JPH07128592A - Reduction stepping lens - Google Patents

Reduction stepping lens

Info

Publication number
JPH07128592A
JPH07128592A JP27565893A JP27565893A JPH07128592A JP H07128592 A JPH07128592 A JP H07128592A JP 27565893 A JP27565893 A JP 27565893A JP 27565893 A JP27565893 A JP 27565893A JP H07128592 A JPH07128592 A JP H07128592A
Authority
JP
Japan
Prior art keywords
lens
group
lens group
aspherical
glass material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27565893A
Other languages
Japanese (ja)
Inventor
Osamu Konuma
修 小沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP27565893A priority Critical patent/JPH07128592A/en
Publication of JPH07128592A publication Critical patent/JPH07128592A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To provide the reduction stepping lens which is improved in transmittance and is provided with high resolution by reducing the total thickness of the glass material of a lens system. CONSTITUTION:This reduction stepping lens is composed of total three groups; a first group I having a negative refracting power, a second group II having a positive refracting power and a third group III having a positive refracting power and is constituted to satisfy the conditions 3<¦f1/f¦<5, 10<f2/f<25 when the focal lengths of the first group I, the second group II and the entire system are respectively defined as f1 f2 and f. The respective groups have at least one face of aspherical faces. The respective aspherical faces are preferably aspherical faces of a shape to weaken the refracting power near the optical axis nearer the peripheral edges from the optical axis of the lenses. The respective lenses are preferably composed of the glass material having a refractive index of 3<=1.6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、IC、LSI等の集積
回路を製造する装置に搭載される縮小投影レンズに関
し、特に、縮小投影露光法によって回路パターンの描か
れたマスクから、その回路パターンをシリコンウェハー
上に転写する際に用いられる縮小投影レンズに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reduction projection lens mounted in an apparatus for manufacturing integrated circuits such as ICs and LSIs, and particularly to a circuit pattern from a mask on which a circuit pattern is drawn by a reduction projection exposure method. The present invention relates to a reduction projection lens used when transferring a film onto a silicon wafer.

【0002】[0002]

【従来の技術】一般に、投影レンズによる投影像の解像
力は、その開口数に比例し、使用する波長に反比例す
る。近年、回路パターンの高集積化が進み、それに伴っ
て解像力の良いレンズが要求されてきており、開口数を
大きくして行くとそれに比例して解像力は良くなって行
くが、焦点深度が浅くなり、焦点合わせを非常に正確に
行う必要が生じる。また、回路パターンを転写するシリ
コンウェハーの平坦度も非常に厳しい値が要求され、実
用には向かなくなってしまう。そのため、近年では、開
口数を大きくするよりも、使用波長を短くして焦点深度
を保ちつつ解像度を上げることが行われるようになっ
た。
2. Description of the Related Art Generally, the resolving power of a projected image by a projection lens is proportional to its numerical aperture and inversely proportional to the wavelength used. In recent years, as circuit patterns have become highly integrated, lenses with good resolving power have been required, and as the numerical aperture increases, the resolving power improves in proportion to it, but the depth of focus becomes shallower. , The focus will need to be very accurate. Further, the silicon wafer on which the circuit pattern is transferred is required to have a very strict flatness, which is not suitable for practical use. Therefore, in recent years, rather than increasing the numerical aperture, the wavelength used has been shortened to increase the resolution while maintaining the depth of focus.

【0003】現在では、水銀灯による436nmから3
65nmの光が使用されるようになっているが、近年、
248nmを発光スペクトルとするKrFエキシマレー
ザを使用する特開昭60−140310号や、193n
mを発光スペクトルとするArFエキシマレーザを使用
する特開平1−315709号等の提案がある。
Currently, from 436 nm by mercury lamp to 3
Light of 65 nm has come to be used, but in recent years,
JP-A-60-140310 and 193n using a KrF excimer laser having an emission spectrum of 248 nm.
There is a proposal such as Japanese Patent Laid-Open No. 1-315709 which uses an ArF excimer laser having an emission spectrum of m.

【0004】[0004]

【発明が解決しようとする課題】ところで、投影露光の
使用波長が250nm以下になると、使用できる硝材の
透過率の低下が少ないという観点から、硝材はSiO2
又はCaF2 に限られる。しかも、加工性等を考慮する
と、SiO2 しか使用できる硝材はなく、さらに、波長
200nm以下では、このSiO2 を使用しても透過率
が低い。従来のエキシマレーザを光源とし、SiO2
使用した縮小投影レンズは、レンズ枚数が多く、硝材総
肉厚が厚いので、透過率が低く、そのため、レンズの露
光光熱吸収による倍率変動やベストフォーカス変動、露
光量不足による低スループット等の問題があった。
By the way, when the wavelength used for projection exposure is 250 nm or less, the glass material is made of SiO 2 from the viewpoint that the transmittance of the usable glass material is less likely to decrease.
Or, it is limited to CaF 2 . Moreover, considering workability and the like, there is no glass material that can use only SiO 2 , and further, at a wavelength of 200 nm or less, the transmittance is low even if this SiO 2 is used. A conventional reduction projection lens that uses an excimer laser as the light source and uses SiO 2 has a large number of lenses and a large total thickness of the glass material, so the transmittance is low. Therefore, the magnification fluctuation and the best focus fluctuation due to the exposure light heat absorption of the lens However, there are problems such as low throughput due to insufficient exposure.

【0005】本発明はこのような状況に鑑みてなされた
ものであり、その目的は、レンズ系の硝材総肉厚を薄く
して透過率を向上させることができる高解像の縮小投影
レンズを提供することである。
The present invention has been made in view of such circumstances, and an object thereof is to provide a high-resolution reduction projection lens capable of improving the transmittance by reducing the total thickness of the glass material of the lens system. Is to provide.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の縮小投影レンズは、物体側より順に、負の
屈折力を持つ第1レンズ群と、正の屈折力を持つ第2レ
ンズ群と、正の屈折力を持つ第3レンズ群との計3群か
ら構成され、第1レンズ群、第2レンズ群、及び、全系
の焦点距離をそれぞれf1 、f2 、fとしたとき、以下
の条件を満足することを特徴とするものである。
In order to achieve the above object, the reduction projection lens of the present invention comprises, in order from the object side, a first lens group having a negative refractive power and a second lens group having a positive refractive power. It is composed of a total of three groups including a lens group and a third lens group having a positive refractive power, and the focal lengths of the first lens group, the second lens group, and the entire system are f 1 , f 2 , and f, respectively. When this is done, the following conditions are satisfied.

【0007】 3<|f1 /f|<5 ・・・(1) 10<f2 /f<25 ・・・(2) この場合、各群に少なくとも1面の非球面を有し、各非
球面は、レンズ光軸から周縁に行くに従って光軸近傍の
屈折力を弱める形状の非球面であることが望ましい。ま
た、各レンズを屈折率1.6以下の硝材により構成する
ことが望ましい。
3 <| f 1 / f | <5 (1) 10 <f 2 / f <25 (2) In this case, each group has at least one aspherical surface, The aspherical surface is preferably an aspherical surface having a shape that weakens the refractive power in the vicinity of the optical axis from the lens optical axis toward the periphery. Further, it is desirable that each lens is made of a glass material having a refractive index of 1.6 or less.

【0008】[0008]

【作用】以下、上記構成をとった理由とその作用を詳細
に説明する。縮小投影レンズとしては、高解像度と広い
露光領域を確保するために、像面湾曲をほぼ完全に補正
しなくてはならない。像面湾曲を補正するには、ペッツ
バール和を小さく抑えればよいが、そのためには、正、
負の屈折力を持つレンズを多数枚、適切な位置に配置す
ることが必要である。そのために、縮小投影レンズはレ
ンズ枚数が多くならざるを得ない。
The reason why the above configuration is adopted and the operation thereof will be described in detail below. As a reduction projection lens, the field curvature must be almost completely corrected in order to secure high resolution and a wide exposure area. In order to correct the field curvature, the Petzval sum should be suppressed to a small value.
It is necessary to arrange a large number of lenses having negative refracting power at appropriate positions. Therefore, the reduction projection lens is inevitably increased in the number of lenses.

【0009】一方、縮小投影レンズの透過率を高くする
ためには、硝材総肉厚を薄くしなければならないが、そ
のためには、レンズ一枚一枚を薄くすると同時に、レン
ズ枚数を減らすことが必要である。つまり、高解像度を
確保するという条件と硝材総肉厚を薄くするという条件
を同時に満足するのは難しい。
On the other hand, in order to increase the transmittance of the reduction projection lens, it is necessary to reduce the total thickness of the glass material. For that purpose, it is necessary to reduce the thickness of each lens and reduce the number of lenses. is necessary. That is, it is difficult to simultaneously satisfy the condition of ensuring high resolution and the condition of reducing the total thickness of the glass material.

【0010】本発明の縮小投影レンズは、少ないレンズ
枚数で効果的にペッツバール和を小さくするために、物
体面に近く光線高の低い位置に配置した第1レンズ群の
負の屈折力により、大きく負のペッツバール値を発生さ
せ、これ以降の像面側の光線高の高い位置に配置した第
2レンズ群、第3レンズ群の正の屈折力により正のペッ
ツバール和を小さくする構成をとっている。本構成をと
ることによって、少ないレンズ枚数でペッツバール和を
小さくすることが可能となる。
In order to effectively reduce the Petzval sum with a small number of lenses, the reduction projection lens of the present invention has a large refractive power due to the negative refractive power of the first lens unit disposed near the object plane and having a low ray height. A negative Petzval value is generated, and the positive Petzval sum is reduced by the positive refracting power of the second lens group and the third lens group, which are arranged at positions where the ray height on the image plane side is high thereafter. . With this configuration, the Petzval sum can be reduced with a small number of lenses.

【0011】|f1 /f|とf2 /fについての条件式
は、各レンズ群の屈折力を制限するものであり、高解像
の投影レンズを達成するために必要な構成要件である。
この場合、|f1 /f|が5以上であると、第1レンズ
群の屈折力が小さくなりすぎ、全体のパッツバール和を
小さく抑えられず、また、3以下であると、負の屈折力
が大きくなることによって第1レンズ群の面の曲率がき
つくなり、諸収差の発生が大きくなる。また、f2 /f
が25以上であると、少ない枚数の正の屈折力のレンズ
で光線を結像させることができず、また、10以下であ
ると、正の屈折力が大きくなることによって負の球面収
差の発生が大きくなる。
The conditional expressions for | f 1 / f | and f 2 / f limit the refracting power of each lens group, and are constituent requirements necessary for achieving a high resolution projection lens. .
In this case, if | f 1 / f | is 5 or more, the refracting power of the first lens group becomes too small, and the overall Patzval sum cannot be suppressed small. If it is 3 or less, the negative refracting power is negative. Becomes larger, the curvature of the surface of the first lens group becomes tighter, and the generation of various aberrations becomes larger. Also, f 2 / f
Is more than 25, it is impossible to form a light beam with a small number of lenses having a positive refractive power, and if less than 10, the positive refractive power becomes large and negative spherical aberration occurs. Grows larger.

【0012】さらに、第3レンズ群の前側焦点位置をf
3Fとし、第2レンズ群の後側主点を基準としたf3Fとの
距離をdS としたとき、以下の条件を満足することが望
ましい。
Further, the front focal position of the third lens group is f
When 3F and the distance from f 3F with respect to the rear principal point of the second lens unit as d S , it is desirable that the following conditions be satisfied.

【0013】 −0.1<dS /f2 <0.2 ・・・(3) 式(3)の符号は、第2レンズ群の後側主点よりもf3F
が像面側にあるときをプラス、物体側にあるときをマイ
ナスとする。本発明のような縮小投影レンズにおいて
は、像面のディフォーカスや像面の平坦性の悪さによる
像の倍率変動を抑えるために、射出側テレセントリック
であることが一般的である。本発明の場合、f3Fは瞳位
置に一致する。つまり、上記条件は第2レンズ群と瞳位
置との関係を規定するものである。−0.1>dS /f
2 となると、第2レンズ群で内コマ収差が生じ、第1レ
ンズ群で生ずる内コマ収差と相乗し、第3レンズ群での
コマ収差補正を困難にする。一方、dS /f2 >0.2
では、外コマ収差が強く発生し過ぎ、第3レンズ群の非
球面は後述する通り、球面収差を補正すると共に外コマ
収差を作り出す作用を持つが、第1レンズ群の発生する
内コマ収差以上に、第2、第3レンズ群の外コマ収差が
増え、全体として外コマ収差が残ってしまう。
−0.1 <d S / f 2 <0.2 (3) The sign of the expression (3) is f 3F from the rear principal point of the second lens group.
When is on the image side, it is positive, and when it is on the object side, it is negative. In the reduction projection lens as in the present invention, the exit side telecentric is generally used in order to suppress the fluctuation of the image magnification due to the defocus of the image surface or the poor flatness of the image surface. In the case of the present invention, f 3F corresponds to the pupil position. That is, the above conditions define the relationship between the second lens group and the pupil position. -0.1> d S / f
When the value becomes 2, inner coma aberration is generated in the second lens group, synergizes with inner coma aberration generated in the first lens group, and it becomes difficult to correct coma aberration in the third lens group. On the other hand, d S / f 2 > 0.2
Then, the outer coma aberration is excessively generated, and the aspherical surface of the third lens group has a function of correcting the spherical aberration and producing the outer coma aberration as described later. In addition, the outer coma aberration of the second and third lens groups increases, and the outer coma aberration remains as a whole.

【0014】また、別に、本構成の縮小投影レンズは、
各群に少なくとも1面の非球面を有することが望まし
い。これは、少ないレンズ枚数の上記構成では補正しき
れない諸収差を補正するためである。第1レンズ群の非
球面は、ここで発生する正の歪曲収差を補正するために
用いる。第2レンズ群の非球面は、構成レンズエレメン
トが少ないことによる負の球面収差を補正するために用
いる。第3レンズ群の非球面は、第1レンズ群で発生し
た内コマ収差を補正するためと、本レンズ群自身で発生
する球面収差を補正するために用いる。さらには、これ
らの非球面は、レンズ光軸から周縁に行くに従って光軸
近傍の屈折力を弱める形状の非球面であることが好まし
い。
Separately, the reduction projection lens of this construction is
It is desirable to have at least one aspherical surface in each group. This is to correct various aberrations that cannot be corrected by the above-described configuration with a small number of lenses. The aspherical surface of the first lens group is used to correct the positive distortion aberration generated here. The aspherical surface of the second lens group is used to correct negative spherical aberration due to the small number of constituent lens elements. The aspherical surface of the third lens group is used for correcting the inner coma aberration generated in the first lens group and for correcting the spherical aberration generated in the main lens group itself. Furthermore, it is preferable that these aspherical surfaces are aspherical surfaces having a shape in which the refractive power in the vicinity of the optical axis is weakened from the lens optical axis toward the periphery.

【0015】また、別に、本構成の縮小投影レンズは、
屈折率1.6以下の硝材で構成することが好ましい。こ
れは、エキシマレーザのようなスペクトル幅が非常に狭
い光を使用するに当たり、レンズの色収差を考慮しなく
てもよく、色収差補正のために屈折率が1.6以上の硝
材を使用する必要がないからである。
Separately, the reduction projection lens of this structure is
It is preferable to use a glass material having a refractive index of 1.6 or less. This is because it is not necessary to consider the chromatic aberration of the lens when using light with a very narrow spectral width such as an excimer laser, and it is necessary to use a glass material having a refractive index of 1.6 or more for correcting chromatic aberration. Because there is no.

【0016】[0016]

【実施例】以下、本発明の縮小投影レンズの実施例1〜
4について説明する。図1〜図4にそれぞれ実施例1〜
4のレンズ断面図を示すが、何れの実施例においても、
倍率は1/5、開口数は0.45、物像間距離は100
0mm、露光領域は10×10mmであり、硝材は全て
SiO2 からなる。なお、これらの実施例のレンズデー
タは後記する。
EXAMPLES Examples 1 to 1 of the reduction projection lens of the present invention will be described below.
4 will be described. 1 to 4 show Embodiments 1 to 1, respectively.
4 shows a lens cross-sectional view of No. 4, but in any embodiment,
Magnification is 1/5, numerical aperture is 0.45, object-image distance is 100
The exposure area is 0 mm, the exposure area is 10 × 10 mm, and the glass material is made of SiO 2 . The lens data of these examples will be described later.

【0017】まず、本発明の実施例1について説明す
る。図1において、第1群Iは物体側に凸面を向けた負
のメニスカスレンズ1枚から、第2群IIは両凸レンズ1
枚と物体側に凸面を向けた正のメニスカスレンズ1枚の
計2枚から、第3群III は像側に凹面を向けた正のメニ
スカスレンズ2枚と像側に凹面を向けたパワーレスのメ
ニスカスレンズ1枚の計3枚からなる。
First, a first embodiment of the present invention will be described. In FIG. 1, the first group I is one negative meniscus lens with a convex surface facing the object side, and the second group II is a biconvex lens 1.
The third lens group III consists of two positive meniscus lenses with the concave surface facing the image side and a positive power meniscus lens with the concave surface facing the image side. It consists of three meniscus lenses.

【0018】この実施例1と次に述べる実施例2は、特
に、第3群III の最も像面に近いところに像側に凹面を
向けたパワーレスのメニスカスレンズ1枚を配置してい
るが、この場合、高次のコマ収差を補正するために、少
なくともその1面に非球面を用いるのがさらに好まし
い。さらに、このパワーレスのメニスカスレンズの焦点
距離をf33としたとき、以下の条件を満足することが好
ましい。 2000(mm)<|f33| ・・・(4) |f33|が2000mm以下であると、球面成分で低次
のコマ収差が発生してしまう。
In Example 1 and Example 2 described below, one powerless meniscus lens having a concave surface facing the image side is arranged particularly near the image plane of the third lens group III. In this case, it is more preferable to use an aspherical surface on at least one of the surfaces in order to correct higher-order coma. Further, when the focal length of this powerless meniscus lens is f 33 , it is preferable that the following condition is satisfied. When 2000 (mm) <| f 33 | (4) | f 33 | is 2000 mm or less, low-order coma aberration occurs in the spherical component.

【0019】次に、本発明の実施例2について説明す
る。図2において、第1群Iは物体側に凸面を向けた負
のメニスカスレンズ1枚から、第2群IIは物体側に凸面
を向けた正のメニスカスレンズ1枚から、第3群III は
両凸レンズ1枚と像側に凹面を向けた正のメニスカスレ
ンズ1枚と像側に凹面を向けたパワーレスのメニスカス
レンズ1枚の計3枚からなる。第3群III の像側に凹面
を向けたパワーレスのメニスカスレンズについては、実
施例1と同様の作用を持つ。
Next, a second embodiment of the present invention will be described. In FIG. 2, the first group I is composed of one negative meniscus lens having a convex surface facing the object side, the second group II is composed of one positive meniscus lens having a convex surface facing the object side, and the third group III is composed of both lenses. It consists of one convex lens, one positive meniscus lens with a concave surface facing the image side, and one powerless meniscus lens with a concave surface facing the image side, for a total of three lenses. The powerless meniscus lens having the concave surface facing the image side of the third lens group III has the same operation as that of the first embodiment.

【0020】次に、本発明の実施例3については、図3
において、第1群Iは物体側に凸面を向けた負のメニス
カスレンズ1枚から、第2群IIは物体側に凸面を向けた
正のメニスカスレンズ1枚から、第3群III は両凸レン
ズ1枚と像側に凹面を向けた正のメニスカスレンズ1枚
からなる。
Next, the third embodiment of the present invention will be described with reference to FIG.
In the first group I, one negative meniscus lens having a convex surface facing the object side is used, the second group II is one positive meniscus lens having a convex surface facing the object side, and the third group III is a biconvex lens 1 And one positive meniscus lens with a concave surface facing the image side.

【0021】本発明の実施例4については、図4におい
て、第1群Iは物体側に凸面を向けた負のメニスカスレ
ンズ1枚から、第2群IIは物体側に凸面を向けた正のメ
ニスカスレンズ1枚から、第3群III は両凸レンズ1枚
と像側に凹面を向けた正のメニスカスレンズ1枚からな
る。
In the fourth embodiment of the present invention, in FIG. 4, the first group I is one negative meniscus lens having a convex surface facing the object side, and the second group II is a positive meniscus lens having a convex surface facing the object side. From one meniscus lens, the third group III consists of one biconvex lens and one positive meniscus lens with the concave surface facing the image side.

【0022】以下に各実施例のレンズデータを示すが、
レンズデータ中、R1 、R2 、・・・は各レンズ面の曲
率半径、d1 、d2 ・・・は各レンズ面間の間隔、
1 、n2 、・・・は各レンズの193nmでの屈折率
であり、また、非球面形状は光軸方向をx、光軸に直交
する方向をyとしたとき、次式で表される。 x=(y2 /r)/ [1+{1−(y2 /r2 ) }
1/2 ]+Ay4 +By6 +Cy8 +Dy10 ただし、rは近軸曲率半径、A、B、C、Dはそれぞれ
4次、6次、8次、10次の非球面係数である。
The lens data of each embodiment are shown below.
In the lens data, R 1 , R 2 , ... Are the radius of curvature of each lens surface, d 1 , d 2 ... Are the intervals between the lens surfaces,
n 1 , n 2 , ... Are the refractive indices of each lens at 193 nm, and the aspherical shape is expressed by the following equation, where x is the optical axis direction and y is the direction orthogonal to the optical axis. It x = (y 2 / r) / [1+ {1- (y 2 / r 2)}
1/2 ] + Ay 4 + By 6 + Cy 8 + Dy 10 where r is a paraxial radius of curvature, and A, B, C, and D are fourth-order, sixth-order, eighth-order, and tenth-order aspherical coefficients, respectively.

【0023】実施例1 R1 = 149.072 d1 = 4 n1 =1.56 R2 = 53.071(非球面) d2 = 580.412 R3 = 685.808 d3 = 12.808 n2 =1.56 R4 = -855.88 d4 = 0.08 R5 = 332.732 d5 = 10.304 n3 =1.56 R6 = 970.134(非球面) d6 = 196.429 R7 = 236.31 d7 = 10.938 n4 =1.56 R8 = 1175.523 d8 = 0.714 R9 = 87.26 d9 = 42.891 n5 =1.56 R10= 194.005 d10= 53.429 R11= 68.841(非球面) d11= 13.136 n6 =1.56 R12= 59.862 非球面係数 第2面 A=-0.105×10-5 B=-0.126×10-9 C=-0.242×10-13 D=-0.176×10-16 第6面 A= 0.986×10-8 B= 0.485×10-13 C= 0.116×10-17 D= 0.44 ×10-22 第11面 A=-0.745×10-6 B=-0.359×10-9 C=-0.115×10-12 D=-0.595×10-17
Example 1 R 1 = 149.072 d 1 = 4 n 1 = 1.56 R 2 = 53.071 (aspherical surface) d 2 = 580.412 R 3 = 685.808 d 3 = 1.808 n 2 = 1.56 R 4 = -855.88 d 4 = 0.08 R 5 = 332.732 d 5 = 10.304 n 3 = 1.56 R 6 = 970.134 ( aspherical) d 6 = 196.429 R 7 = 236.31 d 7 = 10.938 n 4 = 1.56 R 8 = 1175.523 d 8 = 0.714 R 9 = 87.26 d 9 = 42.891 n 5 = 1.56 R 10 = 194.005 d 10 = 53.429 R 11 = 68.841 ( aspherical) d 11 = 13.136 n 6 = 1.56 R 12 = 59.862 aspheric coefficient the second surface A = -0.105 × 10 -5 B = -0.126 × 10 -9 C = -0.242 × 10 -13 D = -0.176 × 10 -16 6th surface A = 0.986 × 10 -8 B = 0.485 × 10 -13 C = 0.116 × 10 -17 D = 0.44 × 10 -22 11th surface A = -0.745 × 10 -6 B = -0.359 × 10 -9 C = -0.115 × 10 -12 D = -0.595 × 10 -17
.

【0024】実施例2 R1 = 1736.215 d1 = 5.866 n1 =1.56 R2 = 68.889(非球面) d2 = 543.701 R3 = 263.312 d3 = 11.509 n2 =1.56 R4 = 819.653(非球面) d4 = 165.728 R5 = 220.315 d5 = 22.409 n3 =1.56 R6 = -1415.823 d6 = 49.904 R7 = 106.825 d7 = 37.488 n4 =1.56 R8 = 254.313 d8 = 46.233 R9 = 96.597(非球面) d9 = 6.904 n5 =1.56 R10= 103.38 非球面係数 第2面 A=-0.639×10-6 B=-0.155×10-10 C=-0.103×10-13 D= 0.563×10-18 第4面 A= 0.223×10-7 B= 0.151×10-12 C= 0.241×10-17 D= 0.209×10-21 第9面 A=-0.277×10-6 B=-0.522×10-10 C=-0.497×10-14 D= 0.69 ×10-18
Example 2 R 1 = 1736.215 d 1 = 5.866 n 1 = 1.56 R 2 = 68.889 (aspherical surface) d 2 = 543.701 R 3 = 263.312 d 3 = 1.11.509 n 2 = 1.56 R 4 = 819.653 (aspherical surface) d 4 = 165.728 R 5 = 220.315 d 5 = 22.409 n 3 = 1.56 R 6 = -1415.823 d 6 = 49.904 R 7 = 106.825 d 7 = 37.488 n 4 = 1.56 R 8 = 254.313 d 8 = 46.233 R 9 = 96.597 ( aspherical) d 9 = 6.904 n 5 = 1.56 R 10 = 103.38 second surface A = -0.639 × 10 -6 aspherical coefficient B = -0.155 × 10 -10 C = -0.103 × 10 -13 D = 0.563 × 10 -18 4th surface A = 0.223 × 10 -7 B = 0.151 × 10 -12 C = 0.241 × 10 -17 D = 0.209 × 10 -21 9th surface A = -0.277 × 10 -6 B = -0.522 × 10 -10 C = -0.497 x 10 -14 D = 0.69 x 10 -18
.

【0025】実施例3 R1 = 6336.701 d1 = 4 n1 =1.56 R2 = 65.016(非球面) d2 = 561.539 R3 = 261.005 d3 = 15.817 n2 =1.56 R4 = ∞ (非球面) d4 = 176.959 R5 = 232.483 d5 = 20.768 n3 =1.56 R6 = -632.184 d6 = 40.867 R7 = 126.144 d7 = 28.872 n4 =1.56 R8 = 413.522(非球面) 非球面係数 第2面 A=-0.779×10-6 B=-0.179×10-10 C=-0.182×10-13 D= 0.307×10-17 第4面 A= 0.268×10-7 B= 0.792×10-13 C= 0.250×10-17 D= 0.155×10-21 第8面 A= 0.438×10-7 B= 0.215×10-12 C= 0.424×10-16 D= 0.645×10-20
Example 3 R 1 = 6336.701 d 1 = 4 n 1 = 1.56 R 2 = 65.016 (aspherical surface) d 2 = 561.539 R 3 = 261.005 d 3 = 15.817 n 2 = 1.56 R 4 = ∞ (aspherical surface) d 4 = 176.959 R 5 = 232.483 d 5 = 20.768 n 3 = 1.56 R 6 = -632.184 d 6 = 40.867 R 7 = 126.144 d 7 = 28.872 n 4 = 1.56 R 8 = 413.522 ( aspherical surface) aspherical coefficients second Surface A = -0.779 × 10 -6 B = -0.179 × 10 -10 C = -0.182 × 10 -13 D = 0.307 × 10 -17 4th surface A = 0.268 × 10 -7 B = 0.792 × 10 -13 C = 0.250 x 10 -17 D = 0.155 x 10 -21 8th surface A = 0.438 x 10 -7 B = 0.215 x 10 -12 C = 0.424 x 10 -16 D = 0.645 x 10 -20
.

【0026】実施例4 R1 = 7761.76 d1 = 4 n1 =1.56 R2 = 65.426(非球面) d2 = 566.358 R3 = 260.181 d3 = 14.689 n2 =1.56 R4 = 3358.89 (非球面) d4 = 167.605 R5 = 217.213 d5 = 21.986 n3 =1.56 R6 = -768.035(非球面) d6 = 44.28 R7 = 137.413 d7 = 26.994 n4 =1.56 R8 = 634.5 (非球面) 非球面係数 第2面 A=-0.777×10-6 B=-0.144×10-10 C=-0.182×10-13 D= 0.307×10-17 第4面 A= 0.275×10-7 B= 0.13 ×10-12 C= 0.417×10-17 D= 0.175×10-21 第6面 A= 0.523×10-9 B=-0.25 ×10-12 C= 0.951×10-17 D=-0.425×10-22 第8面 A= 0.484×10-7 B= 0.678×10-12 C= 0.114×10-16 D= 0.534×10-20
Example 4 R 1 = 7761.76 d 1 = 4 n 1 = 1.56 R 2 = 65.426 (aspherical surface) d 2 = 566.358 R 3 = 260.181 d 3 = 14.689 n 2 = 1.56 R 4 = 3358.89 (aspherical surface) d 4 = 167.605 R 5 = 217.213 d 5 = 21.986 n 3 = 1.56 R 6 = -768.035 ( aspherical) d 6 = 44.28 R 7 = 137.413 d 7 = 26.994 n 4 = 1.56 R 8 = 634.5 ( aspherical) non Spherical coefficient 2nd surface A = -0.777 × 10 -6 B = -0.144 × 10 -10 C = -0.182 × 10 -13 D = 0.307 × 10 -17 4th surface A = 0.275 × 10 -7 B = 0.13 × 10 -12 C = 0.417 x 10 -17 D = 0.175 x 10 -21 6th surface A = 0.523 x 10 -9 B = -0.25 x 10 -12 C = 0.951 x 10 -17 D = -0.425 x 10 -22 Eighth surface A = 0.484 x 10 -7 B = 0.678 x 10 -12 C = 0.114 x 10 -16 D = 0.534 x 10 -20
.

【0027】次に、上記実施例1〜4の球面収差、非点
収差、歪曲収差、横収差を表す収差図をそれぞれ図5〜
図8に示す。図中、Yは像高比、Mはメリジオナル像
面、Sはサジタル像面を示す。また、各実施例の条件式
(1)〜(3)の値を次表に示す。
Next, FIGS. 5 to 5 are aberration diagrams showing spherical aberration, astigmatism, distortion, and lateral aberration in the above-mentioned Examples 1 to 4, respectively.
It shows in FIG. In the figure, Y is the image height ratio, M is the meridional image plane, and S is the sagittal image plane. The values of the conditional expressions (1) to (3) of each example are shown in the following table.

【0028】[0028]

【発明の効果】以上説明したように、本発明によれば、
レンズ系の硝材総肉厚が薄く、透過率の良い、高解像の
縮小投影レンズを得ることができる。
As described above, according to the present invention,
It is possible to obtain a high-resolution reduction projection lens having a thin total thickness of the glass material of the lens system and good transmittance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の縮小投影レンズの実施例1のレンズ断
面図である。
FIG. 1 is a lens sectional view of a reduction projection lens according to a first embodiment of the present invention.

【図2】実施例2のレンズ断面図である。FIG. 2 is a lens cross-sectional view of Example 2.

【図3】実施例3のレンズ断面図である。FIG. 3 is a lens cross-sectional view of Example 3.

【図4】実施例4のレンズ断面図である。FIG. 4 is a lens cross-sectional view of Example 4.

【図5】実施例1の球面収差、非点収差、歪曲収差、横
収差を表す収差図である。
FIG. 5 is an aberration diagram showing spherical aberration, astigmatism, distortion, and lateral aberration of Example 1.

【図6】実施例2の球面収差、非点収差、歪曲収差、横
収差を表す収差図である。
FIG. 6 is an aberration diagram showing spherical aberration, astigmatism, distortion, and lateral aberration of Example 2.

【図7】実施例3の球面収差、非点収差、歪曲収差、横
収差を表す収差図である。
FIG. 7 is an aberration diagram illustrating spherical aberration, astigmatism, distortion, and lateral aberration of Example 3.

【図8】実施例4の球面収差、非点収差、歪曲収差、横
収差を表す収差図である。
FIG. 8 is an aberration diagram illustrating spherical aberration, astigmatism, distortion, and lateral aberration of Example 4.

【符号の説明】[Explanation of symbols]

I …第1レンズ群 II …第2レンズ群 III …第3レンズ群 I ... 1st lens group II ... 2nd lens group III ... 3rd lens group

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 物体側より順に、負の屈折力を持つ第1
レンズ群と、正の屈折力を持つ第2レンズ群と、正の屈
折力を持つ第3レンズ群との計3群から構成され、第1
レンズ群、第2レンズ群、及び、全系の焦点距離をそれ
ぞれf1 、f2 、fとしたとき、以下の条件を満足する
ことを特徴とする縮小投影レンズ。 3<|f1 /f|<5 ・・・(1) 10<f2 /f<25 ・・・(2)
1. A first lens element having a negative refractive power in order from the object side.
The first lens group is composed of a lens group, a second lens group having a positive refractive power, and a third lens group having a positive refractive power.
A reduction projection lens characterized by satisfying the following conditions when the focal lengths of the lens group, the second lens group, and the entire system are f 1 , f 2 , and f, respectively. 3 <| f 1 / f | <5 (1) 10 <f 2 / f <25 (2)
【請求項2】 各群に少なくとも1面の非球面を有し、
各非球面は、レンズ光軸から周縁に行くに従って光軸近
傍の屈折力を弱める形状の非球面であることを特徴とす
る請求項1記載の縮小投影レンズ。
2. Each group has at least one aspherical surface,
2. The reduction projection lens according to claim 1, wherein each aspherical surface is an aspherical surface having a shape in which the refractive power near the optical axis is weakened toward the periphery from the optical axis of the lens.
【請求項3】 各レンズを屈折率1.6以下の硝材によ
り構成することを特徴とする請求項1記載の縮小投影レ
ンズ。
3. The reduction projection lens according to claim 1, wherein each lens is made of a glass material having a refractive index of 1.6 or less.
JP27565893A 1993-11-04 1993-11-04 Reduction stepping lens Withdrawn JPH07128592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27565893A JPH07128592A (en) 1993-11-04 1993-11-04 Reduction stepping lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27565893A JPH07128592A (en) 1993-11-04 1993-11-04 Reduction stepping lens

Publications (1)

Publication Number Publication Date
JPH07128592A true JPH07128592A (en) 1995-05-19

Family

ID=17558539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27565893A Withdrawn JPH07128592A (en) 1993-11-04 1993-11-04 Reduction stepping lens

Country Status (1)

Country Link
JP (1) JPH07128592A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6008884A (en) * 1997-04-25 1999-12-28 Nikon Corporation Projection lens system and apparatus
US6259508B1 (en) 1998-01-22 2001-07-10 Nikon Corporation Projection optical system and exposure apparatus and method
US6459534B1 (en) 1999-06-14 2002-10-01 Canon Kabushiki Kaisha Projection optical system and projection exposure apparatus with the same, and device manufacturing method
US6538821B2 (en) 1997-09-22 2003-03-25 Nikon Corporation Projection optical system
US6556353B2 (en) 2001-02-23 2003-04-29 Nikon Corporation Projection optical system, projection exposure apparatus, and projection exposure method
US6606144B1 (en) 1999-09-29 2003-08-12 Nikon Corporation Projection exposure methods and apparatus, and projection optical systems
US6621555B1 (en) 1999-06-14 2003-09-16 Canon Kabushiki Kaisha Projection optical system and projection exposure apparatus with the same, and device manufacturing method
US6674513B2 (en) 1999-09-29 2004-01-06 Nikon Corporation Projection exposure methods and apparatus, and projection optical systems
US6700645B1 (en) 1998-01-22 2004-03-02 Nikon Corporation Projection optical system and exposure apparatus and method
US6862078B2 (en) 2001-02-21 2005-03-01 Nikon Corporation Projection optical system and exposure apparatus with the same
US6867922B1 (en) 1999-06-14 2005-03-15 Canon Kabushiki Kaisha Projection optical system and projection exposure apparatus using the same
JP2016503514A (en) * 2012-10-31 2016-02-04 ハンズ レーザー テクノロジー インダストリー グループ カンパニー リミテッド Near-infrared laser focus lens and laser printing device
US9753249B2 (en) 2015-10-23 2017-09-05 Largan Precision Co., Ltd. Imaging lens assembly, image capturing unit and electronic device
US11163134B2 (en) 2018-12-20 2021-11-02 Largan Precision Co., Ltd. Imaging lens system, identification module and electronic device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6008884A (en) * 1997-04-25 1999-12-28 Nikon Corporation Projection lens system and apparatus
US6538821B2 (en) 1997-09-22 2003-03-25 Nikon Corporation Projection optical system
US6781766B2 (en) 1997-09-22 2004-08-24 Nikon Corporation Projection optical system
US6700645B1 (en) 1998-01-22 2004-03-02 Nikon Corporation Projection optical system and exposure apparatus and method
US6259508B1 (en) 1998-01-22 2001-07-10 Nikon Corporation Projection optical system and exposure apparatus and method
US6867922B1 (en) 1999-06-14 2005-03-15 Canon Kabushiki Kaisha Projection optical system and projection exposure apparatus using the same
US6621555B1 (en) 1999-06-14 2003-09-16 Canon Kabushiki Kaisha Projection optical system and projection exposure apparatus with the same, and device manufacturing method
US6459534B1 (en) 1999-06-14 2002-10-01 Canon Kabushiki Kaisha Projection optical system and projection exposure apparatus with the same, and device manufacturing method
US6674513B2 (en) 1999-09-29 2004-01-06 Nikon Corporation Projection exposure methods and apparatus, and projection optical systems
US6606144B1 (en) 1999-09-29 2003-08-12 Nikon Corporation Projection exposure methods and apparatus, and projection optical systems
US6864961B2 (en) 1999-09-29 2005-03-08 Nikon Corporation Projection exposure methods and apparatus, and projection optical systems
US6862078B2 (en) 2001-02-21 2005-03-01 Nikon Corporation Projection optical system and exposure apparatus with the same
US6556353B2 (en) 2001-02-23 2003-04-29 Nikon Corporation Projection optical system, projection exposure apparatus, and projection exposure method
JP2016503514A (en) * 2012-10-31 2016-02-04 ハンズ レーザー テクノロジー インダストリー グループ カンパニー リミテッド Near-infrared laser focus lens and laser printing device
US9753249B2 (en) 2015-10-23 2017-09-05 Largan Precision Co., Ltd. Imaging lens assembly, image capturing unit and electronic device
US11163134B2 (en) 2018-12-20 2021-11-02 Largan Precision Co., Ltd. Imaging lens system, identification module and electronic device

Similar Documents

Publication Publication Date Title
JP3624973B2 (en) Projection optical system
JP3500745B2 (en) Projection optical system, projection exposure apparatus, and projection exposure method
KR100573913B1 (en) Iprojection optical system and exposure apparatus having the same
JP3750123B2 (en) Projection optical system
JP3454390B2 (en) Projection optical system, projection exposure apparatus, and projection exposure method
JP3819048B2 (en) Projection optical system, exposure apparatus including the same, and exposure method
JPH116957A (en) Projection optical system, projection exposure system and projection exposure method
JPH07128590A (en) Reduction stepping lens
JPH08211294A (en) Projection exposing device
JPH07140384A (en) Projection optical system and projection aligner
JP3823436B2 (en) Projection optical system
JPH07140385A (en) Projection optical system and projection aligner
JPH0534593A (en) Contraction projection lens
JPH1048517A (en) Projection optical system
JPH07128592A (en) Reduction stepping lens
JPH06313845A (en) Projection lens system
JPH1195095A (en) Projection optical system
JPH08262321A (en) Relay optical system
JPH06130291A (en) Standard lens
EP0604093B1 (en) Catadioptric reduction projection optical system
JPH10325922A (en) Projection optical system
JPS6113206B2 (en)
JP2000121934A (en) Projection optical system
JPH10170820A (en) Optical system with diffractive optical element
JPH11352398A (en) Both-side telecentric optical system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010130