JPS63121763A - Instrument for measuring characteristics of avalanche photodiode - Google Patents

Instrument for measuring characteristics of avalanche photodiode

Info

Publication number
JPS63121763A
JPS63121763A JP26820886A JP26820886A JPS63121763A JP S63121763 A JPS63121763 A JP S63121763A JP 26820886 A JP26820886 A JP 26820886A JP 26820886 A JP26820886 A JP 26820886A JP S63121763 A JPS63121763 A JP S63121763A
Authority
JP
Japan
Prior art keywords
avalanche photodiode
measured
voltage
light source
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26820886A
Other languages
Japanese (ja)
Inventor
Toshiaki Sekino
関野 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26820886A priority Critical patent/JPS63121763A/en
Publication of JPS63121763A publication Critical patent/JPS63121763A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2632Circuits therefor for testing diodes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

PURPOSE:To measure the breakdown voltage temperature factor of an avalanche photodiode by providing the titled instrument with a bias DC power supply for an avalanche photodiode to be measured, a light source to which output can be varied and a voltage/current measuring instrument for measuring an operating state. CONSTITUTION:A bias voltage is impressed to the avalanche photodiode 1 to be measured by the bias AD power supply 2 and voltage and current between the terminals of the diode 1 are measured by a voltmeter 3 and an ammeter 4. When the optical output of the light source 5 is defined as P1, a multiplication factor M1 can be found out from a dark current in a multiplication area VR1 and the non-multiplication area VR0 of a bias voltage of the diode 1 and a current obtained at the time of light incidence. When the bias voltage is adjusted after measuring the magnification factor M1 so that a magnification factor at an optical output P2 of the light source is M1, the temperature characteristics of a breakdown voltage can be obtained. Thus, the characteristics of the avalanche photodiode can be measured within a short period.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アバランシエ・ホトダイオードの特性測定に
関し、特に降伏電圧の温度係数の測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to measuring the characteristics of an avalanche photodiode, and more particularly to a device for measuring the temperature coefficient of breakdown voltage.

〔従来の技術〕[Conventional technology]

アバランシエ・ホトダイオードは降伏電圧近傍にバイア
ス電圧を印加し、PN接合におけるキャリアのなだれ効
果を利用するため、温度によシ変化する降伏電圧の温度
係数は重要なパラメータである。
Since an avalanche photodiode applies a bias voltage near the breakdown voltage and utilizes the carrier avalanche effect in the PN junction, the temperature coefficient of the breakdown voltage, which changes with temperature, is an important parameter.

従来、この種の測定は、第3図のように被測定用アバラ
ンシエ・ホトダイオード金温度を変えることのできる恒
温槽17に入れ直流電源14電圧計15、電流計16よ
シ降伏電圧の測定回路より構成する測定装置を使用して
いた。この装置では恒温槽内の温度を変え、例えばT1
(’C)、T2 (℃)の温度における降伏電圧V(B
R)R1、V(nu)msを測定し、このとき降伏電圧
の温度係数βは(1)式のように求めた。
Conventionally, this type of measurement has been carried out by placing the avalanche photodiode to be measured in a constant temperature bath 17 where the gold temperature can be changed, and using a DC power supply 14, a voltmeter 15, an ammeter 16, and a breakdown voltage measurement circuit as shown in Fig. 3. A measuring device was used. This device changes the temperature inside the thermostat, for example T1.
('C), breakdown voltage V(B
R) R1 and V(nu)ms were measured, and at this time, the temperature coefficient β of the breakdown voltage was determined as shown in equation (1).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の測定装置は、2点以上の温度で降伏電圧
を測定しなければならないため、恒温槽内の温度を変え
る必要がある。このため、測定作業においては、測定時
間が長くなるという欠点がある。
Since the conventional measuring device described above must measure the breakdown voltage at two or more temperatures, it is necessary to change the temperature within the thermostatic oven. Therefore, in the measurement work, there is a drawback that the measurement time becomes long.

〔問題点を解決するための手段〕[Means for solving problems]

この目的を達成するために、本発明の測定装置は、出力
の可変できる光源と、被測定用アバランシエ・ホトダイ
オードのバイアス電源とその動作電流および動作電圧を
演出する装置を有している。
To achieve this objective, the measuring device of the present invention includes a light source with variable output, a bias power source for the avalanche photodiode to be measured, and a device for controlling its operating current and operating voltage.

本発明による装置の動作原理を第1図の一実施例で詳細
に説明する。
The operating principle of the device according to the invention will be explained in detail with reference to an embodiment in FIG.

〔実施例〕〔Example〕

第1図は、本発明の一実施例全売す。 FIG. 1 shows an embodiment of the present invention.

1は、被測定用アバランシェ−ホトダイオードで、2は
そのバイアス用直fit源である。アバランシエ・ホト
ダイオード1の端子間電圧と電流は、それぞれ電圧計3
、電流計4で測定できる。5は光源で、その出力はPi
とP2に可変できるものとする。ここで、PI<P2と
する。
1 is an avalanche photodiode to be measured, and 2 is a bias direct fit source thereof. The voltage and current across the terminals of avalanche photodiode 1 are measured using voltmeter 3, respectively.
, can be measured with ammeter 4. 5 is a light source whose output is Pi
and P2. Here, it is assumed that PI<P2.

いま、光源5の光出力がPl とし、被測定用アバラン
シエ・ホトダイオードのバイアス電圧が増倍領域である
VRlに設定されているものとする。
Assume now that the optical output of the light source 5 is Pl, and the bias voltage of the avalanche photodiode to be measured is set to VRl, which is the multiplication region.

このときの増倍率をMlとする。なお、増倍率M1は次
のようにして測定できる。
The multiplication factor at this time is Ml. Note that the multiplication factor M1 can be measured as follows.

バイアス電圧VRIにおける暗電流と光源による光が入
射したときの電流t−電流計4で計シ、それぞれIdl
、Ipt  とする。次に非増倍領域になるようにバイ
アス電圧を変え■ROとする。このときの暗電流と光が
入射したときの電流全同様に電流計4で計り、それぞれ
Ido、Ipoとする。増倍率M1は(2)式で求めら
れる。
Dark current at bias voltage VRI and current t when light from the light source is incident - measured by ammeter 4, respectively Idl
, Ipt. Next, change the bias voltage so that it is in the non-multiplying region, and set it to RO. The dark current at this time and the current when light is incident are all measured using an ammeter 4, and are designated as Ido and Ipo, respectively. The multiplication factor M1 is determined by equation (2).

増倍率M1終了後光源5の光出力をP2とし、上記と同
様にバイアス電圧VRIにおける増倍率M2を求める。
After the multiplication factor M1 is completed, the optical output of the light source 5 is set as P2, and the multiplication factor M2 at the bias voltage VRI is determined in the same manner as above.

すなわちM2は(3)式のようになる。That is, M2 becomes as shown in equation (3).

ここでIp2とId2はそれぞれ、光源による光が入射
したとき被測定用アバランシエ・ホトダイオードに流れ
る電流と、バイアス電圧VRI  における暗電流であ
る。
Here, Ip2 and Id2 are the current flowing through the avalanche photodiode to be measured when light from the light source is incident, and the dark current at the bias voltage VRI, respectively.

以上の条件下では一般にPl<P2よj)、Ipt<I
P!であるため、MlとM2 の関係は次のようになる
。Ipl<Ipz  より被測定用アバランシエ・ホト
ダイオードの内部温度は光源5の光出力がP2の場合の
方が太さい。このため、内部温度が同じであれば増幅率
にFiはとんど差が見られないが上記条件下では内温温
度に差が発生するため、降伏電圧も高くな多動作ポイン
トが移動する。すなわちMlO方がM2より大きい値を
示す。
Under the above conditions, generally Pl<P2 j), Ipt<I
P! Therefore, the relationship between Ml and M2 is as follows. From Ipl<Ipz, the internal temperature of the avalanche photodiode to be measured is greater when the optical output of the light source 5 is P2. Therefore, if the internal temperature is the same, there is almost no difference in the amplification factor Fi, but under the above conditions, a difference occurs in the internal temperature, so the multi-operation point where the breakdown voltage is high shifts. That is, MlO shows a larger value than M2.

降伏電圧の変動ΔV(BR)Rは(4)式にて表示でき
る。
The breakdown voltage variation ΔV(BR)R can be expressed by equation (4).

Δ■(旧1)R=β−ΔT・V(BR)R・・・(4J
ここで、βは降伏電圧の温度係数、 ΔTは内部上昇温度、 V(an)u は降伏電圧である。
Δ■ (old 1) R = β - ΔT・V (BR) R... (4J
Here, β is the temperature coefficient of breakdown voltage, ΔT is internal temperature rise, and V(an)u is breakdown voltage.

したがって、温度上昇分だけバイアス電圧を変化させる
ことによシ、光源の光出力をPlとP2に変えたときの
増倍率を等しくすることができる。
Therefore, by changing the bias voltage by the amount of temperature rise, it is possible to equalize the multiplication factors when the optical output of the light source is changed to Pl and P2.

すなわち、増倍率Ml測定後光源の光出力P2における
増倍率がMlになるようにバイアス電圧全調整すること
により降伏電圧の温度特性が求められる。(5)式にそ
の関係を示す。
That is, after measuring the multiplication factor Ml, the temperature characteristics of the breakdown voltage are determined by fully adjusting the bias voltage so that the multiplication factor at the optical output P2 of the light source becomes Ml. The relationship is shown in equation (5).

ただし、ΔVn = VB2− VRIVntキ光源光
出力pgにおけるバイアス電圧 J T =Rth −VB2− (Ipz−Ipt)’
pm2=バイアス電圧■R2において光源の出力P2に
おける電流 ととでpth  は被測定用アバランシェホトダイオー
ドの熱抵抗であらかじめ測定しておくものとする。
However, ΔVn = VB2- VRIVntki Bias voltage at light source light output pg J T = Rth -VB2- (Ipz-Ipt)'
pm2=bias voltage (2) At R2, the current at the output P2 of the light source and pth shall be measured in advance using the thermal resistance of the avalanche photodiode to be measured.

〔実施例〕〔Example〕

第2図り本発明の実施例2である。被測定用アバ2ンシ
エホトダイオード6に直流電源7よシバイアスを印加す
る。このアバランシェホトダイオードに流れる電流と電
圧はそれぞれ電流計9と電圧計8で測定する。光源10
の出力は出力P!とP2が繰り返し時間とともに変化す
る。この繰り6一 返し周波数はアバ2ンシエホトダイオードの熱定数よシ
充分長いものとする。この光源によシ、アバランシェホ
トダイオードに流れる電流も入射光とともに変化しこの
電流はオシロスコープ11で測定する。なお抵抗12は
電流検出力用抵抗である。測定方法は実施例1と同じで
ある。この実施例では、光源の出力が変化しているため
、光源の光出力を切換える必要がない利点がある。
The second diagram is a second embodiment of the present invention. A bias voltage is applied from the DC power supply 7 to the avalanche photodiode 6 to be measured. The current and voltage flowing through this avalanche photodiode are measured by an ammeter 9 and a voltmeter 8, respectively. light source 10
The output of is the output P! and P2 change with repetition time. It is assumed that this repetition frequency is sufficiently longer than the thermal constant of the aberration photodiode. Due to this light source, the current flowing through the avalanche photodiode also changes with the incident light, and this current is measured with an oscilloscope 11. Note that the resistor 12 is a resistor for current detection force. The measurement method is the same as in Example 1. In this embodiment, since the output of the light source is changed, there is an advantage that there is no need to switch the light output of the light source.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、被測定用アバランシェホ
トダイオードへの入射光量の変化によシ増幅率とバイア
ス電圧との関係を利用し、測定が短時間で可能となる効
果がある。
As described above, the present invention has the advantage that measurement can be performed in a short time by utilizing the relationship between the amplification factor and the bias voltage by changing the amount of light incident on the avalanche photodiode to be measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を、第2図は実施例2を示す
。第3図は従来の測定装置を示す。 1.6.13・・・・・・アバランシェホトダイオード
、2.7.14・・団・直流電源、3,8,15°°川
°電圧計、4,9.16・・・・・・電流計、5.10
・・・・・・光源、11・・・・・・オシロスコープ、
12・・・・・・抵抗、17・・・・・・恒温槽。
FIG. 1 shows one embodiment of the present invention, and FIG. 2 shows a second embodiment. FIG. 3 shows a conventional measuring device. 1.6.13... Avalanche photodiode, 2.7.14... DC power supply, 3, 8, 15°° voltmeter, 4, 9.16... Current Total, 5.10
... light source, 11 ... oscilloscope,
12...Resistance, 17...Thermostat.

Claims (1)

【特許請求の範囲】[Claims] 被測定用アバランシエ・ホトダイオード用バイアス直流
電源と該アバランシエ・ホトダイオードに入射させ、し
かも出力の可変できる光源および動作状態を測定するた
めの電圧、電流測定装置を有し、前記アバランシエ・ホ
トダイオードの降伏電圧温度係数の測定を可能としたア
バランシエ・ホトダイオードの特性測定装置。
It has a bias DC power supply for the avalanche photodiode to be measured, a light source that is incident on the avalanche photodiode and whose output can be varied, and a voltage and current measuring device for measuring the operating state, and the breakdown voltage temperature of the avalanche photodiode. An avalanche photodiode characteristic measurement device that enables the measurement of coefficients.
JP26820886A 1986-11-10 1986-11-10 Instrument for measuring characteristics of avalanche photodiode Pending JPS63121763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26820886A JPS63121763A (en) 1986-11-10 1986-11-10 Instrument for measuring characteristics of avalanche photodiode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26820886A JPS63121763A (en) 1986-11-10 1986-11-10 Instrument for measuring characteristics of avalanche photodiode

Publications (1)

Publication Number Publication Date
JPS63121763A true JPS63121763A (en) 1988-05-25

Family

ID=17455422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26820886A Pending JPS63121763A (en) 1986-11-10 1986-11-10 Instrument for measuring characteristics of avalanche photodiode

Country Status (1)

Country Link
JP (1) JPS63121763A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103389451A (en) * 2013-07-24 2013-11-13 广东瑞谷光纤通信有限公司 Testing method and testing device of avalanche photodiode
CN104199502A (en) * 2014-09-03 2014-12-10 重庆航伟光电科技有限公司 Bias voltage method of Si-APD
CN104198909A (en) * 2014-09-15 2014-12-10 华东光电集成器件研究所 Mesa avalanche diode core area measuring method
CN108333495A (en) * 2018-03-01 2018-07-27 国家电投集团西安太阳能电力有限公司 A kind of bypass diode working state detecting method of photovoltaic component terminal box
CN112578253A (en) * 2020-11-23 2021-03-30 深圳市迅特通信技术股份有限公司 Multi-channel chip aging system and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103389451A (en) * 2013-07-24 2013-11-13 广东瑞谷光纤通信有限公司 Testing method and testing device of avalanche photodiode
CN104199502A (en) * 2014-09-03 2014-12-10 重庆航伟光电科技有限公司 Bias voltage method of Si-APD
CN104199502B (en) * 2014-09-03 2016-08-31 重庆航伟光电科技有限公司 A kind of bias method of Si-APD
CN104198909A (en) * 2014-09-15 2014-12-10 华东光电集成器件研究所 Mesa avalanche diode core area measuring method
CN108333495A (en) * 2018-03-01 2018-07-27 国家电投集团西安太阳能电力有限公司 A kind of bypass diode working state detecting method of photovoltaic component terminal box
CN108333495B (en) * 2018-03-01 2020-11-03 国家电投集团西安太阳能电力有限公司 Method for detecting working state of bypass diode of photovoltaic module junction box
CN112578253A (en) * 2020-11-23 2021-03-30 深圳市迅特通信技术股份有限公司 Multi-channel chip aging system and method

Similar Documents

Publication Publication Date Title
JPS63121763A (en) Instrument for measuring characteristics of avalanche photodiode
US4930134A (en) Precision temperature sensor
IT9022470A1 (en) REFERENCE VOLTAGE GENERATOR WITH PROGRAMMABLE THERMAL Drift
JPS5871423A (en) Circuit device for measuring temperature
RU2089863C1 (en) Method of temperature measurement and device for its realization
GB2109938A (en) Temperature measuring circuit using semi-conductor diode
SU1190207A1 (en) Device for measuring temperature
CA1068786A (en) Differential thermal wattmeter
SU1337676A1 (en) Temperature measuring device
JPS5832177A (en) Measuring method for temperature in mosfet channel part
SU1312462A1 (en) Method of measuring thermal resistance of thin-layer coating
SU885961A1 (en) Exposure meter
RU2159414C1 (en) Pyrometer ( versions ) and system of modulators used in pyrometers
JPH01235820A (en) Optically measuring instrument
SU1497541A1 (en) Method of determining thermal emf factor of filamentary crystals
SU1109662A1 (en) Uhf power converter
SU872982A1 (en) Device for measuring temperature
SU1638568A1 (en) Device for compensating thermocouple cold junction temperature variation effects
SU1193554A1 (en) Apparatus for determining material heat capacity
SU1661588A1 (en) Apparatus to measure temperature difference
CN2257924Y (en) Multifunctional thermo detector
SU862080A1 (en) Ac to dc converter
SU1176183A1 (en) Semiconductor temperature meter
SU1673869A1 (en) Temperature difference measuring device
JPH02147972A (en) Apparatus for measuring dlts