maintains a constant height of the liquid level stored in this chamber from the chamber constituting the spray chamber in 102 emission analysis. The surfactant is dripped into at least the drain portion of the sub-tank of a series of discharge paths leading to the waste liquid tank via the sub-tank provided for this purpose.

(ニ)実施例 第1図は、本発明方法を適用するためのICP発光発光
分差装置部を示す構成図である。同図において、lは1
02発光分析装置、2は噴霧室を構成するチェンバ、4
は溶液試料を霧化するネプライザ、6はプラズマトーチ
、8は高周波コイルである。10は逆V字状をしたガラ
ス製のサブタンクで、その上部に空気抜き部10aが設
けられ、また、下部の一方端10bがチェンバ2のドレ
イン部2aにテフロン製の廃液管12を介して接続され
、また、他方端10cが図外の廃液タンクにテフロン製
の廃液管14を介して接続されており、このサブタンク
lOがチェンバ2に対して所定の高さに設置されること
により、チェンバ2内の液面が一定に保たれる。
(D) Embodiment FIG. 1 is a block diagram showing an ICP emission differential device section for applying the method of the present invention. In the same figure, l is 1
02 Emission spectrometer, 2 is a chamber that constitutes a spray chamber, 4
6 is a plasma torch, and 8 is a high-frequency coil. Reference numeral 10 denotes an inverted V-shaped glass sub-tank, with an air vent part 10a provided at its upper part, and one end 10b of its lower part connected to a drain part 2a of the chamber 2 via a waste liquid pipe 12 made of Teflon. In addition, the other end 10c is connected to a waste liquid tank (not shown) via a waste liquid pipe 14 made of Teflon, and by installing this sub-tank lO at a predetermined height with respect to the chamber 2, the inside of the chamber 2 is The liquid level is kept constant.

16はアルキルベンゼンスルホン酸ナトリウ11等を含
む界面活性剤が貯溜された貯溜槽で、この貯溜槽16か
ら開閉バルブI8を介して滴下用管20がサブタンクl
Oの空気抜き部10aに挿入されている。
16 is a storage tank in which a surfactant containing sodium alkylbenzenesulfonate 11 and the like is stored, and a dripping pipe 20 is connected from this storage tank 16 to a sub-tank l via an on-off valve I8.
It is inserted into the air vent part 10a of O.

次に、上記の装置を適用した本発明の液面安定化方法に
ついて説明する。
Next, a liquid level stabilization method of the present invention using the above-mentioned device will be explained.

ICP発光分析の際には、溶液試料がネプライザ4で霧
化されてチェンバ2内に噴霧される。そして霧化された
試料は、このチェンバ2内で粒子の均一化と気流の安定
化が図られた後、プラズマトーチ6に導かれる。
During ICP emission analysis, a solution sample is atomized by a nebulizer 4 and sprayed into the chamber 2 . The atomized sample is guided to the plasma torch 6 after the particles are made uniform and the airflow is stabilized within the chamber 2 .

一方、チェンバ2内の余剰の試料は、チェンバ2の内壁
に付着し、これが壁面に沿って落下してチェンバ2のド
レイン部2aからサブタンク10に渡って貯溜する。そ
の貯溜量が多くなると、ザブタンクIOから廃液管14
を通って図外の廃液タンクに排出される。
On the other hand, the surplus sample in the chamber 2 adheres to the inner wall of the chamber 2, falls along the wall surface, and is stored in the sub-tank 10 from the drain part 2a of the chamber 2. When the accumulated amount increases, the waste liquid pipe 14 is
The liquid is discharged through the waste liquid tank (not shown).

この場合、従来は、サブタンク10や廃液管12.14
は親水性に乏しいため、廃液がサブタンクIOから徐々
に排出されず、廃液の貯溜量がある値を越えた時に一塊
りとなって一気に流れ出してしまっていた。そこで、本
発明では、分析時にバルブ18を僅かに開いて貯溜槽1
6からサブタンク10に対して界面活性剤を滴下する。
In this case, conventionally, the sub-tank 10 and the waste liquid pipe 12.14
Because of its poor hydrophilicity, the waste liquid was not gradually discharged from the subtank IO, and when the accumulated amount of waste liquid exceeded a certain value, it flowed out all at once. Therefore, in the present invention, the valve 18 is slightly opened during analysis, and the storage tank 1 is
The surfactant is dropped into the sub-tank 10 from step 6.

この界面活性剤は、サブタンク10と廃液管14の内壁
に吸着するとともに一部か廃液内に拡散する。そのため
、サブタンクIOと廃液管14内を流れろ廃液の表面張
力を低下させる。その結果、廃液はチェンバ2のドレイ
ン部2aに流れ込む量に応じてサブタンクIOから徐々
に排出されることになり、チェンバ2内の液面は揺動す
ることなく安定化し、これに伴ない、プラズマトーチも
安定化することになる。
This surfactant is adsorbed on the inner walls of the sub-tank 10 and the waste liquid pipe 14, and a portion of the surfactant is diffused into the waste liquid. Therefore, the surface tension of the waste liquid flowing through the subtank IO and the waste liquid pipe 14 is reduced. As a result, the waste liquid will be gradually discharged from the sub-tank IO according to the amount flowing into the drain part 2a of the chamber 2, and the liquid level in the chamber 2 will be stabilized without fluctuation, and as a result, the plasma The torch will also be stabilized.

なお、上記の実施例では、サブタンク10の空気抜き部
10aから界面活性剤を滴下するようにしたが、第2図
に示すように、サブタンク10に専用の導入口10dを
設け、この導入口10dからそのドレイン部10cに対
して界面活性剤を滴下するようにしても良い。
In the above embodiment, the surfactant was dripped from the air vent part 10a of the sub-tank 10, but as shown in FIG. A surfactant may be dropped onto the drain portion 10c.

(ポ)効果 以上のように本発明によれば、ICP発光分析において
、分析時に少なくともサブタンクのドレイン部に対して
界面活性剤を滴下するようにしたので、廃液がスムーズ
に排出されて常にチェンバ内の液面が安定に保たれるこ
とになり、精度良い分析が行なえるようになる等の優れ
た効果が発揮される。
(B) Effects As described above, according to the present invention, in ICP emission spectroscopy, surfactant is dripped at least into the drain part of the sub-tank during analysis, so that waste liquid is smoothly discharged and always remains in the chamber. The liquid level of the liquid will be kept stable, resulting in excellent effects such as being able to perform highly accurate analysis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の実施例を、第3図は従来
例をそれぞれ示すもので、第1図ないし第3図はともに
ICP発光分析装置の一部を示す構成図である。 1・・・ICP発光分析装置、2・・・チェンバ、lO
・・サブタンク、I2.14・・・廃液管、16・・・
貯溜槽。
1 and 2 show an embodiment of the present invention, and FIG. 3 shows a conventional example, and each of FIGS. 1 to 3 is a configuration diagram showing a part of an ICP emission spectrometer. 1... ICP emission spectrometer, 2... Chamber, lO
...Subtank, I2.14...Waste liquid pipe, 16...
Reservoir.

Claims (1)

【特許請求の範囲】[Claims] (1)噴霧室を構成するチェンバからこのチェンバに貯
溜する液面の高さを一定に保つために設けられたサブタ
ンクを経て廃液タンクに至る一連の排出路の内の、少な
くともサブタンクのドレイン部に対して界面活性剤を滴
下することを特徴とするICP発光分析における液面安
定化方法。
(1) At least in the drain section of the sub-tank in a series of discharge passages from the chamber that constitutes the spray chamber to the waste liquid tank via the sub-tank provided to maintain a constant level of the liquid level stored in this chamber. A method for stabilizing a liquid level in ICP emission spectroscopy, which comprises dropping a surfactant onto a liquid.
JP27211886A 1986-11-14 1986-11-14 Method for stabilizing liquid level in icp emission analysis Pending JPS63124937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27211886A JPS63124937A (en) 1986-11-14 1986-11-14 Method for stabilizing liquid level in icp emission analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27211886A JPS63124937A (en) 1986-11-14 1986-11-14 Method for stabilizing liquid level in icp emission analysis

Publications (1)

Publication Number Publication Date
JPS63124937A true JPS63124937A (en) 1988-05-28

Family

ID=17509338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27211886A Pending JPS63124937A (en) 1986-11-14 1986-11-14 Method for stabilizing liquid level in icp emission analysis

Country Status (1)

Country Link
JP (1) JPS63124937A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005017250A (en) * 2003-06-30 2005-01-20 Horiba Ltd Icp analysis method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005017250A (en) * 2003-06-30 2005-01-20 Horiba Ltd Icp analysis method

Similar Documents

Publication Publication Date Title
Boumans et al. Studies of an inductively-coupled high-frequency argon plasma for optical emisson spectrometry—II: Compromise conditions for simultaneous multielement analysis
WO2010018738A1 (en) Analytical method and analytical system
Baxter et al. Determination of mercury by atomic absorption spectrometry using a platinum-lined graphite furnace for in situ preconcentration
US4559808A (en) Gas/liquid separator and atomization cell
Matusiewicz et al. Simultaneous determination of As, Bi, Sb, Se and Sn by microwave induced plasma spectrometry using a quadruple-mode microflow ultrasonic nebulizer for in situ hydride generation with internal standardization
Herrmann et al. Quantities and units in clinical chemistry: Nebulizer and flame properties in flame emission and absorption spectrometry (Recommendations 1986)
JP2017040614A (en) Analysis system for on-line transported analysis sample
US4238198A (en) Method for determining total inorganic sulfur
US5939648A (en) System and method of introducing a sample for analytical atomic spectrometry allowing concomitant analysis of mercury
JPS63124937A (en) Method for stabilizing liquid level in icp emission analysis
Koropchak et al. Aerosol particle size effects on plasma spectrometric analysis
JPH11142336A (en) Icp analyser
US4354854A (en) Apparatus for colorimetrically measuring traces of gas
JP3962325B2 (en) ICP analyzer
JPH1144644A (en) Icp analyzer
O’HANLON et al. Effect of Easily Ionisable Elements on the Mass TransportEfficiency of Solutions and Slurries Used in Plasma EmissionSpectrometry
JPS6073437A (en) Apparatus for atomizing sample for spectrochemical analysis
JPH0454185Y2 (en)
JP2522350Y2 (en) High frequency inductively coupled plasma analyzer
JPS6250644A (en) Waste liquid tank for plasma emission analyzing instrument
JPS59845A (en) Sample introducing device of mass spectrometer
JP2563098Y2 (en) ICP emission spectrometer
JPS61165642A (en) Ipc analyser
JPH09199076A (en) Inductively coupled plasma mass spectrograph
RU144061U1 (en) PHOTOCHEMICAL GENERATOR OF GAS COMPOUNDS