JPS63124560A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63124560A
JPS63124560A JP61271168A JP27116886A JPS63124560A JP S63124560 A JPS63124560 A JP S63124560A JP 61271168 A JP61271168 A JP 61271168A JP 27116886 A JP27116886 A JP 27116886A JP S63124560 A JPS63124560 A JP S63124560A
Authority
JP
Japan
Prior art keywords
type
layer
epitaxial layer
substrate
drain region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61271168A
Other languages
Japanese (ja)
Inventor
Minoru Araki
荒木 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61271168A priority Critical patent/JPS63124560A/en
Publication of JPS63124560A publication Critical patent/JPS63124560A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To prevent deterioration in characteristics, by providing a oneconductivity type high concentration impurity layer in an epitaxial layer beneath a gate electrode so that the upper end part is positioned in the vicinity of a drain region and the lower end part is connected to a one-conductivity type semiconductor substrate, absorbing a current at the substrate, which is generated in the vicinity of the drain due to impact ions, and making the current to flow to the substrate side. CONSTITUTION:A P<+> type layer 104 is provided in a P-type epitaxial layer 102 beneath a gate electrode 109A so that the upper end part is positioned in the vicinity of an N-type drain region 115 and the lower end part is connected to a P<+> type semiconductor substrate 101. Therefore, a current in a substrate, which is generated in the vicinity of the drain due to impact ions, is absorbed in the P<+> type layer 104 and taken into the low resistance region of the substrate. The increase in potential in the vicinity of a source is suppressed. Thus the gate current of a transistor is suppressed, and the deterioration in characteristics of the transistor can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特にMO3型半導体装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to an MO3 type semiconductor device.

〔従来の技術〕[Conventional technology]

従来より、MOS半導体装置においては、短チヤネル化
及び高密度設計が図られている。しかし、短チヤネル化
に依って、ソース・ドレイン間の電界が強くなり、ドレ
イン近傍での電子の衝突に依るインパクトイオン化現象
に依って基板電流が発生し、更にソース近傍の電位が高
まる事に依って増幅されて多大の電流が流れている。
Conventionally, MOS semiconductor devices have been designed with shorter channels and higher density. However, as the channel becomes shorter, the electric field between the source and drain becomes stronger, and a substrate current is generated due to the impact ionization phenomenon caused by the collision of electrons near the drain, which further increases the potential near the source. is amplified and a large amount of current flows.

一方、その際ゲート電流も流れて、ゲート絶縁膜中に電
子が捕獲され、MOS半導体装置の閾値電圧に変化が生
じ、1〜ランジスタの伝導度を変化させ、動作を不安定
にし、動作速度を劣化させてしまう事になる。
On the other hand, at this time, the gate current also flows, and electrons are captured in the gate insulating film, causing a change in the threshold voltage of the MOS semiconductor device, changing the conductivity of the MOS semiconductor device, making the operation unstable, and reducing the operation speed. This will cause it to deteriorate.

また、CMO8半導体装置は、近年消費電力を少なくし
、動作範囲が広い事で広範囲の分野に用いられている。
Furthermore, in recent years, CMO8 semiconductor devices have been used in a wide range of fields due to their reduced power consumption and wide operating range.

しかし、一つの基板内にPチャネル型とNチャネル型の
二つの異なったトランジスタを設けるために、この両ト
ランジスタの相互作用で、い・わゆるラッチ・アップ現
象という特有の不都合を生ずる事が知られている。
However, since two different transistors, a P-channel type and an N-channel type, are provided in one substrate, it is known that the interaction between these two transistors causes a unique problem called the so-called latch-up phenomenon. It is being

これらの事に対処するなめ、第4図に示す構造のトラン
ジスタが知られている。
To cope with these problems, a transistor having a structure shown in FIG. 4 is known.

第4図において、P型半導体基板101A内には、N型
ウェル106と、P型ウェル120が形成されており、
それぞれのウェルにフィールド絶縁膜107により分離
されたPチャネル、トランジスタとNチャネル・トラン
ジスタが形成されている。
In FIG. 4, an N-type well 106 and a P-type well 120 are formed in a P-type semiconductor substrate 101A.
A P-channel transistor and an N-channel transistor separated by a field insulating film 107 are formed in each well.

そして、ゲート絶縁wA108上にNチャネル側のゲー
ト電極112及びPチャネル側のゲート電極109が形
成され、その両側のウェル内に、ソース・ドレインが形
成されている。Pチャネル側のP型ソース領域110及
びP型ドレイン領域111が拡散層として形成されてい
る。
Then, a gate electrode 112 on the N-channel side and a gate electrode 109 on the P-channel side are formed on the gate insulating wA 108, and sources and drains are formed in the wells on both sides thereof. A P-type source region 110 and a P-type drain region 111 on the P-channel side are formed as diffusion layers.

一方、Nチャネル側のドレインはN++ソース領域11
3と同様の濃度の高いN+型トドレイン領域114N型
ドレイン領域115との二重構造になっている。そして
、N+型トドレイン領域114ゲート電極112とはあ
る距離を持って形成されている。
On the other hand, the drain on the N channel side is the N++ source region 11
It has a double structure of an N+ type drain region 114 and an N type drain region 115, which have a high concentration similar to No. 3. The N+ type drain region 114 is formed at a certain distance from the gate electrode 112.

この様な構造のCMOS半導体装置に於ては、Nチャネ
ル・トランジスタのドレインの一部がN型拡散層で形成
されているために、ドレイン近傍での電界強度が緩和さ
れ、ゲート絶縁膜に注入される電子が少なくなって劣化
が抑えられる。そして、基板より不純物濃度の濃いP型
ウェル120が形成されているために、ソース近傍の電
位を高めるまでの基板電流を多くする事が出来る。
In a CMOS semiconductor device with such a structure, since a part of the drain of the N-channel transistor is formed of an N-type diffusion layer, the electric field strength near the drain is relaxed, and the injected into the gate insulating film is Deterioration is suppressed because fewer electrons are used. Since the P-type well 120 having a higher impurity concentration than the substrate is formed, it is possible to increase the substrate current until the potential near the source is raised.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上述した従来のCMOS半導体装置に於ては、
P型ウェル120の濃度を高くする事に依って、さらに
特性の劣化を防止することができるが、ウェル濃度を高
める事に依って、ドレイン近傍の拡散層からの空乏層の
延びに変化を生じ、電界強度を弱める事が出来なくなる
。またウェル濃度が高いために、ソース・ドレイン拡散
層の容量が大きくなる事、さらにNチャネル・トランジ
スタの易動度が低下し、伝導度が悪化して高速動作をさ
またげるという問題点がある。
However, in the conventional CMOS semiconductor device mentioned above,
By increasing the concentration of the P-type well 120, it is possible to further prevent deterioration of the characteristics, but increasing the well concentration causes a change in the extension of the depletion layer from the diffusion layer near the drain. , it becomes impossible to weaken the electric field strength. Further, since the well concentration is high, the capacitance of the source/drain diffusion layer becomes large, and furthermore, the mobility of the N-channel transistor is reduced, and the conductivity is deteriorated, which hinders high-speed operation.

また、P型ウェル120の濃度を高める事は、前述した
ラッチアップ現象の抑止効果として良く知られているが
、P型ウェル濃度を高めるだけでは充分な効果を発揮す
る事が出来ない、この場合、接地P型ウェル電位との接
合部の場所を適切に選択しなければならないため、配線
設計の自由度を阻害する事になり、高密度化がさまたげ
られるという問題点もある。
In addition, increasing the concentration of the P-type well 120 is well known as an effect of suppressing the latch-up phenomenon described above, but simply increasing the concentration of the P-type well 120 does not have a sufficient effect. Since the location of the junction with the grounded P-type well potential must be appropriately selected, the degree of freedom in wiring design is hindered, and there is also the problem that higher density is hindered.

本発明の目的は、上記問題点を除去し特性劣化を防止し
た半導体装置を提供することにある。
An object of the present invention is to provide a semiconductor device that eliminates the above-mentioned problems and prevents characteristic deterioration.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置は、−導電型高濃度の半導体基板上
に設けられた一導電型低濃度のエピタキシャル層と、こ
のエピタキシャル層表面に形成された逆導電型ソース領
域及びドレイン領域と、前記ソース領域とドレイン領域
間上にゲート酸化膜を介して形成されたゲート電極と、
このゲート電極下の前記エピタキシャル層内に形成され
、その上端部が前記ドレイン領域近傍に位置しかつ下端
部が前記半導体基板表面に接続する一導電型高濃度不純
物層とを含んで構成される。
The semiconductor device of the present invention includes a low concentration epitaxial layer of one conductivity type provided on a semiconductor substrate of high concentration of - conductivity type, a source region and a drain region of opposite conductivity type formed on the surface of this epitaxial layer, and the source region of the opposite conductivity type formed on the surface of the epitaxial layer. a gate electrode formed between the region and the drain region via a gate oxide film;
A high concentration impurity layer of one conductivity type is formed in the epitaxial layer under the gate electrode, and has an upper end located near the drain region and a lower end connected to the surface of the semiconductor substrate.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の断面図であり、本発明をC
MOS半導体装置に適用した場合を示している6 第1図においてP+型半導体基板101の上には、P型
エピタキシャル層102が設けられており、このP型エ
ピタキシャルN102上には素子分離の為のフィールド
絶縁膜107が、そしてP型エピタキシャル層102中
にはN型ウェル106及びP+型チャネルストッパ10
3.105が形成されている。そして、このN型ウェル
106中に形成されたP型ソース領域110.P型ドレ
イン領域111、及びゲート絶縁膜108を介して形成
されたゲート電極109から構成されたPチャネル・ト
ランジスタが設けられている。
FIG. 1 is a sectional view of one embodiment of the present invention, and the present invention is shown in FIG.
In Figure 1, which shows a case where it is applied to a MOS semiconductor device, a P type epitaxial layer 102 is provided on a P+ type semiconductor substrate 101, and a layer for element isolation is provided on this P type epitaxial layer N102. A field insulating film 107 is formed, and an N-type well 106 and a P+-type channel stopper 10 are formed in the P-type epitaxial layer 102.
3.105 is formed. A P-type source region 110 . is formed in this N-type well 106 . A P-channel transistor is provided that includes a P-type drain region 111 and a gate electrode 109 formed with a gate insulating film 108 interposed therebetween.

一方、Nチャネル・トランジスタは、P型エピタキシャ
ル層102中に形成されたN+型ソース領域113、N
型ドレイン領域115、N+型トドレイン領域114び
ゲート絶縁膜108を介して形成されたゲート電極10
9Aから構成されている。このNチャネル・トランジス
タのドレイン構造は、従来良く用いられているもので、
N型ドレイン領域115は、ドレイン近傍の電界の集中
を緩和しようとするものであり、N+型トドレイン領域
114、ドレインの拡散層の抵抗を出来るだけ小さくし
ようとするものである。
On the other hand, the N channel transistor includes an N+ type source region 113 formed in the P type epitaxial layer 102, an N
The gate electrode 10 is formed through the type drain region 115, the N+ type drain region 114, and the gate insulating film 108.
It consists of 9A. The drain structure of this N-channel transistor is the one commonly used in the past.
The N type drain region 115 is intended to alleviate the concentration of electric field near the drain, and is intended to reduce the resistance of the N+ type drain region 114 and the drain diffusion layer as much as possible.

そして特に、ゲート電極109A下のP型エピタキシャ
ル層102内には、上端部がN型ドレイン領域115の
近傍に位置し、かつその下端部がP“型半導体基板10
1に接続するP+型層104が設けられている。
In particular, the P type epitaxial layer 102 under the gate electrode 109A has an upper end located near the N type drain region 115 and a lower end located in the P" type semiconductor substrate 102.
A P+ type layer 104 is provided which connects to 1.

このように構成された本実施例においては、ドレイン近
傍で生ずるインパクト・イオン化に依る基板電流はこの
P+型層104で吸収され、基板の低抵抗領域に引き取
られてしまう事になり、ソース近傍の電位の上昇が抑え
られる。従って、トランジスタのゲート電流が抑えられ
、トランジスタの特性劣化を防止する事が可能となる。
In this embodiment configured in this way, the substrate current due to impact ionization occurring near the drain is absorbed by this P+ type layer 104 and drawn into the low resistance region of the substrate, and the current near the source is Increase in potential is suppressed. Therefore, the gate current of the transistor is suppressed, and deterioration of the characteristics of the transistor can be prevented.

このP+型層104がドレインに接してなく、またゲー
ト絶縁膜108の界面にも達していない事に依って、ド
レインの拡散層の電気的容量が小さくなり、界面の不純
物濃度がエピタキシャル層の濃度で低い事から、トラン
ジスタの伝導度が高くて高速動作が期待出来る。
Since this P+ type layer 104 is not in contact with the drain and does not reach the interface of the gate insulating film 108, the electrical capacity of the drain diffusion layer becomes small, and the impurity concentration at the interface is lower than that of the epitaxial layer. Since the conductivity of the transistor is low, high-speed operation can be expected.

また、P1型チャネルストッパ103.105は、フィ
ールド絶縁膜107の界面とP+型半導体基板101と
に渡って形成されている。この時フィールド絶縁膜10
7は、トランジスタの活性領域に耐酸化性の膜を形成し
てエピタキシャル層を酸化して、基板の中へ埋設する様
に形成する。
Further, P1 type channel stoppers 103 and 105 are formed across the interface of the field insulating film 107 and the P+ type semiconductor substrate 101. At this time, the field insulating film 10
7 forms an oxidation-resistant film in the active region of the transistor, oxidizes the epitaxial layer, and embeds it in the substrate.

いわゆる選択酸化法で形成されるため、ゲート絶縁11
5t108とP型エピタキシャル層102との界面より
、フィールド絶縁膜107の界面が埋め込まれた構造に
なっている事が必要であり、拡散層を浅く形成し、界面
下のフィールド絶縁膜107の深さ分が、P1型層10
4の上端の位置になる。
Since it is formed by a so-called selective oxidation method, the gate insulation 11
It is necessary to have a structure in which the interface of the field insulating film 107 is buried from the interface between the 5T 108 and the P-type epitaxial layer 102, and the diffusion layer is formed shallowly, and the depth of the field insulating film 107 under the interface is Min is P1 type layer 10
It will be at the top of 4.

フィールド絶縁膜107の下層に、このP1型チャネル
ストッパ103,105を設ける事に依って、浮遊電荷
の流れを吸収して基板に引き取る事でラッチ・アップ現
象を抑止する効果がある。また、選択的にこのP+型チ
ャネルストッパ103.105を形成するために、ソー
ス・ドレイン領域を形成する拡散層との接触を極力抑え
る事が出来るなめに、電気的容量が軽減され、高速動作
が可能となる。更に短チヤネル化を図って、劣化の作用
が大きくなって来ると、このP+型チャネルストッパ1
03.105の位置と濃度を調節する事に依ってラッチ
アップをより抑制する事が出来る。
Providing the P1 type channel stoppers 103 and 105 below the field insulating film 107 has the effect of suppressing the latch-up phenomenon by absorbing the flow of floating charges and taking them to the substrate. In addition, since the P+ type channel stoppers 103 and 105 are selectively formed, contact with the diffusion layers forming the source/drain regions can be suppressed as much as possible, which reduces electrical capacitance and enables high-speed operation. It becomes possible. When the channel is further shortened and the deterioration effect increases, this P+ type channel stopper 1
By adjusting the position and concentration of 03.105, latch-up can be further suppressed.

上記実施例では、CMO3半導体装置に関して、その効
果が多様になっている事を示したが、単チャネルのMO
3半導体装置に於ても主要な効果を持っている事は当然
であって、特にNチャネルMOSトランジスタに於ては
その効果を有効に発揮できる。
In the above example, it was shown that the effects of CMO3 semiconductor devices are diverse, but single channel MO3 semiconductor devices have various effects.
It goes without saying that the present invention has a major effect on semiconductor devices as well, and this effect can be particularly effectively exhibited in N-channel MOS transistors.

次に、上記実施例の製造方法を第2図(a)〜(e)を
参照して説明する。
Next, the manufacturing method of the above embodiment will be explained with reference to FIGS. 2(a) to 2(e).

まず、第2図(a)に示すように、P+型シリコン基板
101上にP型エピタキシャル層102を形成する0次
に、P1型層を形成するために、選択的にP型エピタキ
シャル層102表面に酸化膜やホトレジストでパターン
を形成し、高エネルギーのイオン注入を行なって、比較
的深い位置にP1型層103A、104A、105Aを
形成し、その後同様にして、酸化膜204やホトレジス
トで、N型ウェルを形成する領域にN型不純物をイオン
注入して、N型層106Aを形成する。
First, as shown in FIG. 2(a), a P-type epitaxial layer 102 is formed on a P+-type silicon substrate 101. Next, in order to form a P1-type layer, the surface of the P-type epitaxial layer 102 is selectively formed. A pattern is formed using an oxide film or photoresist, and high-energy ion implantation is performed to form P1 type layers 103A, 104A, and 105A at relatively deep positions. N-type impurity ions are implanted into a region where a type well is to be formed to form an N-type layer 106A.

次に、第2図(b)に示すように、熱処理を行なう事に
依ッテ、P+型層103A、104A。
Next, as shown in FIG. 2(b), heat treatment is performed to form P+ type layers 103A and 104A.

105Aを拡散させ、P+型半導体基板101表面に接
続されたP+型層104及びP+型チャネルストッパ1
03°、105を形成する。しかし、これらP+型層の
上端はP型エピタキシャル層102の表面からある距離
を持って形成されるようにする必要がある。一方、N型
層106Aは熱処理に依ってN型ウェル106を形成す
るが、これはP型エピタキシャル層102の表面にまで
達する様に形成しなければならない。しかし、N型ウェ
ル106の底部は必ずしもP+型半導体基板101に達
する必要はない。
P+ type layer 104 and P+ type channel stopper 1 connected to the surface of P+ type semiconductor substrate 101 by diffusing 105A.
03°, 105 is formed. However, the upper ends of these P+ type layers must be formed at a certain distance from the surface of the P type epitaxial layer 102. On the other hand, the N-type layer 106A forms the N-type well 106 by heat treatment, but this must be formed so as to reach the surface of the P-type epitaxial layer 102. However, the bottom of the N-type well 106 does not necessarily have to reach the P+-type semiconductor substrate 101.

次に、第2図(c)に示すように、P型エピタキシャル
層102の表面に選択的に耐酸化性膜を形成し、この膜
をマスクにしてエピタキシャル層を酸化してフィールド
絶縁膜109を形成し、活性゛領域とフィールド絶縁膜
領域を分離する。この時、P+型チャネルストッパ10
3.105の上端がフィールド絶縁膜107の底部と接
するように形成する。その後、活性領域にゲート絶縁膜
108を形成し、ゲート電極109.109Aを例えば
多結晶シリコンに不純物を含ませて形成する。そして、
所定のドレイン領域にホトレジスト211をマスクにし
て、N型不純物を例えばイオン注入法で導入して、適当
な熱処理を行なって、N型ドレイン領域115を形成す
る。
Next, as shown in FIG. 2(c), an oxidation-resistant film is selectively formed on the surface of the P-type epitaxial layer 102, and the field insulating film 109 is formed by oxidizing the epitaxial layer using this film as a mask. The active region and the field insulating film region are separated. At this time, P+ type channel stopper 10
3. The upper end of the film 105 is formed so as to be in contact with the bottom of the field insulating film 107. Thereafter, a gate insulating film 108 is formed in the active region, and gate electrodes 109 and 109A are formed, for example, by doping polycrystalline silicon with impurities. and,
Using photoresist 211 as a mask, N-type impurities are introduced into a predetermined drain region by, for example, ion implantation, and an appropriate heat treatment is performed to form N-type drain region 115.

次に、第2図(d)に示すように、ホトレジス)−21
1Aでゲート電極109Aの一部とN型ドレイン領域1
15のゲート電極側の一部及びPチャネル側を覆って、
例えば砒素などのN型不純物3高濃度にイオン注入して
、低抵抗のN+型トドレイン領域114形成する。
Next, as shown in FIG. 2(d), Photoregis)-21
At 1A, a part of the gate electrode 109A and the N-type drain region 1
15, covering a part of the gate electrode side and the P channel side,
For example, an N type impurity 3 such as arsenic is ion-implanted at a high concentration to form a low resistance N+ type drain region 114.

次に、第2図(e)に示すように、Nチャネル側と同様
にホトレジストをマスクにして、Pチャネル側に、例え
ばボロンのようなP型不純物をイオン注入し、Pチャネ
ル・トランジスタのP型ソース領域110及びP型ドレ
イン領域111を形成する0次に、眉間絶縁膜216を
形成し、所定の位置にコンタクト孔を開孔し、金属配線
217を施こして、CMO8半導体半導体装成分完成。
Next, as shown in FIG. 2(e), using a photoresist as a mask in the same way as the N-channel side, a P-type impurity such as boron is ion-implanted into the P-channel side to form a P-channel transistor. A type source region 110 and a P type drain region 111 are formed. Next, a glabellar insulating film 216 is formed, a contact hole is formed at a predetermined position, and a metal wiring 217 is formed to complete the CMO8 semiconductor device component. .

第2図(a)〜(e)の製造方法では、イオン注入法に
よりP+型層104を形成したが、別の製造方法によっ
ても形成することができる。以下第3図に従って説明す
る。
In the manufacturing method shown in FIGS. 2(a) to 2(e), the P+ type layer 104 is formed by ion implantation, but it can also be formed by another manufacturing method. This will be explained below according to FIG.

まず、第3図(a)に示すように、第2図に示した場合
と同様にP+型半導体基板101にP型エピタキシャル
層102を形成し、P+型層103A、104A、10
5Aを形成すべき所定の位置にff1121を設ける。
First, as shown in FIG. 3(a), a P-type epitaxial layer 102 is formed on a P+-type semiconductor substrate 101 in the same manner as shown in FIG.
ff1121 is provided at a predetermined position where 5A is to be formed.

次に、第3図(b)に示すように、71$121を含む
全面にP1型エピタキシャル層303を形成する。
Next, as shown in FIG. 3(b), a P1 type epitaxial layer 303 is formed on the entire surface including 71$121.

次に、第3図(c)に示すように、P+型エピタキシャ
ル層303を表面からエツチング除去して、1121中
にP+型層130A、104A。
Next, as shown in FIG. 3(c), the P+ type epitaxial layer 303 is etched away from the surface to form P+ type layers 130A and 104A in 1121.

105Aを形成する。105A is formed.

次に、第3図(d>に示すように、さらにP型エピタキ
シャル層102を成長させると、前工程で形成した埋め
込み層が成長して、少々大きな埋め込みP+型層103
A、104A、105Aとなる。その後、表面に酸化膜
204やホトレジス1〜をマスクに、N型層106Af
!−Nウェル形成のためにイオン注入して形成する。以
下、第2図(b)〜(e)の工程によりCMO3半導体
装置を完成させる。
Next, as shown in FIG. 3(d>), when the P-type epitaxial layer 102 is further grown, the buried layer formed in the previous step grows, forming a slightly larger buried P+ type layer 103.
A, 104A, and 105A. After that, using the oxide film 204 and photoresist 1~ as a mask on the surface, the N-type layer 106Af
! - Formed by ion implantation to form an N well. Thereafter, a CMO3 semiconductor device is completed by the steps shown in FIGS. 2(b) to 2(e).

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、ゲート電極下のエピタキ
シャル層内に、上端部がドレイン領域近傍に位置しその
下端部が一導電型半導体基板に接続する一導電型高濃度
不純物層を設け、ドレイン近傍で発生したインパクト・
イオン化による基板電流を吸収して基板側へ流す事に依
り、ゲート絶縁膜中に電子が捕獲されるのを抑止し、な
おかつCMO3半導体装置に特有なラッチ・アップ現象
に対しても同時に抑止効果がある。また、ソース・ドレ
インを形成する拡散層の電気的容量を小さくし、トラン
ジスタの伝導度を阻害する事なく、高速動作を可能にす
る事が出来る。
As explained above, the present invention provides a high concentration impurity layer of one conductivity type in the epitaxial layer under the gate electrode, the upper end of which is located near the drain region, and the lower end of which is connected to the semiconductor substrate of one conductivity type. Impacts that occurred nearby
By absorbing the substrate current caused by ionization and flowing it to the substrate side, it prevents electrons from being captured in the gate insulating film, and also has the effect of suppressing the latch-up phenomenon that is unique to CMO3 semiconductor devices. be. In addition, the electrical capacitance of the diffusion layer forming the source and drain can be reduced, and high-speed operation can be achieved without impairing the conductivity of the transistor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の断面図、第2図(a)〜(
e)及び第3図<a)〜(d)は本発明の構造の一実施
例の製造方法を説明する為の工程順に示した半導体チッ
プの断面図、第4図は従来の半導体装置の一例の断面図
である。 101・・・N++半導体基板、102・・・N型エピ
タキシャル層、103.105・・・P1型チャネルス
トッパ、104・・・P+型層、106・・・N型ウェ
ル、107・・・フィールド絶縁膜、108・・・ゲー
ト絶縁膜、109,109A・・・ゲート電極、110
・・・P型ソース領域、111・・・P型ドレイン領域
、113・・・N++ソース領域、114・・・N+型
型トレイ領領域115・・・N型ドレイン領域、120
・・・P型ウェル、121・・・溝、204・・・酸化
膜、211.211A・・・ホトレジスト、216・・
・層間絶縁膜:217・・・金属配線、303・・・P
+型エピタキシャル層。 rot :  F”!+−foQ、fol?A : ケ
斗電隆躬1区 第4図 第2′区 イ 第2′図
FIG. 1 is a sectional view of an embodiment of the present invention, and FIGS. 2(a) to (
e) and FIGS. 3(a) to 3(d) are cross-sectional views of a semiconductor chip shown in order of steps to explain the manufacturing method of an embodiment of the structure of the present invention, and FIG. 4 is an example of a conventional semiconductor device. FIG. 101...N++ semiconductor substrate, 102...N type epitaxial layer, 103.105...P1 type channel stopper, 104...P+ type layer, 106...N type well, 107...Field insulation Film, 108... Gate insulating film, 109, 109A... Gate electrode, 110
...P type source region, 111...P type drain region, 113...N++ source region, 114...N+ type tray region 115...N type drain region, 120
...P-type well, 121...groove, 204...oxide film, 211.211A...photoresist, 216...
・Interlayer insulating film: 217...metal wiring, 303...P
+ type epitaxial layer. rot: F"!+-foQ, fol? A: Keto Denryuman 1st ward 4th figure 2' ward A 2'th figure

Claims (1)

【特許請求の範囲】[Claims] 一導電型高濃度の半導体基板上に設けられた一導電型低
濃度のエピタキシャル層と、該エピタキシャル層表面に
形成された逆導電型ソース領域及びドレイン領域と、前
記ソース領域とドレイン領域間上にゲート酸化膜を介し
て形成されたゲート電極と、該ゲート電極下の前記エピ
タキシャル層内に形成され、その上端部が前記ドレイン
領域近傍に位置しかつ下端部が前記半導体基板表面に接
続する一導電型高濃度不純物層とを含むことを特徴とす
る半導体装置。
A low concentration epitaxial layer of one conductivity type provided on a high concentration semiconductor substrate of one conductivity type, a source region and a drain region of opposite conductivity type formed on the surface of the epitaxial layer, and a region between the source region and the drain region. A gate electrode formed through a gate oxide film, and a conductive layer formed in the epitaxial layer below the gate electrode, whose upper end is located near the drain region and whose lower end is connected to the surface of the semiconductor substrate. 1. A semiconductor device comprising: a high-concentration impurity layer.
JP61271168A 1986-11-14 1986-11-14 Semiconductor device Pending JPS63124560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61271168A JPS63124560A (en) 1986-11-14 1986-11-14 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61271168A JPS63124560A (en) 1986-11-14 1986-11-14 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63124560A true JPS63124560A (en) 1988-05-28

Family

ID=17496286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61271168A Pending JPS63124560A (en) 1986-11-14 1986-11-14 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63124560A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0298168A (en) * 1988-10-04 1990-04-10 Nec Corp Semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831576A (en) * 1981-08-20 1983-02-24 Matsushita Electric Ind Co Ltd Mos type field effect transistor
JPS61177776A (en) * 1985-02-01 1986-08-09 Hitachi Ltd Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831576A (en) * 1981-08-20 1983-02-24 Matsushita Electric Ind Co Ltd Mos type field effect transistor
JPS61177776A (en) * 1985-02-01 1986-08-09 Hitachi Ltd Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0298168A (en) * 1988-10-04 1990-04-10 Nec Corp Semiconductor device

Similar Documents

Publication Publication Date Title
JP3462301B2 (en) Semiconductor device and manufacturing method thereof
US5872037A (en) Method for manufacturing a vertical mosfet including a back gate electrode
KR910002037B1 (en) Semiconductor device and manufacture thereof
US6531356B1 (en) Semiconductor devices and methods of manufacturing the same
JPH07176640A (en) Fabrication of semiconductor device
US5191401A (en) MOS transistor with high breakdown voltage
JPH11177083A (en) High-speed/high-performance mos transistor and its manufacturing method
KR100734704B1 (en) Method of fabricating semiconductor device
KR0134887B1 (en) Dipole transistor manufacturing method
JPH08130308A (en) Semiconductor device
JPS627701B2 (en)
EP0091256B1 (en) Cmos device
US5610427A (en) Electrostatic protection device for use in semiconductor integrated circuit
US5122855A (en) Semiconductor device with latch-up prevention structure
JP2000068372A (en) Semiconductor device and manufacture thereof
EP0736898A2 (en) BICMOS device and method for the fabrication thereof
EP0386779B1 (en) MOS field-effect transistor having a high breakdown voltage
JP3468621B2 (en) Semiconductor device and manufacturing method thereof
JPS63124560A (en) Semiconductor device
JPS60175458A (en) Semiconductor device and manufacture thereof
KR20010039932A (en) Semiconductor device and method of manufacturing the same
JPH067556B2 (en) MIS type semiconductor device
JPH01132167A (en) Semiconductor device
JP2508218B2 (en) Complementary MIS integrated circuit
JPS60143665A (en) Semiconductor memory