JPS63121807A - Optical fiber - Google Patents

Optical fiber

Info

Publication number
JPS63121807A
JPS63121807A JP61268365A JP26836586A JPS63121807A JP S63121807 A JPS63121807 A JP S63121807A JP 61268365 A JP61268365 A JP 61268365A JP 26836586 A JP26836586 A JP 26836586A JP S63121807 A JPS63121807 A JP S63121807A
Authority
JP
Japan
Prior art keywords
optical fiber
cladding
clad
layer
outermost
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61268365A
Other languages
Japanese (ja)
Inventor
Koji Shimoda
耕司 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61268365A priority Critical patent/JPS63121807A/en
Publication of JPS63121807A publication Critical patent/JPS63121807A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To extend the degree of freedom of constituting conditions for optimizing several characteristics of coating resin by forming an outermost peripheral clad layer contg. impurities which absorbs the light in the wavelength range applicable to optical communication, on the outermost periphery of the clad. CONSTITUTION:An outermost peripheral clad layer contg. impurities for absorbing the light in the wavelength range applicable to optical communication, particularly those having OH groups or transition metal ion such as Ni, Cr, Fe, Cu, Co, etc. is formed on the outermost peripheral layer of the clad in a quartz glass optical fiber comprising core and clad. For example, an outermost peripheral clad layer 3 contg. an impurity is formed on the external peripheral surface comprising a preform for single mode optical fiber of a clad 2 by melting a preform of optical fiber coated with SiO2 contg. Ni ion as transition metal ion by plasma vapor deposition in a heating furnace. Then, a resin curable with ultraviolet rays and having 1.42 refractive index is coated thereon, which is cured in an ultraviolet rays curing furnace to form a clad layer 4, thus an optical fiber is obtd. By this method, the degree of freedom of constituting conditions for optimizing several characteristics of the coating resin is extended.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光通信用のコアおよびクラッドから構成される
光ファイバに関し、とくにクラッド外周構造の改良に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical fiber composed of a core and a cladding for optical communication, and particularly relates to an improvement in the outer peripheral structure of the cladding.

〔従来の技術〕[Conventional technology]

光ファイバによる通信は、コアを伝搬するコアモードの
光に婬3を乗せて行うものであるから、クラッドを伝搬
するクラッドモードの光は受信に際して大きな妨害とな
る。このため、クラッドモードを減衰しやすくする機構
として、従来は、クラッド外周に施す被覆層の一番内側
の層、すなわちクラッドに接する外層被覆として、クラ
ッドの屈折率より高い屈折率を有する被覆層を設けるこ
とにより、クラッドから被覆側に光が透過しやすい構成
としている。第3図a、bは従来の光ファイバの断面構
造および光伝搬の模式図を例示したもので、■はコア、
2はクラッド、4はクラッド2の屈折率より高い屈折率
を有する被覆層、5は被覆層4の屈折率より低い屈折率
を有する被覆層で、第3図すの矢印はクラッドモードの
光伝搬の状態を示すもので、クラッドモードは被覆層4
で吸収され減衰する。
Since communication using an optical fiber is carried out by placing an optical fiber on the core mode light that propagates through the core, the cladding mode light that propagates through the cladding becomes a major interference during reception. Therefore, as a mechanism to facilitate attenuation of the cladding mode, conventionally, a coating layer having a refractive index higher than the refractive index of the cladding is used as the innermost layer of the coating layer applied around the cladding, that is, as an outer coating in contact with the cladding. By providing such a structure, light can easily pass from the cladding to the coating side. Figures 3a and 3b illustrate the cross-sectional structure and light propagation schematic diagram of a conventional optical fiber, where ■ is the core;
2 is a cladding, 4 is a covering layer having a refractive index higher than that of the cladding 2, and 5 is a covering layer having a refractive index lower than that of the covering layer 4. The arrow in Figure 3 indicates the light propagation of the cladding mode. , and the cladding mode is the coating layer 4.
is absorbed and attenuated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のこの種の光ファイバでは、クラッドモードを減衰
させるため、被覆層のうちクラッドに直接接する最内層
に、クラッドモードの屈折率より高い屈折率を持たせな
ければならない。
In conventional optical fibers of this type, in order to attenuate the cladding mode, the innermost layer of the coating layer that is in direct contact with the cladding must have a refractive index higher than the refractive index of the cladding mode.

ところで被覆層の最も内側の層は、光ファイバのクラッ
ドと直接接しているため、クラッドモードを減衰させる
特産省か、ヤング率、伸び、硬化特性、温度特性など種
種の特性を満足させなければならない。しかし、通常は
クラッドモードを減衰させるためのクラッドより高い屈
折率を持たせる要件を満たす構成とすることから、上記
した種種の特性を最適化するための被覆樹脂の構成要件
、すなわち化学的構造や組成の自由度が大きく減少され
ることを避けられないという問題がある。
By the way, since the innermost layer of the coating layer is in direct contact with the cladding of the optical fiber, it must satisfy various characteristics such as special features such as attenuating the cladding mode, Young's modulus, elongation, curing characteristics, and temperature characteristics. . However, since the structure usually satisfies the requirement of having a higher refractive index than the cladding in order to attenuate the cladding mode, the constituent requirements of the coating resin to optimize the various characteristics mentioned above, that is, the chemical structure and There is a problem in that the degree of freedom in composition is unavoidably reduced.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は従来の問題点を解決するため、コアおよびクラ
ッドからなる石英ガラス光ファイバにおいて、クラッド
最外周層に、光通信に適用する波長領域の波長光を吸収
する不純物、とくにOH基またはNi、Cr、Fe、C
u、Goなどの遷移金属イオンの不純物を混入したクラ
ッド最外周層を備えた構造を有することを特徴としてい
る。
In order to solve the conventional problems, the present invention provides a silica glass optical fiber consisting of a core and a cladding, in which the outermost layer of the cladding contains impurities, particularly OH groups or Ni, which absorb wavelength light in the wavelength range applicable to optical communications. Cr, Fe, C
It is characterized by having a structure including an outermost cladding layer mixed with impurities of transition metal ions such as u and Go.

〔作 用〕[For production]

本発明はクラッドの最外周に、光通信に用いる波長領域
の波長光を吸収する不純物を混入したクラッド最外周層
を備えた構成とすることにより、クラッドを伝搬するク
ラッドモードはクラッド最外周層で吸収され減衰する。
The present invention has a configuration in which the outermost layer of the cladding is mixed with an impurity that absorbs wavelength light in the wavelength range used for optical communication, so that the cladding mode propagating through the cladding is transmitted through the outermost layer of the cladding. Absorbed and attenuated.

したがって被覆層の最内層の屈折率をクラッドの屈折率
より高くする必要がなく、被覆樹脂の各種特性を最適化
する構成要件の自由度は大きく拡張される。以下図面に
もとづき実施例について説明する。
Therefore, it is not necessary to make the refractive index of the innermost layer of the coating layer higher than the refractive index of the cladding, and the degree of freedom of the constituent elements for optimizing various properties of the coating resin is greatly expanded. Examples will be described below based on the drawings.

〔実施例〕〔Example〕

第1図a、bは本発明の光ファイバの断面構造および光
伝搬の模式図を例示したもので、1はコア、2はクラッ
ド、3は不純物混入クラッド最外周層である。第1図す
の矢印で示すように、クラッドを伝搬するクラッドモー
ドは不純物混入クラッド最外周層3で吸収され、減衰す
る。
FIGS. 1a and 1b illustrate schematic diagrams of the cross-sectional structure and light propagation of the optical fiber of the present invention, where 1 is the core, 2 is the cladding, and 3 is the outermost layer of the impurity-containing cladding. As shown by the arrow in FIG. 1, the cladding mode propagating through the cladding is absorbed and attenuated by the outermost layer 3 of the impurity-containing cladding.

第2図は本発明の光ファイバの具体的実施例の断面構造
を示す。クラッド2の屈折率が1.45のシングルモー
ド光ファイバ用プリフォームの外周表面に、遷移金属イ
オンの一例としてNiを含んだ5i02をプラズマ蒸着
させた光フアイバプリフォームを加熱炉で加熱・溶融し
、外径125μmφに線引し、不純物混入クラッド最外
周層3を形成した外側に、屈折率が1.42の紫外線硬
化樹脂を塗布した後、紫外線炉により紫外線硬化樹脂を
硬化させて被覆層4を施し、外径250μmφの光ファ
イバを作製した。不純物混入クラッド最外周層の層厚は
2μmであった。この作製した光ファイバを、光ファイ
バのサンプル1とする。
FIG. 2 shows a cross-sectional structure of a specific embodiment of the optical fiber of the present invention. An optical fiber preform in which 5i02 containing Ni as an example of a transition metal ion was plasma-deposited on the outer peripheral surface of a single-mode optical fiber preform with a cladding 2 having a refractive index of 1.45 was heated and melted in a heating furnace. A line is drawn to have an outer diameter of 125 μmφ, and an ultraviolet curable resin with a refractive index of 1.42 is applied to the outside on which the impurity-mixed cladding outermost peripheral layer 3 is formed, and then the ultraviolet curable resin is cured in an ultraviolet oven to form the coating layer 4. An optical fiber with an outer diameter of 250 μmφ was prepared. The layer thickness of the outermost peripheral layer of the impurity-containing cladding was 2 μm. This produced optical fiber will be referred to as optical fiber sample 1.

光ファイバのサンプル1と比較するため、不純物混入の
処理を行わずに、シングルモード光ファイバ用プリフォ
ームを上述のサンプル1と同様の方法で線引し、同一の
紫外線硬化樹脂により被覆を施した外径250μmφの
光ファイバのサンプル2と、屈折率1.54の紫外線硬
化樹脂により被覆を施した外径250μmφの光ファイ
バのサンプル3を作製した。
In order to compare with optical fiber sample 1, a single mode optical fiber preform was drawn in the same manner as sample 1 described above without any treatment for impurities, and then coated with the same ultraviolet curing resin. Sample 2 of an optical fiber with an outer diameter of 250 μmφ and sample 3 of an optical fiber with an outer diameter of 250 μmφ coated with an ultraviolet curing resin having a refractive index of 1.54 were prepared.

上記の作製した3種の光ファイバのサンプル1.2およ
び3の、それぞれのクラッドモードの減衰量を測定した
結果を次表に示す。゛ なおクラッドモード強度の測定は、NFP測定によりコ
ア中心から5μm離れた位置で、コア中心に比べて光量
が何dB減衰するかを測定した。
The following table shows the results of measuring the amount of attenuation of each cladding mode of Samples 1.2 and 3 of the three types of optical fibers produced above. The cladding mode intensity was measured by NFP measurement to determine how many dB the light intensity attenuated at a position 5 μm away from the core center compared to the core center.

上表に示す結果から明らかなように、本発明の構造の光
ファイバは、被覆層の屈折率がクラッドの屈折率より低
いサンプル1の場合においても、クラッドモードの除け
ることが確認された。
As is clear from the results shown in the above table, it was confirmed that the optical fiber having the structure of the present invention can eliminate the cladding mode even in the case of Sample 1 in which the refractive index of the coating layer is lower than the refractive index of the cladding.

本実施例は、クラッド最外周層に不純物としてNiの遷
移金属イオンを混入した例を示したが、この他Cr、F
e、Cu、Coの遷移金属イオンを不純物として混入し
ても同じ結果が得られた。
In this example, transition metal ions such as Ni were mixed as impurities in the outermost layer of the cladding.
The same results were obtained even when transition metal ions such as e, Cu, and Co were mixed as impurities.

また他の不純物の例としてOH基を混入した本発明の光
ファイバを作製した。クラッドの屈折率が1.45のシ
ングルモード光ファイバ用プリフォームの外周表面に酸
素/水素炎をあて、OH基をクラッド最外周層に混入さ
せることにより不純物混入クラッド最外周層を形成させ
た。
Furthermore, an optical fiber of the present invention was prepared in which OH groups were mixed as an example of other impurities. An oxygen/hydrogen flame was applied to the outer peripheral surface of a single-mode optical fiber preform whose cladding had a refractive index of 1.45 to mix OH groups into the outermost cladding layer, thereby forming an impurity-containing cladding outermost layer.

本プリフォームを加熱炉で加熱・溶融し、外径125μ
mφに線引し前記実施例サンプル1と同様の紫外線硬化
樹脂の被覆層を施した。この時のOH基混入クりッド最
外周層の層厚は4μmであった。この光ファイバのクラ
ッドモード減衰量は前記と同様のNFP測定の結果3.
2dB/mでありサンプル1と同様クラッドモードの除
去が確認された。
This preform is heated and melted in a heating furnace, and the outer diameter is 125μ.
A wire was drawn to mφ, and a coating layer of an ultraviolet curing resin similar to that of Example Sample 1 was applied. At this time, the layer thickness of the outermost peripheral layer of the OH group-containing hybrid was 4 μm. The cladding mode attenuation of this optical fiber is the result of NFP measurement similar to that described above.
2 dB/m, and similar to Sample 1, removal of the cladding mode was confirmed.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の光ファイバは、クラッド最外
周に、光通信に適用する波長領域の波長光を吸収する不
純物を混入したクラッド最外周層を備えた構造であるこ
とから、従来の光ファイバのように被覆層のクラッドに
直接接する最内層の屈折率をクラッドの屈折率より高く
する必要がなく、したがって被覆樹脂の各種特性を最適
化する構成要件の自由度を大きく拡張でき、その効果は
大きい。
As described above, the optical fiber of the present invention has a structure in which the outermost cladding layer is mixed with an impurity that absorbs wavelength light in a wavelength range applicable to optical communication, so it is different from conventional optical fibers. Unlike fibers, it is not necessary to make the refractive index of the innermost layer in direct contact with the cladding layer higher than the refractive index of the cladding, which greatly expands the degree of freedom in configuration requirements for optimizing various properties of the coating resin. is big.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光フアイバ構造例を説明する図、第2
図は本発明の光フアイバ実施例の断面構造図、第3図は
従来の光フアイバ構造例を説明する図である。 1・・・コア、2・・・クラッド、3・・・不純物混入
クラッド最外周層、4,5・・・被覆層 特許出願人  住友電気工業株式会社 代理人 弁理士 玉 蟲 久五部 b 本発明の尤ファイバ構造例を説明する図第  1  図 本発明の光フアイバ実施例の断面構造図第2図 従来の光ファイノ 第 (構造例と説明する図 3図
FIG. 1 is a diagram explaining an example of the optical fiber structure of the present invention, and FIG.
The figure is a cross-sectional structural diagram of an optical fiber embodiment of the present invention, and FIG. 3 is a diagram illustrating a conventional optical fiber structural example. 1... Core, 2... Clad, 3... Outermost layer of impurity-containing cladding, 4, 5... Coating layer Patent applicant Sumitomo Electric Industries, Ltd. Agent Patent attorney Tama Mushi Kugobe b Books FIG. 1 is a cross-sectional structural diagram of an embodiment of the optical fiber of the present invention. FIG. 3 is a diagram illustrating a conventional optical fiber structure.

Claims (3)

【特許請求の範囲】[Claims] (1)コアおよびクラッドからなる石英ガラス光ファイ
バにおいて、 前記クラッドの最外周に、 光通信に適用する波長領域の波長光を吸収する不純物を
混入したクラッド最外周層を備えてなる ことを特徴とする光ファイバ。
(1) A silica glass optical fiber consisting of a core and a cladding, characterized in that the outermost periphery of the cladding is provided with an outermost cladding layer containing an impurity that absorbs wavelength light in a wavelength range applicable to optical communication. optical fiber.
(2)前記クラッド最外周層は、OH基を不純物として
混入してなることを特徴とする特許請求の範囲第1項記
載の光ファイバ。
(2) The optical fiber according to claim 1, wherein the outermost clad layer contains an OH group as an impurity.
(3)前記クラッド最外周層は、遷移金属イオンを不純
物として混入してなることを特徴とする特許請求の範囲
第1項記載の光ファイバ。
(3) The optical fiber according to claim 1, wherein the outermost clad layer contains transition metal ions as impurities.
JP61268365A 1986-11-11 1986-11-11 Optical fiber Pending JPS63121807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61268365A JPS63121807A (en) 1986-11-11 1986-11-11 Optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61268365A JPS63121807A (en) 1986-11-11 1986-11-11 Optical fiber

Publications (1)

Publication Number Publication Date
JPS63121807A true JPS63121807A (en) 1988-05-25

Family

ID=17457501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61268365A Pending JPS63121807A (en) 1986-11-11 1986-11-11 Optical fiber

Country Status (1)

Country Link
JP (1) JPS63121807A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970701359A (en) * 1994-12-23 1997-03-17 미셀 푸르니에 Single-Mode Optical Fiber
WO2002033460A1 (en) * 2000-09-04 2002-04-25 Sumitomo Electric Industries, Ltd. Optical fiber grating device
JP2002174739A (en) * 2000-12-07 2002-06-21 Fujikura Ltd Optical fiber grating
JP2004145250A (en) * 2002-08-27 2004-05-20 Sharp Corp Bidirectional optical communication module
JP2007134626A (en) * 2005-11-14 2007-05-31 Fujikura Ltd Double-clad fiber, optical fiber amplifier, and fiber laser
JP2008171985A (en) * 2007-01-11 2008-07-24 Fujikura Ltd Residual light removing fiber, residual light removing structure using the same, and optical amplifier as well as fiber laser
US7515802B2 (en) 2001-09-10 2009-04-07 Schott Ag Glass fibre with at least two glass layers
WO2009066429A1 (en) * 2007-11-19 2009-05-28 Mitsubishi Cable Industries, Ltd. Optical fiber and method for producing the same
JP2010102276A (en) * 2008-09-26 2010-05-06 Mitsubishi Cable Ind Ltd Optical fiber and method for manufacturing the same
CN113511807A (en) * 2021-04-16 2021-10-19 中国科学院西安光学精密机械研究所 Preparation method of high-resolution quartz optical fiber image transmission bundle and quartz optical fiber image transmission bundle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5521058A (en) * 1978-07-31 1980-02-14 Fujitsu Ltd Glass fiber for optical transmission
JPS6063504A (en) * 1983-09-17 1985-04-11 Dainichi Nippon Cables Ltd Image guide
JPS638706A (en) * 1986-06-30 1988-01-14 Nippon Telegr & Teleph Corp <Ntt> Polarization maintaining optical fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5521058A (en) * 1978-07-31 1980-02-14 Fujitsu Ltd Glass fiber for optical transmission
JPS6063504A (en) * 1983-09-17 1985-04-11 Dainichi Nippon Cables Ltd Image guide
JPS638706A (en) * 1986-06-30 1988-01-14 Nippon Telegr & Teleph Corp <Ntt> Polarization maintaining optical fiber

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970701359A (en) * 1994-12-23 1997-03-17 미셀 푸르니에 Single-Mode Optical Fiber
WO2002033460A1 (en) * 2000-09-04 2002-04-25 Sumitomo Electric Industries, Ltd. Optical fiber grating device
US6785444B2 (en) 2000-09-04 2004-08-31 Sumitomo Electric Industries, Ltd. Optical fiber grating device
JP2002174739A (en) * 2000-12-07 2002-06-21 Fujikura Ltd Optical fiber grating
US7515802B2 (en) 2001-09-10 2009-04-07 Schott Ag Glass fibre with at least two glass layers
JP2004145250A (en) * 2002-08-27 2004-05-20 Sharp Corp Bidirectional optical communication module
JP2007134626A (en) * 2005-11-14 2007-05-31 Fujikura Ltd Double-clad fiber, optical fiber amplifier, and fiber laser
JP2008171985A (en) * 2007-01-11 2008-07-24 Fujikura Ltd Residual light removing fiber, residual light removing structure using the same, and optical amplifier as well as fiber laser
WO2009066429A1 (en) * 2007-11-19 2009-05-28 Mitsubishi Cable Industries, Ltd. Optical fiber and method for producing the same
JPWO2009066429A1 (en) * 2007-11-19 2011-03-31 三菱電線工業株式会社 Optical fiber and manufacturing method thereof
US8396340B2 (en) 2007-11-19 2013-03-12 Mitsubishi Cable Industries, Ltd. Optical fiber and method for fabricating the same
JP5476125B2 (en) * 2007-11-19 2014-04-23 三菱電線工業株式会社 Optical fiber and manufacturing method thereof
JP2010102276A (en) * 2008-09-26 2010-05-06 Mitsubishi Cable Ind Ltd Optical fiber and method for manufacturing the same
US8606065B2 (en) 2008-09-26 2013-12-10 Mitsubishi Cable Industries, Ltd. Optical fiber and method for fabricating the same
CN113511807A (en) * 2021-04-16 2021-10-19 中国科学院西安光学精密机械研究所 Preparation method of high-resolution quartz optical fiber image transmission bundle and quartz optical fiber image transmission bundle
CN113511807B (en) * 2021-04-16 2022-09-09 中国科学院西安光学精密机械研究所 Preparation method of high-resolution quartz optical fiber image transmission bundle and quartz optical fiber image transmission bundle

Similar Documents

Publication Publication Date Title
US4877306A (en) Coated optical waveguide fibers
Maurer Glass fibers for optical communications
US3647406A (en) Method of achieving surface refractive index changes in a glass light guide element
Ainslie et al. Interplay of design parameters and fabrication conditions on the performance of monomode fibers made by MCVD
JP3027509B2 (en) Manufacturing method of optical fiber
JPS63121807A (en) Optical fiber
EP0232918A1 (en) Optical waveguide glass fiber flame processing
WO2010035397A1 (en) Optical fiber and method for manufacturing the same
JPS59174541A (en) Optical fiber maintaining plane of polarization
GB2104241A (en) Single polarization optical fibres
CA1051239A (en) Photoconductive fiber or rod
EP0391742A3 (en) Image fiber, image fiber preform, and manufacturing processes thereof
CN111624698A (en) Optical fiber
US4747663A (en) Monomode quartz glass light waveguide and method for producing it
KR102375092B1 (en) Optical Fiber for Removing Cladding Mode and Manufacturing Method Thereof
JPS6033513A (en) Single linear polarization optical fiber
JPH02145448A (en) Production of preform of optical fiber
JP3142955B2 (en) Optical fiber for illumination light transmission for laser beam machine
KR100321855B1 (en) Dispersion optical fiber with wave characteristics even in broadband wavelength band
JPS60153004A (en) Single-mode optical fiber
JPS61132531A (en) Production of optical fiber
JPH06258531A (en) Optical fiber and production of optical fiber bundle using the same
CN111624699A (en) Optical fiber
JPS6134511A (en) Optical fiber and its manufacturing method
JPH03113404A (en) Optical fiber