JPS63121810A - Projection lens system - Google Patents

Projection lens system

Info

Publication number
JPS63121810A
JPS63121810A JP26818786A JP26818786A JPS63121810A JP S63121810 A JPS63121810 A JP S63121810A JP 26818786 A JP26818786 A JP 26818786A JP 26818786 A JP26818786 A JP 26818786A JP S63121810 A JPS63121810 A JP S63121810A
Authority
JP
Japan
Prior art keywords
lens
lens system
lens group
projection
projection lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26818786A
Other languages
Japanese (ja)
Inventor
Takamasa Hirose
広瀬 隆昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP26818786A priority Critical patent/JPS63121810A/en
Publication of JPS63121810A publication Critical patent/JPS63121810A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To improve the compensation of various aberrations including a chromatic aberration by using SiO2 for one negative lens group among plural lens groups which constitute a projection lens system used for light having specific wavelength, and making other lens groups of materials which are larger in Abbe number than SiO2. CONSTITUTION:The projection lens system used for the light within a wavelength range of 150-300nm is constituted by using SiO2 for one negative lens group among the plural lens groups constituting the lens system and making other lens groups of materials which are larger in Abbe number than SiO2. The projection lens system has three lens groups and is constituted as a reduction system which have 1 and lens group II with negative refracting power at the lens center part and the 1st and the 3rd lens groups I and II having positive refracting power on both sides, and the aberrations are compensated excellently by setting conditional expressions. Consequently, the chromatic aberration is easily compensated and other various aberrations are also compensated excellently, so that the chromatic aberration and five Seidel aberrations are compensated with good balance.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は投影露光装置によってIC,LSI等の集積回
路を製造するときの投影レンズ系に関し、特にエキシマ
レーザ等の波長150nm〜400nm程度の短波長の
輝線に近い発光スペクトルを放射する光源を用いて集積
回路のパターンをシリコンウェハー等に焼付けるときに
有効な投影レンズ系に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a projection lens system used when manufacturing integrated circuits such as ICs and LSIs using a projection exposure apparatus, and particularly relates to a projection lens system for manufacturing integrated circuits such as ICs and LSIs using a projection exposure apparatus. The present invention relates to a projection lens system that is effective when printing an integrated circuit pattern onto a silicon wafer or the like using a light source that emits an emission spectrum close to .

(従来技術) 従来より投影露光装置を用いIC,LSI等の集積回路
のパターンをシリコンウェハーに焼付ケる為の投影レン
ズ系には非常に高い解像力が要求されてきている。
(Prior Art) Very high resolution has been required of projection lens systems for printing patterns of integrated circuits such as ICs and LSIs onto silicon wafers using projection exposure apparatuses.

一般に投影レンズ系による投影像の解像力は使用する波
長が短かくなればなる程良くなる為に、なるべく短波長
を放射する光源が用いられていた。例えば、現在水銀灯
による波長436nm、又は365nmの光が投影露光
装置に多く用いられている。そして投影レンズ系には高
い解像力を得る為に収差を完全に補正した理論限界値に
近い解像力が得られるような光学系が要求されてきてい
る。特にパターンを焼付ける為に解像力は画面中心に限
らず全画面にわたり理論的な限界値までの解像力が得ら
れるように収差補正がなされている。例えば集積回路の
製造においては集積回路のパターンの焼付工程を複数回
行う為に光学的な話収差のうち歪曲収差はほぼ完全に補
正された投影レンズ系が用いられている。
Generally, the shorter the wavelength used, the better the resolution of the projected image by the projection lens system, so a light source that emits as short a wavelength as possible has been used. For example, currently, projection exposure apparatuses often use light with a wavelength of 436 nm or 365 nm from a mercury lamp. In order to obtain a high resolving power, a projection lens system is required to have an optical system that can completely correct aberrations and obtain a resolving power close to the theoretical limit value. In particular, in order to print a pattern, aberrations are corrected so that resolving power up to the theoretical limit can be obtained over the entire screen, not just at the center of the screen. For example, in the manufacture of integrated circuits, a projection lens system is used in which distortion among optical speaking aberrations is almost completely corrected because the process of printing the integrated circuit pattern is performed multiple times.

投影露光装置に用いられている水銀灯の波長365nm
のフラウンホーファー線のi線を中心とした僅かな波長
幅の光を利用する場合には色収差を完全に補正する為に
短波長側で透過率の良い4〜5f!類のガラス材料が必
要とされている。
The wavelength of the mercury lamp used in projection exposure equipment is 365 nm.
When using light with a small wavelength width centered on the i-line of the Fraunhofer lines, 4 to 5 f, which has good transmittance on the short wavelength side, is used to completely correct chromatic aberration! Similar glass materials are needed.

又これらのガラス材料については設計値で用いる屈折率
1分散等の数値と実際の数値との誤差及び同一ガラス材
料内での諸数値のバラツキは写真用レンズ、製版用レン
ズ、TV用レンズ。
Also, for these glass materials, the error between the design values such as refractive index 1 dispersion and the actual values, and the variation in various values within the same glass material, are due to photographic lenses, plate-making lenses, and TV lenses.

等の一般の光学系に比べ1桁以上の厳しいものが要求さ
れている。
The requirements are more than one order of magnitude stricter than other general optical systems such as.

これは投影レンズ系を構成するガラス材料の僅かな屈折
率と分散の差を利用して色収差等の諸収差を波長の数分
の1の単位で補正しなければならない為である。
This is because various aberrations such as chromatic aberration must be corrected in units of a fraction of a wavelength by utilizing the slight difference in refractive index and dispersion of the glass materials that constitute the projection lens system.

又投影レンズ系としてはなるべく明るい光学系が好まし
いが、短波長側でのガラス材料の透過率は低く、又多数
のレンズを用いている為に高い透過率を得ることが一般
に困難である。
Further, as a projection lens system, it is preferable to use an optical system that is as bright as possible, but the transmittance of glass materials on the short wavelength side is low, and since a large number of lenses are used, it is generally difficult to obtain high transmittance.

例えば波長436nmを対象とした投影レンズ系と波長
365nmを対象とした投影レンズ系では後者の透過率
は前者の透過率の1/3〜1/6程度となっている。
For example, in a projection lens system intended for a wavelength of 436 nm and a projection lens system intended for a wavelength of 365 nm, the transmittance of the latter is approximately 1/3 to 1/6 of the transmittance of the former.

この為短波長を対象とした投影露光装置においては反射
系を利用したり、又短波長側での透過率の良い新種ガラ
スを用いた投影レンズ系が用いられている。
For this reason, projection exposure apparatuses that target short wavelengths use reflection systems or projection lens systems that use a new type of glass that has good transmittance on the short wavelength side.

上記投影レンズ系に用い得るガラス材料としては、S 
i 02 、CaF2 、MgF2等がある。
Glass materials that can be used for the projection lens system include S
There are i 02 , CaF2, MgF2, etc.

本件出願人は、先にこの種の材料の内5io2のみを用
いた高性能の投影レンズ系を特開昭60−140310
号公報等で開示した。
The applicant had previously developed a high-performance projection lens system using only 5io2 of this type of material in Japanese Patent Application Laid-Open No. 60-140310.
This was disclosed in the No. 1 bulletin, etc.

特開昭60−140310号公報に示された投影レンズ
系は、エキシマレーザを用いインジェクションロッキン
グ等の手段で使用光束の波長幅を極めて狭まくした際に
用いられるものである。従って、上記公報に示された投
影レンズ系では色収差に関する設計上の配慮は何らなさ
れていない。
The projection lens system disclosed in Japanese Patent Application Laid-Open No. 60-140310 is used when the wavelength width of the used light beam is extremely narrowed by means such as injection locking using an excimer laser. Therefore, in the projection lens system disclosed in the above-mentioned publication, no consideration is given to chromatic aberration in design.

しかしながら、エキシマレーザ等の短波長光源から出射
する光束にある程度、例えば0.5nm程度の波長幅が
存する場合、高解像力を得る為に色収差補正は必要不可
欠な問題である。従って、エキシマレーザ等を光源とし
た装置に適用される投影レンズ系として、少なくとも基
準波長からinn幅での色収差補正を行った高性能のレ
ンズ系が要望されている。
However, when the light beam emitted from a short wavelength light source such as an excimer laser has a certain wavelength width, for example, about 0.5 nm, correction of chromatic aberration is an essential problem in order to obtain high resolution. Therefore, as a projection lens system applied to a device using an excimer laser or the like as a light source, there is a demand for a high-performance lens system that corrects chromatic aberration at least in the inn width from the reference wavelength.

(発明の概要〕 本発明の目的は、上述の問題点に鑑み、波長150nm
〜300nm程度の範囲内である波長幅の発光スペクト
ル分布を有する光源を用いた装置に於る、色収差を含む
諸収差を良好に補正した高性能の投影レンズ系を提供す
ることにある。
(Summary of the Invention) In view of the above-mentioned problems, an object of the present invention is to
It is an object of the present invention to provide a high-performance projection lens system that satisfactorily corrects various aberrations including chromatic aberration in a device using a light source having an emission spectrum distribution with a wavelength width in the range of approximately 300 nm.

上記目的を達成する為に、本発明に係る投影レンズ系は
、波長150〜300nm程度の範囲内の光にて使用さ
れる投影レンズ系であって、上記レンズ系を構成する複
数のレンズ群内の少なくとも一群の負のレンズ群をSi
O2で構成し、他のレンズ群を上記S i 02よりも
アツベ数が大なる材料で構成したことを特徴としている
In order to achieve the above object, a projection lens system according to the present invention is a projection lens system used with light within a wavelength range of approximately 150 to 300 nm, and includes a plurality of lens groups constituting the lens system. At least one negative lens group of Si
It is characterized in that it is made of O2, and the other lens groups are made of a material with a larger Atsube number than the above-mentioned S i 02.

本発明の更なる特徴は下記実施例に詳細に示されている
Further features of the invention are illustrated in detail in the Examples below.

(実施例〕 第1図は本発明に係る投影レンズ系の一実施例を示す断
面図である。図中、I、II、IIIは物体側から順に
配されたレンズ群であり、IはCaF2から成る正の第
2レンズ群、IIはSiO2から成る負の第2レンズ群
、夏!目よCaF2から成る正の第3レンズ群を示す。
(Example) Fig. 1 is a sectional view showing an example of the projection lens system according to the present invention.In the figure, I, II, and III are lens groups arranged in order from the object side, and I is CaF2 II is a positive second lens group made of SiO2, and II is a positive third lens group made of CaF2.

又、II、12は第ルンズ群■を2群に分けた際の前群
、及び後群を示している。尚、図中の符号Di、及びR
i (i=1.2,3.  ・・・)は本投影レンズ系
を構成する各屈折面の曲率半径と各屈折面間の軸上空気
間隔、又は軸上肉厚を示すもので、後記の数値実施例に
於るレンズデータに対応している。
Further, II and 12 indicate the front group and the rear group when the Luns group (2) is divided into two groups. In addition, the symbols Di and R in the figure
i (i=1.2, 3...) indicates the radius of curvature of each refractive surface constituting this projection lens system, the axial air spacing between each refractive surface, or the axial wall thickness, as described below. This corresponds to the lens data in the numerical example.

本実施例の投影レンズ系は3つのレンズ群を有しており
レンズ中央部に負の屈折力の2レンズ群TIとその両側
に正の屈折力の第1.第3レンズ群I、11を配置した
縮小系で構成して、下記の条件式(1)、(2)を設定
することにより良好なる収差補正を達成している。
The projection lens system of this embodiment has three lens groups: two lens groups TI with negative refractive power at the center of the lens, and first lens groups TI with positive refractive power on both sides thereof. By constructing a reduction system in which the third lens groups I and 11 are arranged and setting the following conditional expressions (1) and (2), good aberration correction is achieved.

0.8≦l f 1/ f 2 1≦3.8 ・・・ 
(1)1.1≦lf+/fsl≦4   ・・・(2)
条件(1)、(2)はレンズ性能の基本の1つとしての
各レンズ群の屈折力を適切に設定することにより像面彎
曲を良好に補正するための条件で下限値を越えるとペッ
ツバール和が犬となり像面が補正不足となり、上限値を
越えると像面彎曲が補正過剰となり全画面を良好に収差
補正するのが困難となる。
0.8≦l f 1/ f 2 1≦3.8...
(1) 1.1≦lf+/fsl≦4 (2)
Conditions (1) and (2) are conditions for properly correcting field curvature by appropriately setting the refractive power of each lens group, which is one of the basics of lens performance.If the lower limit is exceeded, the Petzval sum If the upper limit value is exceeded, the field curvature will be overcorrected, making it difficult to satisfactorily correct aberrations over the entire screen.

更に本投影レンズ系は、良好なる収差補正を達成する為
に、前記第ルンズ群Iを物体側より順に負と正の屈折力
の2つのレンズ群11.12より構成し、前記レンズ群
■2を両レンズ面が凸面の両凸レンズI2+と正の屈折
力のレンズI22の各々少なくとも1枚を有するレンズ
で構成し、前記レンズ群I2の焦点距離をf12.前記
第2レンズ群を物体側と像面側に各々凸面を向けたメニ
スカス状の負の屈折力のレンズを有するように構成する
と共に、前記第2レンズ群の焦点距離をf2としたとき なる条件を満足させている。
Furthermore, in this projection lens system, in order to achieve good aberration correction, the lens group I is composed of two lens groups 11 and 12 having negative and positive refractive powers in order from the object side, and the lens group is constituted by a lens having at least one each of a biconvex lens I2+ whose both lens surfaces are convex and a lens I22 having a positive refractive power, and the focal length of the lens group I2 is f12. The second lens group is configured to have a meniscus-shaped lens with a negative refractive power with convex surfaces facing the object side and the image plane side, and the condition is satisfied when the focal length of the second lens group is f2. is satisfied.

前記レンズ122は投影レンズ系の縮小倍率が1/3〜
1/7程度のときは物体側に凸面を向けたメニスカス状
のレンズ、縮小倍率が1/7〜1712程度のときは両
凸レンズであることが収差を良り了に補正するのに好ま
しい。
The lens 122 has a reduction magnification of 1/3 to 1/3 of the projection lens system.
In order to properly correct aberrations, it is preferable to use a meniscus lens with a convex surface facing the object side when the reduction ratio is about 1/7, and to use a biconvex lens when the reduction ratio is about 1/7 to 1712.

投影レンズ系としての結像性能を全画面にわたり良好に
保つためには、像面彎曲の条件のほかにコマ収差を全画
面にわたって殆んどτ近く補正した上で更に球面収差、
軸外のハロー収差を補正しなければならない。それには
上記条件(1)、(2)を満足するだけでなく、本投影
レンズ系の如く第2レンズ群I+の物体側と像面側をそ
れぞれ凸面を向けた負の屈折力のメニスカス状のレンズ
で構成するのが好ましい。
In order to maintain good imaging performance as a projection lens system over the entire screen, in addition to the field curvature conditions, coma aberration must be corrected to almost τ over the entire screen, and spherical aberration,
Off-axis halo aberrations must be corrected. In order to achieve this, it is necessary not only to satisfy the above conditions (1) and (2), but also to form a meniscus-shaped lens with negative refractive power, with the object side and image side of the second lens group I+ facing convex surfaces, respectively, as in this projection lens system. Preferably, it is composed of a lens.

このように本投影レンズ系においては球面収差の補正を
主に第2レンズ群IIのレンズ面の曲率半径を適切に設
定して行っている。このとき、球面収差と同時にコマ収
差も同時に補正しているがその為には第2レンズ群TI
を少なくとも2つの負の屈折力のメニスカス状のレンズ
によって構成するのが良い。1つは物体側に凸面を向け
、他の1つは像面に凸面を向けたレンズ形状で構成する
ことである。これは全レンズ系を、例えば正、負、正の
3つのレンズ群で構成し、第2レンズ群に残りのレンズ
群である第1゜第3レンズ群で発生する球面収差の補正
不足分を補正する作用をもたせる為である。そして本投
影レンズ系では第2レンズ群IIを更に、少なくとも2
つの負の屈折力のメニスカス状のレンズを前述の如く配
置することにより、コマ収差の補正即ち軸外主光線より
上の光束部分と下の光束部分とのバランスをとっている
。即ち下の光束部は物体側に配置された物体側に凸面を
向けたメニスカスレンズによって、上の光束部は像側に
配置された像面側に凸面を向けた負のメニスカス状のレ
ンズによって、軸外光束の収差をバランス良く補正する
ことが出来て、軸外コマ収差の良好なる補正が可能とな
った。しかも、軸外光束の主光線は第2レンズ群I+の
光軸近傍を通過するので、第2レンズ群ITの構成く形
状)そのものは歪曲収差、非点収差にそれ程影響をあた
えず条件(1)、(2)におさえることによって第2レ
ンズ群TIにより球面収差、コマ収差の補正を良好に行
うことが出来る。特にコマ収差の補正は前述の負のメニ
スカス状のレンズを適切に配置することにより補正でき
る。そして更に軸外のメリデオナル、サジタルハローを
良好に補正するために条件(3)を満足することが好ま
しい。本投影レンズ系に於いて物体側の第ルンズ群■の
両凸レンズ、及び正レンズはメニスカス状のレンズの合
成の屈折力が第2レンズ群I+の屈折力と比較して強す
きると、球面収差、コマ収差を補正したとき、第ルンズ
群Iて高次のへロー収差が発生し全画面にわたっての補
正が、僅かな屈折率差を利用したり、高屈折率と低屈折
率の硝材を使っての収差補正を行うと高次収差が発生し
良好なる補正が困難となる。
In this way, in this projection lens system, correction of spherical aberration is mainly performed by appropriately setting the radius of curvature of the lens surface of the second lens group II. At this time, comatic aberration is corrected at the same time as spherical aberration, but in order to do so, the second lens group TI
It is preferable that the lens be composed of at least two meniscus-shaped lenses having negative refractive power. One is to have a lens shape with a convex surface facing the object side, and the other is to have a lens shape with a convex surface facing the image plane. This means that the entire lens system is composed of, for example, three lens groups, positive, negative, and positive, and the second lens group compensates for the insufficient correction of spherical aberrations that occur in the remaining lens groups, the first and third lens groups. This is to provide a correcting effect. In the present projection lens system, the second lens group II further includes at least two lenses.
By arranging the two meniscus-shaped lenses with negative refractive power as described above, coma aberration is corrected, that is, a balance is achieved between the light flux portion above and the light flux portion below the off-axis principal ray. In other words, the lower beam part is formed by a meniscus lens placed on the object side with its convex surface facing the object side, and the upper beam part is formed by a negative meniscus lens placed on the image side with its convex surface facing the image plane. It is possible to correct the aberrations of the off-axis light beam in a well-balanced manner, and it has become possible to perform good correction of the off-axis coma aberration. Furthermore, since the chief ray of the off-axis beam passes near the optical axis of the second lens group I+, the configuration (shape) of the second lens group IT itself does not have much influence on distortion and astigmatism, and the condition (1 ), (2) allows the second lens group TI to satisfactorily correct spherical aberration and coma aberration. In particular, comatic aberration can be corrected by appropriately arranging the aforementioned negative meniscus lens. Further, it is preferable to satisfy condition (3) in order to satisfactorily correct meridional and sagittal halos off-axis. In this projection lens system, when the combined refractive power of the meniscus-shaped lens and the biconvex lens of the object-side lens group ■ is strong compared to the refractive power of the second lens group I+, spherical aberration occurs. When correcting comatic aberration, high-order Herot aberration occurs in the lens group I, and correction over the entire screen is difficult by using a slight difference in refractive index or using glass materials with a high refractive index and a low refractive index. If all aberrations are corrected, higher-order aberrations will occur, making it difficult to perform good correction.

条件(1)、(2)、(3)は集積回路の焼付用の投影
レンズとして要求される結像性能(解像力、コントラス
ト比)を満足させるための条件であったが、更に投影レ
ンズとして要求される重要な性能条件として歪曲収差が
ある。
Conditions (1), (2), and (3) were to satisfy the imaging performance (resolution, contrast ratio) required for a projection lens for printing integrated circuits, but there were also additional requirements for a projection lens. Distortion is an important performance condition.

IC,LSIの製造にあたっても何回も焼付工程を行う
ため各工程毎にアライメントを行う必要があり、又これ
を露光装置別に正確なアライメントするためには投影レ
ンズ系の歪曲収差を殆ど零におさえなければならない。
In the manufacturing of ICs and LSIs, the printing process is performed many times, so alignment must be performed for each process, and in order to achieve accurate alignment for each exposure device, it is necessary to suppress the distortion of the projection lens system to almost zero. There must be.

従って、本実施例の投影レンズ系に於ては正、負、正の
屈折力の3つのレンズ群から構成し、更に前記第ルンズ
群を物体側より順に負と正の屈折力の2つのレンズ群I
I、I2.より構成し前記レンズ群II、I2の焦点距
離を各々fIl+  f +2前記第ルンズ群の焦点距
離なflとするとき なる条件を満足するように構成している。
Therefore, the projection lens system of this embodiment is composed of three lens groups with positive, negative, and positive refractive powers, and the third lens group is further comprised of two lenses with negative and positive refractive powers in order from the object side. Group I
I, I2. The lens group II and I2 each have a focal length of fIl+f+2, which is the focal length of the lens group fl.

本投影レンズ系に於て、特に縮小系として使用する場合
、第ルンズ群Iを、物体側からみて負と正の屈折力の2
つのレンズ群1..I2に分は歪曲収差の補正を主にレ
ンズ群11で補正している。
In this projection lens system, especially when used as a reduction system, the lens group I has two negative and positive refractive powers when viewed from the object side.
Two lens groups 1. .. For I2, distortion is mainly corrected by the lens group 11.

特にレンズ群I、を少なくとも2つ以上の物体側に凸面
を向けた負の屈折力のメニカス状のレンズで構成するの
が歪曲収差を良好に補正するのに好ましい。
In particular, it is preferable for lens group I to be composed of at least two menicus-shaped lenses having negative refractive power and having convex surfaces facing the object side in order to satisfactorily correct distortion.

尚、レンズ群11を3つ以上のレンズで構成すれば屈折
力の分担が少なくなり他の諸収差の影響も少なくなり更
に好ましくなる。
It is further preferable to configure the lens group 11 with three or more lenses, since the sharing of refractive power will be reduced and the effects of other aberrations will be reduced.

又レンズ群I2を正の屈折力とし、少なくとも2つ以上
の正の屈折力のレンズで構成することにより軸外主光像
が通過する位置は光軸近傍であることから歪曲収差、非
点収差の補正をすると共に軸外コマ、ハローを良好に補
正している。
In addition, by making lens group I2 positive refractive power and configuring it with at least two or more lenses having positive refractive power, the position through which the off-axis principal light image passes is near the optical axis, thereby reducing distortion and astigmatism. It also corrects off-axis coma and halo well.

条件式(4)の上限値苦しく条件式(5)の下限値を越
えると正の歪曲収差が多く発生し好ましくなく、又条件
式(4)の下限値若しくは条件式(5)の上限値を越え
ると正の歪曲収差が発生すると共に他の諸収差の発生量
も多くなり好ましくない。
If the upper limit of conditional expression (4) exceeds the lower limit of conditional expression (5), a large amount of positive distortion will occur, which is undesirable. If it exceeds this, positive distortion will occur and other aberrations will also increase, which is not preferable.

本投影レンズ系は、第2レンズ群IIを構成する各レン
ズにSiO□を用い、第1及び第3レンズ群I 、 I
IIを構成する各レンズにCaF2を用いることにより
レンズ系全体の色収差を良好に補正している。SiO2
のアツベ数(νd)は67.9で、CaF2のアツベ数
(ud)は95.1であり、SiO2の方がCaF2よ
りも分散が大きい。従って、本投影レンズ系では負のパ
ワーを備えた第2レンズ群IIにアツベ数が小なるSi
O2を適用し、正のパワーを備えた第1゜第3レンズ群
1 、 IIIにアツベ数が大なるCaF2を適用して
各レンズ群で発生する色収差を制御し、球面収差、コマ
収差、像面湾曲、非点収差。
This projection lens system uses SiO□ for each lens constituting the second lens group II, and the first and third lens groups I, I
By using CaF2 in each lens constituting II, the chromatic aberration of the entire lens system is corrected well. SiO2
The Abbe number (νd) of CaF2 is 67.9, and the Abbe number (ud) of CaF2 is 95.1, and SiO2 has a larger dispersion than CaF2. Therefore, in this projection lens system, the second lens group II, which has negative power, is made of Si, which has a small Atsube number.
O2 is applied to the first and third lens groups 1 and 3, which have positive power, and CaF2, which has a large Atsube number, is applied to control chromatic aberration occurring in each lens group, and spherical aberration, coma aberration, and image Surface curvature, astigmatism.

歪曲収差の補正に加え、色収差をも補正することが可能
となった。
In addition to correcting distortion, it is now possible to correct chromatic aberration as well.

とりわけ、本発明の投影レンズ系に於て、該レンズ系を
3群以上のレンズ群で構成し、複数のレンズ群内の一群
を上記実施例の第2レンズ群の如き負のレンズ群として
主に球面収差の補正を該レンズ群に行わせる場合、少な
くとも該レンズ群に5in2を用いることにより、色収
差と他の収差とをバランス良く補正出来る。
Particularly, in the projection lens system of the present invention, the lens system is composed of three or more lens groups, and one of the plurality of lens groups is mainly used as a negative lens group such as the second lens group in the above embodiment. When the lens group is used to correct spherical aberration, by using at least a 5in2 lens group, chromatic aberration and other aberrations can be corrected in a well-balanced manner.

従って、レンズ群の構成、配置にもよるが、この種のレ
ンズ群を投影レンズ系に導入する場合は、このレンズ群
にS i O2を用いるのが収差補正上好ましい。又、
上記実施例に於て負の第2レンズ群は変形ガラスタイプ
のレンズ群から構成されているが、ガラスタイプ、変形
ガラスタイプに限らず通常のトリプレットタイプや変形
トリプレットタイプ等各種レンズ構成を採り得る。更に
上記実施例の投影レンズ系は物体側から正、負、正の3
群のレンズ群から成るものであるが、レンズ群の構成、
パワー配置も上記実施例に限定されるものではない。
Therefore, although it depends on the configuration and arrangement of the lens group, when this type of lens group is introduced into a projection lens system, it is preferable to use S i O2 in this lens group in terms of aberration correction. or,
In the above embodiment, the negative second lens group is composed of a deformed glass type lens group, but it is not limited to the glass type or deformed glass type, but can take various lens configurations such as a normal triplet type or a deformed triplet type. . Furthermore, the projection lens system of the above embodiment has three lenses, positive, negative, and positive, from the object side.
The structure of the lens group,
The power arrangement is also not limited to the above embodiment.

5in2を適用するべき負のレンズ群としては、投影レ
ンズ系を構成する負のレンズ群の内張もパワーが大なる
レンズ群であることが好ましく、この負のレンズ群のパ
ワーが全レンズ群(正、負を含めた)中張も大きくなる
様にレンズ系を構成すれば更に好ましい。なぜならば、
この様に構成することにより負のレンズ群にSiO2を
使用する色収差補正の効果が更に顕著となるからである
As for the negative lens group to which 5in2 is applied, it is preferable that the inner lining of the negative lens group constituting the projection lens system is also a lens group with a large power, and the power of this negative lens group is equal to that of the entire lens group ( It is even more preferable to configure the lens system so that the neutral (including positive and negative) is also large. because,
This is because with this configuration, the effect of chromatic aberration correction using SiO2 in the negative lens group becomes even more remarkable.

又、上記実施例に於ては、5102よりアツベ数が大な
る材料としてCaF2を用いたが、CaF2の代わりの
MgF2を用いても構わない。
Further, in the above embodiment, CaF2 was used as a material having a larger Abbe number than 5102, but MgF2 may be used instead of CaF2.

更に、後述する数値実施例の如く第ルンズ群■の前群I
I  (屈折力は負)にCaF2の代りにSiO2を適
用しても良い。
Furthermore, as in the numerical examples described later, the front group I of the Luns group ■
SiO2 may be used instead of CaF2 for I (negative refractive power).

第2図は、本発明に係る投影レンズ系の他の実施例を示
す断面図である。図中の符号は全て第1図と同様のレン
ズ群、及びパラメーターを示す為、ここでは説明を省略
する。
FIG. 2 is a sectional view showing another embodiment of the projection lens system according to the present invention. All the symbols in the figure indicate the same lens groups and parameters as in FIG. 1, so their explanation will be omitted here.

本実施例の投影レンズ系も物体側から順にCaF2から
成る第ルンズ群T、SiO2から成る第2レンズ群II
、CaF2から成る第3レンズ群II+から構成されて
いる。又、第ルンズ群■は負の前群I、と正の後群工、
とを有しており、レンズ群■1は少なくとも2枚の物体
側の面が凹面の2枚の負の屈折力のレンズを有し、前記
レンズ群■2は両レンズ面が凸面のレンズと物体側の面
が凸面の正の屈折力のレンズを有している。前記第2レ
ンズ群ITは物体側に凸面を向けた負の屈折力のメニス
カス形状のレンズと両レンズ面が凹面のレンズと像面側
に凸面を向けた負の屈折力のメニカス形状のレンズとを
有し、前記第3レンズ群11Tは像面側に凸面を向けた
正の屈折力のメニスカス形状のレンズと両レンズ面が凸
面のレンズと少なくとも2枚の物体側に凸面を向けた正
の屈折力のレンズと物体側の面が凸面の少なくとも1枚
の正屈折力のメニスカス形状のレンズL34を有してい
る。
The projection lens system of this embodiment also includes, in order from the object side, a lens group T made of CaF2, and a second lens group II made of SiO2.
, CaF2. Also, the Luns group ■ has a negative front group I, a positive rear group I,
The lens group (1) has at least two lenses with negative refractive power whose object side surfaces are concave, and the lens group (2) has a lens with both lens surfaces convex. It has a positive refractive power lens whose object side surface is convex. The second lens group IT includes a meniscus-shaped lens with a negative refractive power with a convex surface facing the object side, a lens with concave surfaces on both lens surfaces, and a meniscus-shaped lens with a negative refractive power with a convex surface facing the image plane side. The third lens group 11T includes a meniscus-shaped lens with a positive refractive power with a convex surface facing the image side, a lens with both lens surfaces convex, and at least two positive lenses with a convex surface facing the object side. It has a lens L34 having a refractive power and at least one meniscus-shaped lens L34 having a positive refractive power and having a convex object-side surface.

本投影レンズ系はこのような構成を採ることにより良好
に収差補正を行った投影レンズ系を達成している。特に
投影倍率1/10、撮影画角1010X10の範囲内に
おいて良好なる結像性能を得ている。
By adopting this configuration, the present projection lens system achieves a projection lens system in which aberrations are well corrected. Particularly good imaging performance is obtained within the range of a projection magnification of 1/10 and a shooting angle of view of 1010×10.

次に本発明の各構成要件について詳述する。Next, each component of the present invention will be explained in detail.

レンズ群を少なくとも2枚の像側面が凹面の負の屈折力
のレンズ、ことに望ましくは物体側に凸面を向けた負の
屈折力のメニカス形状のレンズで構成することにより画
面全体にわたり歪曲収差を良好に補正しマスクパターン
を歪みなく焼付けることを可能としている。そしてレン
ズ群11の有する負の屈折力を2つのレンズに適切に分
担させることにより広画角化を図り焼付範囲を拡大させ
てスルーブツトの向上を図っている。
Distortion can be suppressed over the entire screen by configuring the lens group with at least two lenses with negative refractive power and concave image sides, preferably menicus-shaped lenses with negative refractive power and with the convex surface facing the object side. This makes it possible to print the mask pattern without distortion by making good corrections. By appropriately sharing the negative refractive power of the lens group 11 between two lenses, the angle of view is widened, the printing range is expanded, and the throughput is improved.

レンズ群工、を両レンズ面が凸面のレンズと正の屈折力
のレンズで構成することにより第1−ルンズ群で発生す
る内向性のコマ収差とハロー収差を補正し高解像力化を
図っている。
By constructing the lens group with a lens with convex surfaces on both surfaces and a lens with positive refractive power, the introverted coma and halo aberrations that occur in the first lens group are corrected and high resolution is achieved. .

第2レンズ群TIを物体側に凸面を向けた負の屈折力の
メニスカス形状のレンズと両レンズ面が凹面のレンズそ
して像面側に凸面を向けた負の屈折力のメニスカス形状
のレンズて構成することによりレンズ群■2で発生ずる
負の球面収差、及び画面中間から周辺にかけてのサジタ
ルフレアーを補正している。特に中心位置に存するレン
ズによりレンズ群工2で発生する負の球面収差及びハロ
ー収差を、又物体側のレンズと像面側のレンズにより画
面周辺でのサジタルフレアーを補正している。
The second lens group TI is composed of a meniscus-shaped lens with a negative refractive power with a convex surface facing the object side, a lens with concave surfaces on both lens surfaces, and a meniscus-shaped lens with a negative refractive power with a convex surface facing the image plane side. By doing so, negative spherical aberration occurring in lens group (2) and sagittal flare from the center to the periphery of the screen are corrected. In particular, the lens located at the center corrects negative spherical aberration and halo aberration occurring in the lens group 2, and the object-side lens and image-side lens correct sagittal flare at the periphery of the screen.

第2レンズ群11を前述の如く構成すると軸外光線の主
光線より上方側の光束が補正過剰となり外向性のコマ収
差を発生させる原因となる。
If the second lens group 11 is configured as described above, the light flux above the principal ray of the off-axis rays will be overcorrected, causing outward coma aberration.

そこで本投影レンズ系は第3レンズ群II+を像面側に
凸面を向けた正の屈折力のメニスカス形状のレンズと両
レンズ面が凸面のレンズ、そして少なくとも2枚の正の
屈折力のメニスカス形状のレンズで構成することにより
、第2レンズ群I+で発生した外向性のコマ収差と画面
中間から周辺にかけての像面湾曲、及び歪曲収差を合わ
せてバランス良く補正している。
Therefore, in this projection lens system, the third lens group II+ is composed of a meniscus-shaped lens with positive refractive power with its convex surface facing the image plane side, a lens with both lens surfaces convex, and at least two meniscus-shaped lenses with positive refractive power. By constructing the lens, the extroverted coma aberration generated in the second lens group I+, the curvature of field from the center to the periphery of the screen, and distortion are collectively corrected in a well-balanced manner.

本実施例の投影レンズ系は、更に下記の条件(1)〜(
4)を満足することで良好な収差補正を達成している。
The projection lens system of this example further satisfies the following conditions (1) to (
By satisfying 4), good aberration correction is achieved.

即ち前記第1.第2そして第3レンズ群I。That is, the above-mentioned No. 1. second and third lens group I;

n、nrの焦点距離を各々fl 、F2 +  F3 
、とし、前記レンズ群I+ と前記レンズ群工2の焦点
距離を各々f lI+  f+2とし、レンズ群11の
物体側のレンズの焦点距離をf Il+ としたとき1
.9<l f+ /f21<3.7・・・(1)0 、
8 < l f 2 / f s l < 1 、2・
・・(2)1.1<lf口/f12+<2.3・・・(
3)1.4<f+++ /f++<2.2・・・・ (
4)なる諸条件を満足することである。
Let the focal lengths of n and nr be fl and F2 + F3, respectively.
, the focal lengths of the lens group I+ and the lens group 2 are each f lI+ f+2, and the focal length of the object side lens of the lens group 11 is f Il+, then 1
.. 9<l f+ /f21<3.7...(1)0,
8 < l f 2 / f s l < 1, 2・
...(2) 1.1<lf mouth/f12+<2.3...(
3) 1.4<f+++ /f++<2.2... (
4) Satisfy the following conditions.

条件(1)、(2)はレンズ性能の基本の1つとしての
各レンズ群の屈折力を適切に設定することにより画面全
体の像面湾曲を良好に補正するためであり下限値を越え
るとペッツバール和が大となり像面が補正不足となり、
上限値を越えると像面湾曲が補正過剰となり画面全体の
収差を良好に補正するのが困難となる。
Conditions (1) and (2) are necessary to properly correct the field curvature of the entire screen by appropriately setting the refractive power of each lens group, which is one of the basics of lens performance. The Petzval sum becomes large and the image plane becomes under-corrected.
If the upper limit is exceeded, the field curvature will be overcorrected, making it difficult to satisfactorily correct the aberrations of the entire screen.

条件(3)は、条件(1)、(2)の屈折力配置のもと
でレンズ群1.による歪曲収差の補正とレンズ群I2に
よる内向性のコマ収差とハロー収差の補正と共に画面全
体の像面湾曲を少なくして高解像力化を図る為のもので
ある。条件(3)の下限値を越えると像面湾曲が補正不
足となり、又上限値を越えると像面湾曲が補正過剰とな
ってくる。
Condition (3) is based on the lens group 1. under the refractive power arrangement of conditions (1) and (2). This is to correct distortion aberration by the lens group I2, correct introverted coma aberration and halo aberration by the lens group I2, and reduce field curvature of the entire screen to achieve high resolution. If the lower limit of condition (3) is exceeded, the curvature of field will be under-corrected, and if the upper limit is exceeded, the curvature of field will be over-corrected.

条件(4)は負の屈折力のレンズ群11の物体側のレン
ズに対する負の屈折力の分担を適切に設定し歪曲収差を
良好に補正する為である。
Condition (4) is for properly setting the distribution of the negative refractive power to the object-side lens of the lens group 11 having negative refractive power, so as to satisfactorily correct distortion.

条件(4)の下限値を越えると歪曲収差は補正不足とな
り、又上限値を越えると歪曲収差は補正過剰となってく
る。
If the lower limit of condition (4) is exceeded, the distortion will be under-corrected, and if the upper limit is exceeded, the distortion will be over-corrected.

尚、本発明においてレンズ群I2の像側のレンズは両レ
ンズ面が凸面であっても良く、又物体側に凸面を向けた
メニスカス形状であっても良い。
In the present invention, both lens surfaces of the image-side lens of the lens group I2 may be convex, or may have a meniscus shape with the convex surface facing the object side.

本実施例においてレンズ群1.を3つ以上ノ物体側に凸
面を向けた負の屈折力のメニスカス形状のレンズで構成
すれば各レンズの屈折力の分担が少なくなりコマ収差の
発生が少なくなり又他の諸収差への影響も少ないので好
ましい。
In this embodiment, lens group 1. If it is composed of three or more meniscus-shaped lenses with negative refractive power with convex surfaces facing the object side, the sharing of refractive power between each lens will be reduced, reducing the occurrence of coma aberration and affecting other aberrations. It is preferable because it has less

又、第3レンズ群IIIの物体側から数えて第3番目と
第4番目のレンズを3つ以上のレンズに分割して各レン
ズの屈折力の負担を少なくすれば画面全体にわたりコマ
収差及び像面湾曲を更に良好に補正することが出来、よ
り高解像力化が達成出来る。
Furthermore, if the third and fourth lenses counted from the object side of the third lens group III are divided into three or more lenses to reduce the burden on the refractive power of each lens, coma aberration and images can be reduced over the entire screen. Surface curvature can be corrected even better, and higher resolution can be achieved.

次に本発明の数値実施例1〜4を示す。数値実施例1〜
4に於いて、Riは物体側から順に数えて第i番目の面
の曲率半径を、Diは物体側から順に数えて第i番目と
第i+1番目の面間の軸上空気間隔又は軸上肉厚を示し
ている。又、硝材の5102は溶融石英で、C,F2は
ホタル石であり、夫々の波長248.5nm。
Next, numerical examples 1 to 4 of the present invention will be shown. Numerical Example 1~
4, Ri is the radius of curvature of the i-th surface counting from the object side, and Di is the axial air gap or axial thickness between the i-th and i+1-th surfaces counting from the object side. It shows the thickness. Further, the glass material 5102 is fused silica, and C and F2 are fluorite, each having a wavelength of 248.5 nm.

248.48nm、248.52nmに於けるO屈折率
を別表に記載しである。
The O refractive index at 248.48 nm and 248.52 nm is shown in the attached table.

数値実施例1.2は投影倍率115.NA=0.3、画
面範囲14X14mmの場合で、第1図の断面図に示さ
れたレンズ構成を有する投影レンズ系である。又、数値
実施例1は第2レンズ群IIのみにS、O2を適用した
レンズ系、数値実施例2は第ルンズ群Iのレンズ群■1
と第2レンズ群IIに5102を適用したレンズ系であ
る。
Numerical Example 1.2 has a projection magnification of 115. This is a projection lens system having a lens configuration shown in the cross-sectional view of FIG. 1, with NA=0.3 and a screen range of 14×14 mm. Numerical Example 1 is a lens system in which S and O2 are applied only to the second lens group II, and Numerical Example 2 is a lens system in which S and O2 are applied only to the second lens group II.
This is a lens system in which 5102 is applied to the second lens group II.

数値実施例3,4は投影倍率1/10.NA=0.3.
画面範囲1010X10の場合で、第2図の断面図に示
されたレンズ構成を有する投影レンズ系である。又、数
値実施例3は第2レンズ群IIのみにS、O,を適用し
たレンズ系、数値実施例4は第ルンズ群■のレンズ群I
と第2レンズ群IIに5I02を適用したレンズ系であ
る。
Numerical Examples 3 and 4 have a projection magnification of 1/10. NA=0.3.
This is a projection lens system having a lens configuration shown in the cross-sectional view of FIG. 2 in the case of a screen area of 1010×10. Numerical Example 3 is a lens system in which S, O, is applied only to the second lens group II, and Numerical Example 4 is a lens system in which S, O, is applied only to the second lens group II.
This is a lens system in which 5I02 is applied to the second lens group II.

第3図′(A)、(B)は本投影レンズ系の色収差補正
の効果を示す図で、波長248.48nm、24B、5
nm、24B、52nmの光の軸上色収差を示している
Figures 3' (A) and (B) are diagrams showing the effect of chromatic aberration correction of this projection lens system.
It shows the longitudinal chromatic aberration of light of nm, 24B, and 52nm.

第3図(A)は第1図の断面図に示す投影レンズ系に於
ける色収差を示しており、図中、実線PIはレンズ系を
5102のみで構成した場合、−点鎖線(A)は数値実
施例1のレンズ系、破線(B)は数値実施例2のレンズ
系に於ける収差を表わしている。
FIG. 3(A) shows the chromatic aberration in the projection lens system shown in the cross-sectional view of FIG. The broken line (B) represents the aberration in the lens system of Numerical Example 1, and the lens system of Numerical Example 2.

同様に、第3図(B)は第2図の断面図に示す投影レン
ズ系に於ける色収差を示しており、図中、実線P2はレ
ンズ系をSi 02のみで構成した場合、−点鎖線(C
)は数値実施例3のレンズ系、破線(D)は数値実施例
4のレンズ系数値実施例1 RD    硝材 1 553.028 8.00000 CAF22 2
72.352 6.85000 3 183.526 8.00000 CAF24 1
33.45260.00000 5 170.1B124.00000 CAF26−3
71.635 1.00000 7 98.41520.00000 CAF28 37
1.31930.00000 9 73.58520.0000O5IO21050,
64450,00000 11−67,42812,0000O5IO21219
5,91070,00000 13−50,17320,000005IO214−6
7,43910,00000 15−484,68918,00000CAF216−
120.170 1.0000017 284.339
16.50000 CAF218−228.209 1
.0000019 138.70118.50000 
CAF2201074、’414 1.0000021
 86.30920.00000 CAF222 10
7.066 数値実施例2 RD    硝材 1 533.972 8.0000O5IO22279
,0046,85000 3180,1038,0000O5IO24134,0
2660,00000 5171,96024,00000CAF26−358
.140 1.00000 7 98.04320.00000 CAF28 37
2.70230.00000 9 73.32320.0000O5IO21050,
69150,00000 11−67,26912,0000O5IO21219
5,28170,00000 13−50,14420,0000O5IO214−6
7,51610,00000 15−487,26718,00000CAF216−
120.039 1.0000017 285.441
16.50000 CAF218−228.041 1
.0000019 139.02018.50000 
CAF2201069.527 1.0000021 
86.41720.00000 CAF222 107
.134 数値実施例3 RD    硝材 1 376.369 8.00000 CaF22 9
7.603 6.85000 3 451.294 8.00000 CaF24 1
17.24260.00000 5 230.93424.00000 CaF22−1
35.702 1.00000 7 147.98720.00000 CaF28−1
301.77130.000009 62.96920
.0000O5IO21046,37155,0000
0 11−84,75712,000005IO21295
,21730,00000 13−35,81320,0000O5IO214−5
1,0191,00000 15−930,95318,00000CaF216 
−85.314 1.0000017 254.125
16.50000 CaF218−201.518 1
.0000019 111.18918.50000 
CaF2201259.281 1.0000021 
64.36020.00000 CaF222 122
.094 数値実施例4 RD    硝材 1 376.553 8.0000O5102299,
1786,85000 3439,0288,0000O5IO24117,9
4360,00000 5247,49524,00000CaF22−132
.735 1.00000 7 146.59220.00000 CaF28−7
30.54330.00000 9 62.55320.0000O5IO21047,
00355,00000 11−83,82112,0000O5IO21210
0,92130,00000 13−36,07620,0000O5IO214−5
1,5121,00000 15−833,39018,00000CaF216 
−86.251 1.0000017 258.918
16.50000 CaF218−200.521 1
.0000019、 112.17018.50000
 CaF2201328.516 1.0000021
 64.56120.00000 CaF222 12
1.644 第3図(A)、(B)から分る様に、本投影レンズ系は
、従来の単一硝材のみでレンズ系を構成した場合と比較
して、色収差を良好に補正することが可能である。ここ
では、本投影レンズ系に於ける色収差補正の効果を軸上
色収差を用いて示しているが、軸外に於ける色収差も軸
上同様に良好に補正されている。
Similarly, FIG. 3(B) shows the chromatic aberration in the projection lens system shown in the cross-sectional view of FIG. (C
) indicates the lens system of Numerical Example 3, and the broken line (D) indicates the lens system of Numerical Example 4 Numerical Example 1 RD Glass material 1 553.028 8.00000 CAF22 2
72.352 6.85000 3 183.526 8.00000 CAF24 1
33.45260.00000 5 170.1B124.00000 CAF26-3
71.635 1.00000 7 98.41520.00000 CAF28 37
1.31930.00000 9 73.58520.0000O5IO21050,
64450,00000 11-67,42812,0000O5IO21219
5,91070,00000 13-50,17320,000005IO214-6
7,43910,00000 15-484,68918,00000CAF216-
120.170 1.0000017 284.339
16.50000 CAF218-228.209 1
.. 0000019 138.70118.50000
CAF2201074,'414 1.0000021
86.30920.00000 CAF222 10
7.066 Numerical Example 2 RD Glass Material 1 533.972 8.0000O5IO22279
,0046,85000 3180,1038,0000O5IO24134,0
2660,00000 5171,96024,00000CAF26-358
.. 140 1.00000 7 98.04320.00000 CAF28 37
2.70230.00000 9 73.32320.0000O5IO21050,
69150,00000 11-67,26912,0000O5IO21219
5,28170,00000 13-50,14420,0000O5IO214-6
7,51610,00000 15-487,26718,00000CAF216-
120.039 1.0000017 285.441
16.50000 CAF218-228.041 1
.. 0000019 139.02018.50000
CAF2201069.527 1.0000021
86.41720.00000 CAF222 107
.. 134 Numerical Example 3 RD Glass Material 1 376.369 8.00000 CaF22 9
7.603 6.85000 3 451.294 8.00000 CaF24 1
17.24260.00000 5 230.93424.00000 CaF22-1
35.702 1.00000 7 147.98720.00000 CaF28-1
301.77130.000009 62.96920
.. 0000O5IO21046,37155,0000
0 11-84,75712,000005IO21295
,21730,00000 13-35,81320,0000O5IO214-5
1,0191,00000 15-930,95318,00000CaF216
-85.314 1.0000017 254.125
16.50000 CaF218-201.518 1
.. 0000019 111.18918.50000
CaF2201259.281 1.0000021
64.36020.00000 CaF222 122
.. 094 Numerical Example 4 RD Glass Material 1 376.553 8.0000O5102299,
1786,85000 3439,0288,0000O5IO24117,9
4360,00000 5247,49524,00000CaF22-132
.. 735 1.00000 7 146.59220.00000 CaF28-7
30.54330.00000 9 62.55320.0000O5IO21047,
00355,00000 11-83,82112,0000O5IO21210
0,92130,00000 13-36,07620,0000O5IO214-5
1,5121,00000 15-833,39018,00000CaF216
-86.251 1.0000017 258.918
16.50000 CaF218-200.521 1
.. 0000019, 112.17018.50000
CaF2201328.516 1.0000021
64.56120.00000 CaF222 12
1.644 As can be seen from Figures 3 (A) and (B), this projection lens system can correct chromatic aberration better than the conventional lens system configured with only a single glass material. is possible. Here, the effect of chromatic aberration correction in the present projection lens system is shown using axial chromatic aberration, but off-axis chromatic aberration is also corrected just as well as on-axis.

第4図〜第7図は上記数値実施例1〜4の投影レンズ系
の諸収差を示す収差図である。第4図〜第7図では球面
収差、非点収差、歪曲収差及び横収差が示されており、
図中、Mはメリジオナル像面、Sはサジタル像面に於け
る収差を示している。
4 to 7 are aberration diagrams showing various aberrations of the projection lens systems of the numerical examples 1 to 4 described above. Figures 4 to 7 show spherical aberration, astigmatism, distortion, and lateral aberration.
In the figure, M indicates aberration at the meridional image plane, and S indicates aberration at the sagittal image plane.

〔発明の効果〕〔Effect of the invention〕

以上、発明に係る投影レンズ系はレンズ系を構成する複
数のレンズ群の内、少なくとも一群の負のレンズ群にア
ツベ数が小なるSiO2を適用し、残りのレンズ群にア
ツベ数が犬なるCaF2を適用することにより、インジ
ェクションロッキングを行わないエキシマレーザ等の如
き光源から発せられる、ある波長幅を持つ光を用いた場
合にも良好に色収差の補正が行い得、高分解能を有する
レンズ系である。言うまでもなく、球面収差、非点収差
等のザイデルの5収差はレンズ群の構成、各屈折面の曲
率等を適宜設定することによって良好に補正される。
As described above, in the projection lens system according to the present invention, among the plurality of lens groups constituting the lens system, at least one negative lens group is made of SiO2, which has a small Atsbe number, and the remaining lens groups are made of CaF2, which has a small Atsbe number. By applying this, chromatic aberration can be well corrected even when using light with a certain wavelength range emitted from a light source such as an excimer laser that does not perform injection locking, and the lens system has high resolution. . Needless to say, Seidel's five aberrations such as spherical aberration and astigmatism can be well corrected by appropriately setting the configuration of the lens group, the curvature of each refractive surface, and the like.

従って、マスクやレチクル等の回路パターンをウェハ上
に投影し露光を行う際使用する高性能の投影レンズ系と
して極めて有効である。
Therefore, it is extremely effective as a high-performance projection lens system used when projecting and exposing a circuit pattern such as a mask or reticle onto a wafer.

又、上記実施例に示された如く複数のレンズ群でレンズ
系を構成し、その内の一群を負のレンズ系で構成して主
に球面収差、コマ収差の補正を該レンズ系で図る場合、
少なくともこのレンズ群に5in2を適用するのが好ま
しい。即ち該レンズ群にSiO2を用い他の任意のレン
ズ群に、例えばCaF2又はMgF2を用いてレンズ設
計を行うことにより容易に色収差補正を行い得ると共に
他の諸収差の補正も良好となり、色収差及びザイデルの
5収差をバランス良く補正出来るのである。
In addition, as shown in the above embodiment, when a lens system is composed of a plurality of lens groups, one of which is composed of a negative lens system, and the lens system mainly corrects spherical aberration and coma aberration. ,
It is preferable to apply 5in2 to at least this lens group. That is, by designing a lens using SiO2 in this lens group and CaF2 or MgF2 in any other lens group, chromatic aberration can be easily corrected, and other aberrations can also be corrected well, and chromatic aberration and Seidel The five aberrations can be corrected in a well-balanced manner.

更に、本明細書に記載された各実施例が示すレンズ系に
於いては貼り合わせレンズが使用されていない。通常、
貼り合わせレンズはアツベ数の異なる2枚のレンズを貼
り合わせて用いることにより色収差補正を行うレンズ系
として良く知られている。しかしながら、エキシマレー
ザ−等の高出力の光源からの光に対して使用されるレン
ズ系に於いては、レンズのはがれや透過率の低下等の問
題等が発生する為に出来るだけ貼り合わせレンズは使用
しない方が好ましい。従って、この点を鑑みても上記各
実施例で示される様に、本投影レンズ系に於いては非貼
り合わせレンズを使用する方がこの種のレンズ系として
更なる効果を得ることが出来る。
Furthermore, the lens systems shown in the examples described in this specification do not use laminated lenses. usually,
A bonded lens is well known as a lens system that corrects chromatic aberration by bonding two lenses with different Abbe numbers. However, in lens systems used for light from high-output light sources such as excimer lasers, problems such as peeling of the lens and reduction in transmittance occur, so bonded lenses are used as much as possible. It is preferable not to use it. Therefore, in view of this point, as shown in each of the above-mentioned embodiments, it is possible to obtain further effects for this type of lens system by using non-bonded lenses in the present projection lens system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る投影レンズ系の一実施例を示す断
面図。 第2図は本発明に係る投影レンズ係の他の実施例を示す
断面図 第3図(A)、(B)は本投影レンズ系の色収差補正の
効果を示す図で、軸上色収差を示している。 第4図〜第7図は数値実施例1〜4で示した投影レンズ
系の諸収差を示す収差図。 I  −−−−−−一−−−−−第ルンズ群rl −一
上一一−−−−−−−第2 〃111−−−−−−一−
−−−−第3 〃I、−−−−−−−−−−前群 I、−−−−−−−−−一後群
FIG. 1 is a sectional view showing an embodiment of a projection lens system according to the present invention. FIG. 2 is a cross-sectional view showing another embodiment of the projection lens system according to the present invention. FIGS. 3(A) and 3(B) are diagrams showing the effect of chromatic aberration correction of the present projection lens system, showing longitudinal chromatic aberration. ing. 4 to 7 are aberration diagrams showing various aberrations of the projection lens systems shown in Numerical Examples 1 to 4. I --------1------1st Runs group rl -11-11--2nd 111------1-
-----Third 〃I, --------------Anterior group I, ------------------------One rear group

Claims (1)

【特許請求の範囲】[Claims] 波長150〜300nm程度の範囲内の光にて使用され
る投影レンズ系であって、上記レンズ系を構成する複数
のレンズ群の内の少なくとも一群の負のレンズ群をSi
O_2で構成し、他のレンズ群を上記SiO_2よりも
アッベ数が大なる材料で構成したことを特徴とする投影
レンズ系。
A projection lens system used for light within a wavelength range of approximately 150 to 300 nm, in which at least one negative lens group among a plurality of lens groups constituting the lens system is made of Si.
A projection lens system comprising SiO_2 and other lens groups made of a material having a larger Abbe number than the SiO_2.
JP26818786A 1986-11-11 1986-11-11 Projection lens system Pending JPS63121810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26818786A JPS63121810A (en) 1986-11-11 1986-11-11 Projection lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26818786A JPS63121810A (en) 1986-11-11 1986-11-11 Projection lens system

Publications (1)

Publication Number Publication Date
JPS63121810A true JPS63121810A (en) 1988-05-25

Family

ID=17455125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26818786A Pending JPS63121810A (en) 1986-11-11 1986-11-11 Projection lens system

Country Status (1)

Country Link
JP (1) JPS63121810A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046512A (en) * 1990-04-24 1992-01-10 Dainippon Screen Mfg Co Ltd Objective lens for microscope
JPH0682692A (en) * 1992-07-31 1994-03-25 Internatl Business Mach Corp <Ibm> Objective lens
US5831776A (en) * 1993-11-15 1998-11-03 Nikon Corporation Projection optical system and projection exposure apparatus
US5943172A (en) * 1993-11-15 1999-08-24 Nikon Corporation Projection optical system and projection exposure apparatus
CN106338814A (en) * 2016-10-26 2017-01-18 中国科学院光电技术研究所 Optical system of large-field long-exit-pupil-distance long-working-distance constant-star simulator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046512A (en) * 1990-04-24 1992-01-10 Dainippon Screen Mfg Co Ltd Objective lens for microscope
JPH0682692A (en) * 1992-07-31 1994-03-25 Internatl Business Mach Corp <Ibm> Objective lens
US5831776A (en) * 1993-11-15 1998-11-03 Nikon Corporation Projection optical system and projection exposure apparatus
US5943172A (en) * 1993-11-15 1999-08-24 Nikon Corporation Projection optical system and projection exposure apparatus
CN106338814A (en) * 2016-10-26 2017-01-18 中国科学院光电技术研究所 Optical system of large-field long-exit-pupil-distance long-working-distance constant-star simulator

Similar Documents

Publication Publication Date Title
EP0770895B2 (en) Projection optical system and exposure apparatus provided therewith
EP0717299B2 (en) Exposure apparatus
KR100573913B1 (en) Iprojection optical system and exposure apparatus having the same
JP3396935B2 (en) Projection optical system and projection exposure apparatus
JP3819048B2 (en) Projection optical system, exposure apparatus including the same, and exposure method
US5781278A (en) Projection optical system and exposure apparatus with the same
JP3360387B2 (en) Projection optical system and projection exposure apparatus
JPH08179204A (en) Projection optical system and projection aligner
JPH103039A (en) Reflective/refractive optical system
JPH07128590A (en) Reduction stepping lens
JPH10282411A (en) Projection optical system
JPH10115779A (en) Projection optical system
JPH1195095A (en) Projection optical system
JPH06313845A (en) Projection lens system
JPH07128592A (en) Reduction stepping lens
JPH10325922A (en) Projection optical system
KR100522503B1 (en) Projection optical system and projection exposure apparatus with the same, and device manufacturing method
JPS63121810A (en) Projection lens system
JP3423644B2 (en) Projection optical system and projection exposure apparatus using the same
JPH10333030A (en) Precision copying lens
JP2869849B2 (en) Integrated circuit manufacturing method
JP2000056218A (en) Projection optical system, exposure device provided with it and manufacture for semiconductor device
JPH0695495B2 (en) Circuit manufacturing method and exposure apparatus using the same
JPS60140310A (en) Projecting lens
USRE38465E1 (en) Exposure apparatus