JPS60140310A - Projecting lens - Google Patents

Projecting lens

Info

Publication number
JPS60140310A
JPS60140310A JP24590483A JP24590483A JPS60140310A JP S60140310 A JPS60140310 A JP S60140310A JP 24590483 A JP24590483 A JP 24590483A JP 24590483 A JP24590483 A JP 24590483A JP S60140310 A JPS60140310 A JP S60140310A
Authority
JP
Japan
Prior art keywords
lens
lens group
negative
positive
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24590483A
Other languages
Japanese (ja)
Inventor
Takamasa Hirose
広瀬 隆昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP24590483A priority Critical patent/JPS60140310A/en
Priority to GB08432300A priority patent/GB2153543B/en
Priority to DE3447489A priority patent/DE3447489C2/en
Publication of JPS60140310A publication Critical patent/JPS60140310A/en
Priority to US07/212,148 priority patent/US4977426A/en
Priority to US07/212,081 priority patent/US4891663A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70241Optical aspects of refractive lens systems, i.e. comprising only refractive elements

Abstract

PURPOSE:To correct satisfactorily an aberration by constituting the first - the third lens groups of a refractive power of positive, negative and positive in order from an object side, of plural lenses of a single glass material, and satisfying a specified condition between focal distances of each leans group. CONSTITUTION:The first - the third lens groups I , II and III having a refractive power of positive, negative and positive in order from an object are constituted. Each lens group I -III is constituted of plural lenses by using a single glass material, for instance, a molten quartz. When focal distances of each lens group I -III are denoted as f1, f2 and f3, respectively, a condition of 0.8<=¦f1/ f2¦<=3.8, and 1.1<=¦f1/f3¦<=4 is satisfied. In this way, it becomes unnecessary to take a chromatic aberration into consideration, and a lens having a high performance is constituted against a narrow light emitting spectrum.

Description

【発明の詳細な説明】 本発明は投影露光装置によってIC,LSI等の集積回
路を製造するときの投影レンズに関し、特に波長150
nm〜400nmの範囲内の短波長の輝線に近い発光ス
ペクトルを放射する光源を用いて集積回路のパターンを
シリコンウニノー−等に焼付けるときに有効な投影レン
ズに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a projection lens used when manufacturing integrated circuits such as ICs and LSIs using a projection exposure apparatus.
The present invention relates to a projection lens that is effective when printing an integrated circuit pattern onto a silicon wafer or the like using a light source that emits an emission spectrum close to a short-wavelength bright line in the range of nm to 400 nm.

従来より投影露光装置t ’z用いIC,LSI等の集
積回路のパターン全シリコンウエハ−に焼付ける為の投
影レンズには非常に商い解像力が要求されてきている。
Conventionally, projection lenses for printing patterns of integrated circuits such as ICs and LSIs on entire silicon wafers using a projection exposure apparatus t'z have been required to have extremely high resolution.

一般に投影レンズによる投影像の解像力は使用する波長
が短かくなればなる程良くなる為に、なるべく短波長を
放射する光源が用いられていた。例えば現在水銀灯によ
る波長436nm又は365nmの光が投影露光装置に
多く用いられている。そして投影レンズには高い解像力
を得る為に収差を完全に補正した理論限界値に近い解像
力が傅らnるような光学系が要求されてきている。特に
パターンを焼付ける為に解像力は画面中ノ1ノに限らず
全画面にわたり理論的な限界直までの解1縁力が得られ
るように収差補正がなされている。例えば集積回路の製
造においては集積回路のパターンの焼付工程を複数回行
う為に光学的な諸収着のうち歪曲」■差はほぼ完全に補
正された投影レンズが用いられている。
In general, the shorter the wavelength used, the better the resolution of the image projected by the projection lens, so a light source that emits as short a wavelength as possible has been used. For example, at present, light with a wavelength of 436 nm or 365 nm from a mercury lamp is often used in projection exposure apparatuses. In order to obtain a high resolving power, a projection lens is required to have an optical system that can completely correct aberrations and have a resolving power close to the theoretical limit value. In particular, in order to print a pattern, aberrations are corrected so that the resolving power is not limited to only one corner of the screen, but extends over the entire screen to the theoretical limit. For example, in the manufacture of integrated circuits, the process of printing integrated circuit patterns is performed multiple times, so a projection lens is used in which distortions among various optical sorptions are almost completely corrected.

投影露光装置に用いられている水銀灯の波長365 n
 mのフラウンホーファー砂の1線を中心とした僅かな
波長幅の光を利用する場合には色収差を冗♀に浦「する
為に短波長側で透過率の良い4〜5種類のガラス材料が
必要とされている0 又これらのカラス材料については設計値で用いる屈折率
1分散等の数値と実際の数値との誤差反び同一ガラス材
料内での諸数値のバラツキは写真用レンズ、製版用レン
ズ、TV用レンズ。
The wavelength of the mercury lamp used in projection exposure equipment is 365 n.
When using light with a small wavelength width centered around a single line of Fraunhofer sand, four to five types of glass materials with good transmittance on the short wavelength side are used to eliminate chromatic aberration. Also, for these glass materials, errors between values such as refractive index 1 dispersion used in design values and actual values, and variations in various values within the same glass material, are Lenses, TV lenses.

等の一般の光学系に比べ1桁以上の厳しいものが請求さ
れている。
The requirements are more than one order of magnitude stricter than other general optical systems such as .

これは投影レンズを構成するガラス材料の僅かな屈折率
と分散の差を利用して色収差等の諸収差を波長の数分の
1の単位で補正しなければならない為である。
This is because various aberrations such as chromatic aberration must be corrected in units of a fraction of a wavelength by utilizing the slight difference in refractive index and dispersion of the glass material that constitutes the projection lens.

又投影レンズとしてはなるべく明るい光学系が好ましい
が、短波長側でのガラス材料の透過率は低く又多数のレ
ンズを用いている為に高い透過率を得ることが一般に困
難である。
Further, as a projection lens, it is preferable to use an optical system as bright as possible, but the transmittance of glass materials on the short wavelength side is low, and since a large number of lenses are used, it is generally difficult to obtain high transmittance.

例えば波長436nmを対象とした投影レンズと波長3
65nmを対象とした投影レンズでは後者の透過率は前
者の透過率の%〜イ程度となっている。
For example, a projection lens targeting wavelength 436 nm and wavelength 3
In a projection lens targeted at 65 nm, the transmittance of the latter is about % to 1 of the transmittance of the former.

この為短波長を対象とした投影露光装置fにおいては反
射系を利用したり、又短波長側での透過率の良い膚棟ガ
ラスを用いた投影レンズが用いられている。
For this reason, in a projection exposure apparatus f intended for short wavelengths, a reflection system is used, or a projection lens using a ridge glass having good transmittance on the short wavelength side is used.

本発明は波長15Qnm〜400nm程度の範囲内での
比較的狭い発光スペクトル分布を有する光源を用いた投
影露光装置における高性能な投影レンズの提供を特徴と
する 特に本発明においては波長248.5nmを主たる発光
スペクトルとするエキシマレーザーヲ用いインジェクシ
ョン、ロッキング等の手段によって波長幅を狭くした場
合に特有の効果を発揮する投影レンズの提供を目的とし
ている。
The present invention is characterized by providing a high-performance projection lens for a projection exposure apparatus using a light source having a relatively narrow emission spectrum distribution within a wavelength range of about 15 Qnm to 400 nm. The object of the present invention is to provide a projection lens that exhibits a unique effect when the wavelength width is narrowed by means such as injection and locking using an excimer laser as the main emission spectrum.

本発明の目的を達成する為の投影レンズの主たる特徴は
物体側より順に正、負そして正の屈折力のMl、 第2
そして第3レンズ群の3つのレンズ群より構成し、前記
gL第2.第3レンズ群を各々単一のガラス材料の複数
のレンズより構成すると共に前記第1.第2そして第3
レンズ群の焦点距離を各々f、 、 f、、 f、とす
るとき 08 ≦ l fl/f2 1 ≦ 3.8 ・・・・
・・・・ (1)11 ≦ l fI/ f* l ≦
 4 ・・・・・・・・・ (2)なる条件を満足する
ことである。
The main features of the projection lens for achieving the object of the present invention are, in order from the object side, positive, negative, and positive refractive powers Ml;
The third lens group is composed of three lens groups, and the gL second . The third lens group is composed of a plurality of lenses each made of a single glass material, and the first lens group is composed of a plurality of lenses each made of a single glass material. second and third
When the focal lengths of the lens groups are f, , f, , f, respectively, 08 ≦ l fl/f2 1 ≦ 3.8...
... (1) 11 ≦ l fI/ f* l ≦
4. The following condition (2) must be satisfied.

単一のガラス材料で構成したのは使用する波長域がエキ
シマレーザ−の非常に狭い発光スペクトルの光を利用し
た為、色収差を考慮しなくても良すからであり、波長域
が多少広がれば複数のガラス材料を用いて色収差を補正
するのが好ましい。
The reason why it was constructed from a single glass material was because the wavelength range used was light with a very narrow emission spectrum of an excimer laser, so there was no need to consider chromatic aberration. Preferably, multiple glass materials are used to correct chromatic aberration.

後述する本発明の投影レンズの実施例はすべて溶融石英
のみの単一硝材で構成し7ており、使用波長は248.
5nmを主体としている。ただし波長248.5nmの
光が透過する材料であれば溶融石英でなくても例えばC
aF、 、 MgP、でも良い。
All of the embodiments of the projection lens of the present invention, which will be described later, are made of a single glass material of only fused silica, and the wavelength used is 248.
Mainly 5 nm. However, if it is a material that transmits light with a wavelength of 248.5 nm, it does not need to be fused silica, for example, C.
aF, , MgP, etc. may also be used.

本発明の投影レンズは3つのレンズ群を有しておりレン
ズ中央部に負の屈折力の第2レンズ群とその両側に正の
屈折力の第1 、 第3レンズ群を配置した縮少系で構
成しており前述の条件式(11,f2+を設定すること
により良好なる収差補正を達成している。
The projection lens of the present invention has three lens groups, and is a reduction system in which the second lens group with negative refractive power is located in the center of the lens, and the first and third lens groups with positive refractive power are arranged on both sides of the second lens group. By setting the above-mentioned conditional expression (11, f2+), good aberration correction is achieved.

条件(11,<21はレンズ性能の基本の1つとしての
各レンズ群の屈折力を適切に設定することにまり豫+I
N彎曲を良好に補正するための条件で下限値を越えると
ペッツバール和が大となり像面が補正不足となり、上限
値を越えると像面彎曲が補正過剰となり全画面を良好に
収差補正するのが困難となる。
The condition (11, <21 is based on properly setting the refractive power of each lens group, which is one of the basics of lens performance)
If the lower limit value is exceeded in order to properly correct the N-curvature, the Petzval sum will become large and the image plane will be under-corrected, and if the upper limit value is exceeded, the field curvature will be over-corrected and it is difficult to properly correct aberrations over the entire screen. It becomes difficult.

更に本発明においてより良好なる収差補正を達成する為
には前記第ルンズ群を物体側より順に負と正の屈折力の
2つのレンズ群I、 、 I、より構成し、前記レンズ
群■、は両レンズ面が凸面の両凸レンズ■21と正の屈
折力のレンズIll の各々少なくとも1枚をMするレ
ンズで構成し、前記レンズ群■、の焦点距離をf12.
前記第2レンズ群を物体側と像面側に各々凸面を向けた
メニスカス状の負の屈折力のレンズを有するように構成
すると共に、前記第2レンズ群の焦点距離をf2とした
とき なる条件全満足することである。
Furthermore, in order to achieve better aberration correction in the present invention, the lens group is composed of two lens groups I, I, having negative and positive refractive powers in order from the object side, and the lens group At least one of each of a double-convex lens (21) having convex surfaces and a lens Ill having a positive refractive power is composed of M lenses, and the focal length of the lens group (2) is set to f12.
The second lens group is configured to have a meniscus-shaped lens with negative refractive power with convex surfaces facing the object side and the image side, and the focal length of the second lens group is f2. It is to be completely satisfied.

前記レンズL2 F:):投影レンズの補少倍率がイ〜
、17程度のときは物体11111に凸面を向けたメニ
スカス状のレンズ、縮少倍率が1/7〜1/12程度の
2きは両凸レンズであることが収差を良好に補正するの
に好ましい。
The lens L2 F:): The supplementary magnification of the projection lens is
, 17, it is preferable to use a meniscus-shaped lens with a convex surface facing the object 11111, and when the reduction magnification is about 1/7 to 1/12, it is preferable to use a biconvex lens to properly correct aberrations.

投影レンズとしての結像性能を全画面にわたり良好に保
つためKr/i、像面彎曲の条件のほかにコマ収差を全
画面にわたって殆んど零近く補iE L、た上で更に球
面収差、軸外のハロー収差を補正しなけれはならない。
In order to maintain good imaging performance as a projection lens over the entire screen, in addition to the Kr/i and field curvature conditions, coma aberration is compensated for almost zero over the entire screen, iE L, and in addition, spherical aberration and axial aberration. The outer halo aberration must be corrected.

それには条件m、 f21を満足する光学系に於いて第
2レンズ群の物体側と像面側にそれぞれ凸面を向けた負
の屈折力のメニスカス状のレンズで構成するのが好まし
い0 j(7)ように本発明の投影レンズにおいては球面収差
の補正を主に第2レンズ群のレンズ面の曲率半径を適切
に設定して行なっている。このとき、球面収部と同時に
コマ収走も同時に補正しているがその為には第2レンズ
群を少なくとも2つの負の)ffA折力のメニスカス状
のレンズVCよって構成するのが良い。1つは物体側に
凸面を向け、他の1つは像面に凸面を向けたレンズ形状
で構成することである。これは全レンズ系を正、負、正
の3つのレンズ群で構成し第2し/ズ群に第1.第3レ
ンズ群で発生する球面収差の補正不足分を補正する作用
をもたせる為である。そして第2レンズ群を更に、少な
くとも2つの狛の屈折力のメニスカス状のレンズを前述
の如く配置dすることにより、コマ収差の補正、即ち軸
外主光線より上の光束部分と下の光束部分とのバランス
をとっている。即ち下の光束部は物体側に配置された物
体側に凸面を向けたメニスカスレンズによって、上の光
束部は像側に配置された像面側に凸面を向けた負のメニ
スカス状のレンズによって、軸外光束の収差f バラン
ス良く補正することが出来て、軸外コマ収量の良好なる
補正が可能となる。しかも、軸外光束の主光線は第2レ
ンズ群の光軸近傍を通過するので、第2レンズ群の構成
(形状)そのものは歪曲収差、非点収差にそれ程影響を
あたえず屈折系を3部分系で条件(出(2)におさえる
ことによって第2レンズ群により球面収差、コマ収差の
補正を良好に行うことが出来る。特にコマ収差の補正は
前述の負のメニスカス状のレンズを適切に配置すること
により補正できる。そして更に軸外のメリデオナル、サ
ジタルハローを良好に補正するために条件(3)を満足
することが好ましい。3部分系で構成されるレンズ系に
於して物体側の第ルンズ群の両凸レンズ及び正レンズは
メニスカス状のレンズの合成の屈折力が第2部分系であ
る第2レンズ群の屈折力と比較して強すぎると、球面収
ん、コマ収差を補正したとき、第ルンズ群で高次のハロ
ー収差が発生し全画面にわたっての補正が、特に単一の
硝材の場合、僅かな屈折率差を利用(〜たり、高屈折率
と低屈折率の硝材を使っての収差補正を行うと面次収差
が発生し良好なる補正が困難となる。
For this purpose, in an optical system that satisfies the conditions m and f21, it is preferable to construct the second lens group with meniscus-shaped lenses with negative refractive power, with convex surfaces facing the object side and the image plane side, respectively. ), in the projection lens of the present invention, spherical aberration is mainly corrected by appropriately setting the radius of curvature of the lens surface of the second lens group. At this time, the coma retraction is corrected at the same time as the spherical retraction, and for this purpose, it is preferable that the second lens group is composed of at least two meniscus-shaped lenses VC having negative )ffA refracting power. One is to have a lens shape with a convex surface facing the object side, and the other is to have a lens shape with a convex surface facing the image plane. The entire lens system consists of three lens groups: positive, negative, and positive, with the second lens group and the first lens group. This is to provide an effect of correcting insufficient correction of spherical aberration occurring in the third lens group. By further arranging at least two meniscus-shaped lenses with refractive power in the second lens group as described above, comatic aberration can be corrected, that is, the beam portion above and the beam portion below the off-axis principal ray. is balanced with. In other words, the lower beam part is formed by a meniscus lens placed on the object side with its convex surface facing the object side, and the upper beam part is formed by a negative meniscus lens placed on the image side with its convex surface facing the image plane. The aberration f of the off-axis light beam can be corrected in a well-balanced manner, and the off-axis coma yield can be well corrected. Moreover, since the principal ray of the off-axis beam passes near the optical axis of the second lens group, the configuration (shape) of the second lens group itself does not have much influence on distortion and astigmatism, and the refractive system is divided into three parts. By keeping the system to condition (output (2)), the second lens group can effectively correct spherical aberration and coma aberration. In particular, coma aberration can be corrected by appropriately arranging the negative meniscus lens described above. Furthermore, in order to satisfactorily correct off-axis meridional and sagittal haloes, it is preferable to satisfy condition (3). If the combined refractive power of the meniscus lens group is too strong compared to the refractive power of the second lens group, which is the second partial system, the biconvex lens and positive lens of the lens group will cause spherical convergence, and when coma aberration is corrected. , high-order halo aberration occurs in the lens group, and it is difficult to correct it over the entire screen, especially when using a single glass material. If all aberrations are corrected, surface aberrations will occur, making it difficult to achieve good correction.

従って条件(1)、(2)を満足し且つ条件(X()の
範囲にあることが単一硝材から構成されるレンズ系のと
きは特に好41−い。醍述する実施例(Il、 +31
゜(6) 、 +71 、 (8) 、 +91はいず
れも条件(3)全満足1−1実施例1・4+、 +11
はその限界に近い値であることを示す。条件flj、 
t2+、(3)は集積回路の焼付用の投影レンズとして
要求される結像性能(解像力、コントラスト比)を満足
させるための条件であったが、更に投影レンズとして要
求される重要な性能条件として歪曲収差がある。
Therefore, it is particularly preferable for a lens system made of a single glass material to satisfy conditions (1) and (2) and to be within the range of condition (X(). +31
゜ (6), +71, (8), +91 all satisfy condition (3) 1-1 Example 1, 4+, +11
indicates that the value is close to that limit. Condition flj,
t2+, (3) was a condition to satisfy the imaging performance (resolution, contrast ratio) required for a projection lens for printing integrated circuits, but it is also an important performance condition required for a projection lens. There is distortion.

IC,LSIの製債にあたって何回も焼付工程を行うた
め各を程毎にアライメントを行う必要があり、又これを
露光装置別に正確なアライメントするためには投影レン
ズの歪曲収差を殆んど苓におさえなければならない。
Since the printing process is performed many times when manufacturing ICs and LSIs, alignment must be performed at each step, and in order to achieve accurate alignment for each exposure device, distortion of the projection lens must be minimized. must be kept in check.

特に単一の鋼材を用いて歪曲収絨を殆んど零におさえる
縮小系の投影レンズ系に於いてはIE。
This is especially true for reduction projection lens systems that use a single steel material to reduce distortion to almost zero.

負、lEの屈折力の3つのレンズ群から構成し、更に前
記第ルンズ群を物体側よりIIM K @とIEの屈折
力の2つのレンズif、、I、より構成し前記レンズ群
I、 、 I、の焦点距離を各々fII + fl2 
+前記4ルンズ群の焦点距離をflとするときなる条件
をiS!1尾するように構成するのが好ましい0 本発明の投影レンズにおいて、特に$11f小系として
使用する場合、第ルンズ群を、物体側か。
It is composed of three lens groups with negative and lE refractive powers, and the lens group is further composed of two lenses if, , I, with refractive powers of IIM K @ and IE from the object side, and the lens group I, , I, the focal length of each fII + fl2
+When the focal length of the four lens groups is fl, the condition is iS! In the projection lens of the present invention, especially when used as a $11f small system, it is preferable to configure the lens group to have one tail.

らみて負と正の屈折力の2つのレンズ群I、、I。There are two lens groups I, , I with negative and positive refractive powers.

に分は歪曲収差の補正を主にレンズ群■1で補正してい
る。
In the second lens, distortion is mainly corrected using lens group ■1.

特にレンズ群■1を少なくとも2つ以上の物体側に凸面
を向けた負の屈折力のメニスカス状のレンズで構成する
のが歪曲収差全良好に補正するのに好ましい。
In particular, it is preferable that lens group (1) be composed of at least two meniscus-shaped lenses with negative refractive power and convex surfaces facing the object side, in order to fully correct distortion.

面、3つ以上のレンズで構成すれば屈折力の分担が少な
くなり他の諸収冷の影響も少なくなり史に好ましくなる
If the lens is composed of three or more lenses, the sharing of refractive power will be reduced, and the effects of other cooling effects will be reduced, which is preferable.

又レンズ■、を正の屈折力とし、少なくとも2つ1試上
の正の屈折力のレンズで構成することにより軸外主光像
が通過する位置は光軸近傍であることからφ曲収差、非
点収差の補正金すると共に軸外コマ、ハローを良好に補
正している。
In addition, by making lens ① have a positive refractive power and configuring it with at least two lenses with one sample positive refractive power, the position through which the off-axis principal light image passes is near the optical axis, so that φ curvature aberration, In addition to correcting astigmatism, off-axis coma and halo are well corrected.

条件式(4)の上限値若しくは条件式(5)の下限値を
越えると負の歪曲収差が多く発生し好ましくなく、又条
件式(4)の下限値若しくは条件式(5)の上限値を越
えると正の歪曲収差が発生すると共に他の諸収差の発生
嘴も多くなり好ましくない。
If the upper limit of conditional expression (4) or the lower limit of conditional expression (5) is exceeded, a large amount of negative distortion will occur, which is undesirable. If it exceeds this, positive distortion will occur and other aberrations will also increase, which is undesirable.

次に本発明の数値実施例1〜10の諸数値を示す。数値
実施例においてRiは物体側より順に第1番目のレンズ
而の曲率半径、DIは物体側より1旧に第14目のレン
ズ厚及び空気間隔、Niは物体側より順に第1番目のレ
ンズのガラスの屈折率である。
Next, numerical values of numerical examples 1 to 10 of the present invention are shown. In the numerical examples, Ri is the radius of curvature of the first lens from the object side, DI is the thickness and air gap of the 14th lens from the object side, and Ni is the radius of curvature of the first lens from the object side. It is the refractive index of glass.

硝材の5IO2は溶融石英であり波長248.5nmで
の屈折率は1.521130である。
The glass material 5IO2 is fused silica and has a refractive index of 1.521130 at a wavelength of 248.5 nm.

数値実施しlJ1〜5は倍率%、NA=0.3、画面サ
イズ14X14mm、数値実施例6〜10は倍率局、N
A=0.35.画面サイズl OXI O第1図と第2
図に各々本発明の数値実施例1と数値実施例6のレンズ
断面図を示す。
Numerical implementation lJ1 to 5 are magnification %, NA = 0.3, screen size 14 x 14 mm, numerical examples 6 to 10 are magnification station, N
A=0.35. Screen size l OXI O Figures 1 and 2
The figures show cross-sectional views of lenses of Numerical Example 1 and Numerical Example 6 of the present invention, respectively.

又、数値実施例1−10の収差図を各々第3図〜第12
図に示す。
In addition, the aberration diagrams of numerical examples 1 to 10 are shown in Figs. 3 to 12, respectively.
As shown in the figure.

数値実施例1は第3図に示す如く良好に収差補正がなさ
れている。数値実施i+11 (2+は条件(1)。
In Numerical Example 1, as shown in FIG. 3, aberrations are well corrected. Numerical implementation i+11 (2+ is condition (1).

(2)の下限値近傍の1直をとる場合の例で収差カーブ
を第4図で示すように実施例(I)と比較すると条件f
i1. f2)の上限値に近づくことにより負の屈折力
のレンズ群の屈折力が弱くなり、その為Petzval
和が正に犬きくなり条件式fi1. f2+ノ’F限値
を越えると1J!面彎曲がアン、ダーとなり投影レンズ
の重要な用件である全画面一様な尚解像度という条件を
満足するのが困難となる。
(2) In the case of taking one shift near the lower limit value, the aberration curve is compared with Example (I) as shown in Fig. 4 under the condition f.
i1. f2) approaches the upper limit value, the refractive power of the lens group with negative refractive power becomes weaker, and therefore Petzval
The sum is exactly the same as the conditional expression fi1. If f2+ノ'F limit is exceeded, 1J! The surface curvature becomes uneven and dark, making it difficult to satisfy the conditions of uniform resolution over the entire screen, which is an important requirement for a projection lens.

条件tl)、 +21の下限値側の例として実施列(1
1゜(2)を比較したが、その中間に近い例として実施
例(3)を示す0実施例(3)の収差カーブを第5図で
示すが条件m、 +21を満足しており像面彎曲は良好
である。
Condition tl), as an example of the lower limit value side of +21, the implementation column (1
Figure 5 shows the aberration curve of Example (3), which satisfies conditions m and +21, and shows Example (3) as an example that is close to the middle. Curvature is good.

実施例(4)は実施例(2)の球面11に差を補正1−
fc画である。
Example (4) corrects the difference in the spherical surface 11 of Example (2) by 1-
This is an fc drawing.

実施例(6)は倍率I≦の仕様をもつ縮小系の場合で収
差カーブケ紀8図で示す如く条件(1)、 f2)を満
足することによって性能は良好となっている0実施例(
7)は条件m、(21の一ヒ限近傍にある例で第9図の
収差カーブの如〈実施列(6)と比較して条件(1)、
 +21のヒ1浪イ直(て打つくことにより第2レンズ
群の屈折力が弱くなり、そのためPe t zva l
和が小になって像面・4曲が補正過剰となり投影レンズ
としての要求性iLの全画面一様な高解像力をもつとい
う条件の限界に近づく。
Example (6) is a reduction system with a specification of magnification I≦, and the performance is good by satisfying conditions (1) and f2) as shown in Figure 8 of the aberration curve.
7) is an example near the one-h limit of condition m, (21), as shown in the aberration curve in FIG.
By hitting the +21 beam directly, the refractive power of the second lens group becomes weaker.
The sum becomes small and the image plane/four tracks are over-corrected, approaching the limit of the requirement iL for a projection lens, which is to have uniform high resolution over the entire screen.

条件i11. +21の上限値として実施例+6+、 
f/lを比較したが、その中間値として実施例18)が
あり。
Condition i11. Example +6+ as the upper limit of +21,
The f/l was compared, and Example 18) was found as an intermediate value.

このときの収差カーブを第10図に示す。条件(1)、
(2)を71陶足し、像ml彎曲は良好に補正されてい
る。
The aberration curve at this time is shown in FIG. Condition (1),
(2) was added by 71 points, and the image ml curvature was well corrected.

実施例(9)は実施例(8)の球面収差がやや補正過剰
であるのを補正した例である。実施列5は前述の条件(
4)の上限値、及び条件(5)の下限値の近傍とのもの
であり第7図に示す90〈歪曲収差が負(補1E不足)
となり限界値に近づき、実施例1Oは条件(4)の下限
値、及び条件(5)の上限値の近傍とのものでありΦ曲
収差がiE+補正過剰となり限界に近づく。
Example (9) is an example in which the spherical aberration of Example (8) is slightly overcorrected. Implementation column 5 is based on the above condition (
It is close to the upper limit value of condition (4) and the lower limit value of condition (5), and is 90〈distortion aberration is negative (insufficient compensation 1E) as shown in Fig. 7.
This approaches the limit value, and Example 1O is close to the lower limit value of condition (4) and the upper limit value of condition (5), and the Φ curvature aberration becomes iE+ overcorrected and approaches the limit value.

本発明の投影レンズに紗いて41図、第2図に示すよう
に第ルンズ群を2つのレンズ群L+■、に分けて考え各
々のレンズ群のレンズ購成ヲ特定することl/Cよって
所定の収差を補+E しているO 又、8142レンズ群は@:1図、第2図の実鋤例に示
す如く中間に追の屈折力のレンズ&配晴L、球面収邊全
良好に補正しているが、第2レンズ群の9勿体1則とイ
按1菫(fullの負の屈折力のメニスカス状のレンズ
に球面収差の補正を分担させれば特に用いなくても良い
As shown in Fig. 41 and Fig. 2 of the projection lens of the present invention, the lens group is divided into two lens groups L+■, and the lens purchase for each lens group is specified by L/C. In addition, the 8142 lens group has a lens with additional refractive power in the middle & aperture L, and the spherical aperture is fully corrected as shown in the actual example in Figures 1 and 2. However, if the correction of spherical aberration is shared by the meniscus-like lens of full negative refractive power in the second lens group, there is no need to use it.

又、本発明の投影レンズにおいて1編3し/ズ群を′物
体側よりjloに像面側に凸mlを向けたメニスカス状
のレンズ、両凸レンズ、物体側に凸面を向けた正の屈折
力のメニスカス状のレンズを2枚配置1−合計4枚のレ
ンズで構成するのが好ましい。これは全画面にわたり良
好なる収差補正を達成するのに有効であるが4枚以−ヒ
のレンズで例えは両凸レンズを2つに分けて合計5枚の
レンズで構成(7ても良い。
In addition, in the projection lens of the present invention, each of the three lens groups has a meniscus-like lens with a convex ml facing toward the image plane side from the object side to jlo, a biconvex lens, and a positive refractive power with a convex surface facing the object side. It is preferable to configure the lens with two meniscus-shaped lenses (1) for a total of four lenses. This is effective in achieving good aberration correction over the entire screen, but it is constructed with four or more lenses, for example, a biconvex lens is divided into two, making a total of five lenses (or seven lenses may also be used).

又、本帖明の実施例では単一のガラス材料で構成したが
峻数の種類のガラスで構成しても良いことは当然である
。ただ単一のガラスで構成すれば便利であり、Kコスト
ダウンにもなるので好捷しい。
Furthermore, although the embodiment of this book is made of a single glass material, it goes without saying that it may be made of a large number of different types of glass. However, it is convenient to configure it with a single glass, and it also reduces the K cost, so it is preferable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図に本発明の数値実施例1.6のレンズ;
析面図、第3図〜第12図は各々本発明のli!i値夷
塵例1〜lOの遁収燈図である。 図中T、[、用は谷々第1.第2.第3レンズ群、Yぽ
像画、Mはメリデイオナル像面、Sはサジタル像面であ
る。 0許出願人 キャノン株式会社
FIG. 1 and FIG. 2 show the lens of Numerical Example 1.6 of the present invention;
The analytical surface views and FIGS. 3 to 12 are the li! of the present invention, respectively. FIG. 2 is a diagram of i-value dust examples 1 to 1O. In the figure, T, [, use is Taniya No. 1. Second. The third lens group is a Y-positive image, M is a meridional image plane, and S is a sagittal image plane. 0 Applicant: Canon Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)物体側より順に正、負そして正の屈折力のMl、
 第2そして第3レンズ群の3つのレンズ群より構成し
、前記第1.第2.第3レンズ群を各々単一のガラス材
料の複数のレンズより構成すると共に前記第1.第2そ
して第3レンズ群の焦点距離を各々f、、 f2. f
、とするとき 0.8≦l fl/fl +≦3.8 1.1≦l ft/f、 +≦4 なる条件を満足することを特徴とする投影レンズ。
(1) Ml with positive, negative, and positive refractive powers in order from the object side,
It is composed of three lens groups: a second and a third lens group; Second. The third lens group is composed of a plurality of lenses each made of a single glass material, and the first lens group is composed of a plurality of lenses each made of a single glass material. The focal lengths of the second and third lens groups are respectively f, , f2 . f
A projection lens satisfying the following conditions: 0.8≦l fl/fl +≦3.8 1.1≦l ft/f, +≦4.
(2)前記glレンズ群は物体側より順に負と正の屈折
力の2つのレンズ群I、 、 I、より成り、前記レン
ズ#Itは両レンズ面が凸面の両凸レンズT11と正の
屈折力のレンズ■ttを各々少なくとも1枚ずつ有して
おり、前記レンズ群■。 の焦点距離をf17.前記第2レンズ群を物体側と像面
側に各々凸面を向けたメニスカス状の負の屈折力のレン
ズを有するように構成すると共に、前記第2レンズ群の
焦点距離をftとしたとき なる条件′f:満足することを特徴とする特許請求の範
囲第1項記載の投影レンズ。
(2) The GL lens group consists of two lens groups I, , I with negative and positive refractive powers in order from the object side, and the lens #It is a biconvex lens T11 with both lens surfaces convex and a positive refractive power. The lens group (2) has at least one lens (2), respectively. The focal length of f17. The second lens group is configured to have a meniscus-shaped lens with a negative refractive power with convex surfaces facing the object side and the image plane side, and the condition is satisfied when the focal length of the second lens group is ft. The projection lens according to claim 1, characterized in that 'f: is satisfied.
(3) 前記レンズI22は物体側に凸面を向けたメニ
スカス状のレンズであることを特徴とする特許請求の範
囲第2項記載の投影レンズ。
(3) The projection lens according to claim 2, wherein the lens I22 is a meniscus lens with a convex surface facing the object side.
(4) 前記第ルンズ群は物体側より順に負と正の屈折
力の2つのレンズ群I、、I、より成り、前記レンズ#
 I、 、 I、の焦点距離を各々fII + fI2
前記第ルンズ群の焦点距離を特徴とする特許なる条件を
満足することを特徴とする特許請求の範囲第1項記載の
投影レンズ。
(4) The lens group consists of two lens groups I, , I having negative and positive refractive powers in order from the object side, and the lens #
Let the focal lengths of I, , I, respectively be fII + fI2
2. The projection lens according to claim 1, wherein the projection lens satisfies a patent condition in which the focal length of the first lens group is characterized.
JP24590483A 1983-12-28 1983-12-28 Projecting lens Pending JPS60140310A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP24590483A JPS60140310A (en) 1983-12-28 1983-12-28 Projecting lens
GB08432300A GB2153543B (en) 1983-12-28 1984-12-20 A projection exposure apparatus
DE3447489A DE3447489C2 (en) 1983-12-28 1984-12-27 Projection exposure method and apparatus
US07/212,148 US4977426A (en) 1983-12-28 1988-06-24 Projection exposure apparatus
US07/212,081 US4891663A (en) 1983-12-28 1988-06-24 Projection exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24590483A JPS60140310A (en) 1983-12-28 1983-12-28 Projecting lens

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1330388A Division JPH0334308A (en) 1989-12-19 1989-12-19 Projection aligner for manufacture of integrated circuit

Publications (1)

Publication Number Publication Date
JPS60140310A true JPS60140310A (en) 1985-07-25

Family

ID=17140549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24590483A Pending JPS60140310A (en) 1983-12-28 1983-12-28 Projecting lens

Country Status (1)

Country Link
JP (1) JPS60140310A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61502507A (en) * 1984-06-21 1986-10-30 アメリカン テレフオン アンド テレグラフ カムパニ− Deep UV lithography
JPS63118115A (en) * 1986-11-06 1988-05-23 Sigma:Kk Projection lens
US5555479A (en) * 1993-10-29 1996-09-10 Olympus Optical Co., Ltd. Reduction projection lens system including refractive and diffractive optical elements

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51110347A (en) * 1975-02-28 1976-09-29 Hughes Aircraft Co
JPS5237444A (en) * 1975-09-19 1977-03-23 Canon Inc Lens for infrared rays
JPS5285834A (en) * 1976-01-09 1977-07-16 Canon Inc Lens for infrared rays
JPS5286344A (en) * 1976-01-13 1977-07-18 Canon Inc Lens for infrared rays
JPS52100247A (en) * 1976-02-19 1977-08-23 Tokyo Optical Infrared lens
JPS57200010A (en) * 1981-06-03 1982-12-08 Matsushita Electric Ind Co Ltd Lens for infrared rays

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51110347A (en) * 1975-02-28 1976-09-29 Hughes Aircraft Co
JPS5237444A (en) * 1975-09-19 1977-03-23 Canon Inc Lens for infrared rays
JPS5285834A (en) * 1976-01-09 1977-07-16 Canon Inc Lens for infrared rays
JPS5286344A (en) * 1976-01-13 1977-07-18 Canon Inc Lens for infrared rays
JPS52100247A (en) * 1976-02-19 1977-08-23 Tokyo Optical Infrared lens
JPS57200010A (en) * 1981-06-03 1982-12-08 Matsushita Electric Ind Co Ltd Lens for infrared rays

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61502507A (en) * 1984-06-21 1986-10-30 アメリカン テレフオン アンド テレグラフ カムパニ− Deep UV lithography
JPS63118115A (en) * 1986-11-06 1988-05-23 Sigma:Kk Projection lens
US5555479A (en) * 1993-10-29 1996-09-10 Olympus Optical Co., Ltd. Reduction projection lens system including refractive and diffractive optical elements

Similar Documents

Publication Publication Date Title
EP0770895B2 (en) Projection optical system and exposure apparatus provided therewith
US6157498A (en) Dual-imaging optical system
EP0350955B1 (en) Optical reduction system
KR100573913B1 (en) Iprojection optical system and exposure apparatus having the same
USRE38403E1 (en) Projection optical system and projection exposure apparatus
EP2648027B1 (en) Projection objective lens system and microlithography system using the same
US5781278A (en) Projection optical system and exposure apparatus with the same
JPS58219517A (en) Narrow angle off-axis optical device
US6088171A (en) Projection optical system
JPH07140384A (en) Projection optical system and projection aligner
JPH07140385A (en) Projection optical system and projection aligner
JPH1195095A (en) Projection optical system
CN112987264A (en) Ultra-short-focus projection lens with large view field and high brightness
JPH07128592A (en) Reduction stepping lens
CN102200624A (en) Photo-etching projection lens
JPS60140310A (en) Projecting lens
JPH10333030A (en) Precision copying lens
JPS63121810A (en) Projection lens system
JP2869849B2 (en) Integrated circuit manufacturing method
US3522986A (en) Reproduction objective
JPH0695495B2 (en) Circuit manufacturing method and exposure apparatus using the same
CN115542675A (en) Projection photoetching objective lens and photoetching machine
JPH0334308A (en) Projection aligner for manufacture of integrated circuit
CN110568727B (en) Exposure system, exposure method and photoetching machine
JPH0821955A (en) Catadioptric reduction projection optical system