JPS63121742A - Detection of carbon monoxide - Google Patents
Detection of carbon monoxideInfo
- Publication number
- JPS63121742A JPS63121742A JP26891286A JP26891286A JPS63121742A JP S63121742 A JPS63121742 A JP S63121742A JP 26891286 A JP26891286 A JP 26891286A JP 26891286 A JP26891286 A JP 26891286A JP S63121742 A JPS63121742 A JP S63121742A
- Authority
- JP
- Japan
- Prior art keywords
- carbon monoxide
- sensor
- peak
- heater
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 title claims abstract description 51
- 229910002091 carbon monoxide Inorganic materials 0.000 title claims abstract description 51
- 238000001514 detection method Methods 0.000 title claims abstract description 37
- 239000004065 semiconductor Substances 0.000 claims abstract description 14
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 9
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 9
- 230000007704 transition Effects 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- 230000035945 sensitivity Effects 0.000 abstract description 16
- 238000010438 heat treatment Methods 0.000 abstract description 5
- 238000004140 cleaning Methods 0.000 abstract description 3
- 239000003054 catalyst Substances 0.000 description 24
- 238000006722 reduction reaction Methods 0.000 description 10
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical class O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 229910000510 noble metal Inorganic materials 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- -1 chlorine ions Chemical class 0.000 description 2
- 230000002301 combined effect Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 229910000314 transition metal oxide Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910000575 Ir alloy Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- GEYXPJBPASPPLI-UHFFFAOYSA-N manganese(III) oxide Inorganic materials O=[Mn]O[Mn]=O GEYXPJBPASPPLI-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
【発明の詳細な説明】 [発明の利用分野] この発明は、一酸化炭素の検出方法に関する。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a method for detecting carbon monoxide.
[従来技術]
金属酸化物半導体の抵抗値の変化を利用したガスセンサ
を、高温域と低温域とに交互に加熱し、低温域でのセン
サ出力から一酸化炭素を検出することが知られている。[Prior art] It is known that a gas sensor that uses changes in the resistance value of a metal oxide semiconductor is heated alternately to a high temperature range and a low temperature range, and carbon monoxide is detected from the sensor output in the low temperature range. .
特公昭53−43,320号はこの技術の基本的構成を
示し、また特開昭61−17,943号は一酸化炭素検
出への妨害ガスがNOxであり、これを活性炭フィルタ
ーにより除去することを示している。さらに特開昭60
−231,150号は、低温域でのヒータ電力をOとし
ても良いことを示している。Japanese Patent Publication No. 53-43,320 shows the basic structure of this technology, and Japanese Patent Publication No. 61-17,943 discloses that the gas that interferes with carbon monoxide detection is NOx, which can be removed by an activated carbon filter. It shows. In addition, JP-A-60
No.-231,150 indicates that the heater power in a low temperature range may be set to O.
発明者らは、一酸化炭素に対するセンサ出力の過渡的な
ピークが低温域で生ずることを見出だした。このピーク
はセンサの温度特性に基づくもので、低温域でのヒータ
電力を小さくする程顕著に生じる。出力のピークが特に
顕著に生じるのは、低温域でのヒータ電力をOとした場
合である。このピークの時点で一酸化炭素に対する感度
、即ち一酸化炭素中での出力と清浄空気中での出力との
比は、極大値を示し、この時点で検出を行えば高感度で
一酸化炭素を検出できる。The inventors have discovered that a transient peak in the sensor output for carbon monoxide occurs in a low temperature range. This peak is based on the temperature characteristics of the sensor, and occurs more prominently as the heater power is reduced in a low temperature range. The output peak particularly occurs when the heater power is set to O in the low temperature range. At this peak point, the sensitivity to carbon monoxide, that is, the ratio of the output in carbon monoxide to the output in clean air, reaches its maximum value, and if detection is performed at this point, carbon monoxide can be detected with high sensitivity. Can be detected.
一酸化炭素の検出での他の問題は、NOxによる検出精
度の低下と、センサの湿度依存性とに有る。実験による
と、NOxの影響は低温域への移行後の時間の経過と共
に増大すること、センサの湿度依存性も同様に低温域へ
の移行後時間と共に徐々に増大することが判明した。従
ってセンサ出力のピークを用いた検出により、NOxや
湿度の影響を最小にとどめることができる。Other problems with carbon monoxide detection include reduced detection accuracy due to NOx and humidity dependence of the sensor. Experiments have revealed that the influence of NOx increases with time after the transition to the low temperature range, and that the humidity dependence of the sensor also gradually increases with time after the transition to the low temperature range. Therefore, detection using the peak of the sensor output can minimize the effects of NOx and humidity.
[発明の課題]
この発明は、
■)一酸化炭素への検出感度の向上、
2)NOxや湿度の検出値への影響の抑制、を課題とす
る。[Problems to be solved by the invention] The objects of this invention are: (1) improving the detection sensitivity to carbon monoxide; and (2) suppressing the influence of NOx and humidity on the detected values.
[発明の構成]
この発明では、金属酸化物半導体の抵抗値の変化を利用
したガスセンサを、ヒータにより高温域に加熱しセンサ
のヒートクリーニングを行う。ついでセンサを低温域に
移行させ、一酸化炭素に対するセンサ出力のピークに対
応した時点でのセンサ出力から、一酸化炭素を検出する
。[Structure of the Invention] In the present invention, a gas sensor that utilizes a change in the resistance value of a metal oxide semiconductor is heated to a high temperature range by a heater to perform heat cleaning of the sensor. Next, the sensor is moved to a low temperature range, and carbon monoxide is detected from the sensor output at a time point corresponding to the peak of the sensor output for carbon monoxide.
このようにすれば、一酸化炭素への検出感度を高めると
共に、NOXや湿度の影響を抑制することができる。ま
たピークが生ずるまでの時間は一般的にわずかで、検出
へのデッドタイムを短縮することができる。In this way, the detection sensitivity to carbon monoxide can be increased, and the influence of NOx and humidity can be suppressed. Furthermore, the time it takes for a peak to occur is generally short, and the dead time for detection can be shortened.
[実施例]
第7図、第8図に検出に用いたガスセンサを示す。5n
C1tをアンモニアで加水分解し、得られた沈でんを6
00℃で1時間空気中で焼成し、5nOtとした。この
5nOtに塩化バラディラムの溶液を含浸させ、550
℃で30分間熱分解して金属Pd換算で0.3重量%の
PdOを担持させた。5nQ1.はIn2O3やZnO
,あるいはNiO等の任意の金属酸化物半導体に代えて
も良い。またPdは、RhやRuO2,P を等の他の
触媒としてもよい。[Example] Fig. 7 and Fig. 8 show gas sensors used for detection. 5n
C1t is hydrolyzed with ammonia, and the precipitate obtained is 6
It was fired in air at 00° C. for 1 hour to give a density of 5 nOt. This 5nOt was impregnated with a solution of baladirum chloride, and 550
It was thermally decomposed at ℃ for 30 minutes to support 0.3% by weight of PdO in terms of metal Pd. 5nQ1. is In2O3 or ZnO
, or may be replaced with any metal oxide semiconductor such as NiO. Further, Pd may be replaced by other catalysts such as Rh, RuO2, P2, etc.
このSnO2を一対のコイル状電極を埋設した形状に成
型し、750℃で5分間焼結し、センサとした。図にお
いて、(2)はSnO2の焼結体、(4)、(6)はコ
イル状電極で、ここでは線径(直径で)60μのPd−
Ir合金電極を用い、コイルの内径は0.6mmとした
。5nOzのうちコイル(4)。This SnO2 was molded into a shape with a pair of coiled electrodes embedded therein, and sintered at 750°C for 5 minutes to form a sensor. In the figure, (2) is a sintered body of SnO2, (4) and (6) are coiled electrodes, and here the Pd-
An Ir alloy electrode was used, and the inner diameter of the coil was 0.6 mm. Coil (4) out of 5nOz.
(6)に対向した領域は、センサの電気伝導度を担い、
検出領域(8)となる。すなわちこの部分の電気伝導度
がセンサの出力となる。またコイル(4)。The area facing (6) is responsible for the electrical conductivity of the sensor,
This becomes the detection area (8). In other words, the electrical conductivity of this portion becomes the output of the sensor. Also coil (4).
(6)の外方の領域は、NOxの還元触媒領域(10)
として作用し、この部分でNOxを一酸化炭素と反応さ
せ、NOxを除去する。NOxは燃焼機器から一酸化炭
素と共に発生し、5102の抵抗値を増大させて、一酸
化炭素の検出を妨害する。NOXの還元反応は、次の反
応式で現される。The area outside (6) is the NOx reduction catalyst area (10)
In this part, NOx reacts with carbon monoxide and NOx is removed. NOx is generated along with carbon monoxide from combustion equipment, increasing the resistance of 5102 and interfering with carbon monoxide detection. The NOX reduction reaction is expressed by the following reaction formula.
NO+CO→1/2N2+C02
N02+2CO→1/2N2+2COz実施例では原則
とし、還元触媒領域(10)の厚さFを0 、3 mm
、コイル(4)、(6)間の距離Hを0 、5 mmと
した。NO+CO→1/2N2+C02 N02+2CO→1/2N2+2COz In principle, the thickness F of the reduction catalyst region (10) is 0.3 mm in the example.
, the distance H between the coils (4) and (6) was set to 0.5 mm.
次にこのセンサを第6図の検出回路に接続した。Next, this sensor was connected to the detection circuit shown in FIG.
図において、(11)は検出用電源でその出力、検出電
圧Vcは原則としてIV、(12)はヒータ電源でその
出力ヒータ電圧vhは1.2V、(14)は負荷抵抗、
(16)は温度補償用の負特性サーミスタ、(18)は
差動増幅器である。(20)は発振回路を内蔵した制御
回路で、その構成自体は周知であり、最初の10秒間ス
イッチ(22)を用いてヒータ(6)に電圧を印加し、
次の10秒間はスイッチ(22)を開放してヒータ電力
を0とする。なお低温側でのヒータ電力はOとする必要
はなく、低温域で一酸化炭素への出力のピークが生しる
範囲であれば良い。ヒータ(6)をオフした後、10秒
経過直前にスイッチ(24)を閉じ、その時点でのセン
サ出力をADコンバータ(26)でAD変換してメモリ
ーし、LEDやメータ等の表示手段(28)を動作させ
る。表示手段(28)はブザー等の警報手段としても良
い。In the figure, (11) is the detection power supply and its output and detection voltage Vc is IV in principle, (12) is the heater power supply and its output heater voltage vh is 1.2V, (14) is the load resistance,
(16) is a negative characteristic thermistor for temperature compensation, and (18) is a differential amplifier. (20) is a control circuit with a built-in oscillation circuit, whose configuration itself is well known, and which applies voltage to the heater (6) using the switch (22) for the first 10 seconds.
For the next 10 seconds, the switch (22) is opened to set the heater power to 0. Note that the heater power on the low temperature side does not need to be O, but may be within a range where the output to carbon monoxide peaks in the low temperature range. After turning off the heater (6), close the switch (24) just before 10 seconds have elapsed, convert the sensor output at that point into AD converter (26), store it in memory, and display it on display means (28) such as an LED or meter. ) to work. The display means (28) may be a warning means such as a buzzer.
第1図に、低温域への移行後のセンサ出力の挙動を示ず
。センサは時刻0まで300°Cに保たれ、時刻0でヒ
ータ(6)をオフしヒータ電力をOとして冷却する。雰
囲気は20℃、相対湿度65%で、5個のセンサの出力
の幾何平均を図に示す。縦軸はセンサの電気伝導度σを
、横軸は時間を現す。な、お時刻1分までとそれ以降と
で、横軸のスケールを変更しである。Figure 1 does not show the behavior of the sensor output after transition to the low temperature range. The sensor is maintained at 300° C. until time 0, and at time 0, the heater (6) is turned off and the heater power is set to O to cool the sensor. The atmosphere was 20° C. and relative humidity 65%, and the figure shows the geometric average of the outputs of five sensors. The vertical axis represents the electrical conductivity σ of the sensor, and the horizontal axis represents time. Note that the scale of the horizontal axis is changed between up to 1 minute and after that time.
一酸化炭素への検出目標は通常100〜200ppm程
度であり、これを100 ppmの一酸化炭素で代表さ
せる。この濃度では、低温側への移行後10秒程度でセ
ンサ出力のピークが生じる。ピーク温度は5na2の場
合、約100℃である。1000 ppmの一酸化炭素
では30秒目金中心としたなだらかなピークが生じ、清
浄空気中では20秒秒目中心に出力の谷が生ずる。出力
のピークや谷の位置はセンサの材料により異なるが、S
nO2に0゜1〜0.5重量%の貴金属触媒を添加した
ものではその位置はほぼ共通で、上記の値を示した。従
ってこのピークを用いれば、例えば8〜40秒目のセン
ザ出ツバより好ましくは8〜20秒目のセンサ出力を用
いれば、高感度に一酸化炭素を検出できる。なおピーク
が生ずる時間は雰囲気の湿度とはほぼ無関係であった。The detection target for carbon monoxide is usually about 100 to 200 ppm, which is represented by 100 ppm carbon monoxide. At this concentration, the sensor output peaks about 10 seconds after the transition to the low temperature side. The peak temperature is about 100°C in the case of 5na2. At 1000 ppm carbon monoxide, a gentle peak occurs around the 30th second mark, and in clean air, a trough in the output occurs around the 20th second mark. The positions of the output peaks and valleys vary depending on the sensor material, but S
In the case where 0.1 to 0.5% by weight of noble metal catalyst was added to nO2, the positions were almost the same and the above values were obtained. Therefore, if this peak is used, for example, if the sensor output from 8 to 40 seconds is used, preferably the sensor output from 8 to 20 seconds is used, carbon monoxide can be detected with high sensitivity. Note that the time at which the peak occurred was almost unrelated to the humidity of the atmosphere.
一酸化炭素へのピークは、COへの最大感度が得られる
温度がヒートクリーニング温度と室温との間に有ること
から生じる。The carbon monoxide peak arises because the temperature at which maximum sensitivity to CO is obtained is between the heat cleaning temperature and room temperature.
ピークの温度は金属酸化物半導体により異なるが、ピー
クが生じること自体は共通である。Although the peak temperature differs depending on the metal oxide semiconductor, the occurrence of the peak itself is common.
NOxを代表するものとして50ppmのNoを用い、
1100ppのCOに混合してその影響を調べた。No
の有無によるセンサ出力の変化はピークからの時間の経
過と共に増大し、ピークを用いることによりNOの影響
を最小にとどめることができた。これはNOxへの最大
感度を示す温度が、COへの最大感度を示す温度より低
いことによる。Using 50 ppm No as a representative of NOx,
The effect was investigated by mixing it with 1100 pp of CO. No
The change in sensor output due to the presence or absence of NO increased with the passage of time from the peak, and by using the peak, the influence of NO could be kept to a minimum. This is because the temperature exhibiting maximum sensitivity to NOx is lower than the temperature exhibiting maximum sensitivity to CO.
なおCOやNOXへの最大感度を示す温度は金属酸化物
半導体により異なるが、NOxの方が最大感度に対する
温度が低いことは共通であり、ピークの経過後にNOx
の影響が増すことは変わらない。Note that the temperature at which the maximum sensitivity to CO and NOX occurs differs depending on the metal oxide semiconductor, but it is common that the temperature at which the maximum sensitivity occurs is lower for NOx, and after the peak has passed, NOx
There is no change in the fact that the impact of
次に他の妨害ガスを代表するものとして、300 pp
mの水素への挙動を示す。センサ出力は低温域への以降
直後に鋭いピークを示した後、急激に減少する。しかし
ピークに対応したlO秒経過時では、1100ppのC
Oへの出力は300 ppmの水素への出力より高く、
水素による誤検出は避けることができる。Next, as a representative of other interfering gases, 300 pp
The behavior of m towards hydrogen is shown. The sensor output shows a sharp peak immediately after entering the low temperature range, and then rapidly decreases. However, when 10 seconds have elapsed corresponding to the peak, 1100pp of C
The output to O is higher than the output to hydrogen at 300 ppm;
Erroneous detection due to hydrogen can be avoided.
他の現象として、空気中や1.00ppmの一酸化炭素
中での出力が、ピークの経過後徐々に増大する点は重要
である。これは水蒸気の吸着による表面伝導と関係し、
絶対湿度と共に増大する。またこの現象は高濃度のCO
中、例えば11000ppのCO中では小さい。そして
水蒸気の吸着による表面伝導、恐らくは吸着した表面水
と半導体中の塩素イオン等の不純物との複合作用による
表面伝導は、湿度による検出誤差を与える。Another important phenomenon is that the output in air or in 1.00 ppm carbon monoxide gradually increases after the peak. This is related to surface conduction due to water vapor adsorption,
Increases with absolute humidity. This phenomenon is also caused by high concentrations of CO
It is small in medium CO, for example 11000 pp. Surface conduction due to adsorption of water vapor, possibly due to the combined effect of adsorbed surface water and impurities such as chlorine ions in the semiconductor, causes detection errors due to humidity.
一酸化炭素への出力のピークは、低温域でのヒータ電力
と関係する。このピークは低温域でのヒータ電力を小さ
くする程、顕著に生じた。室温を20°Cとし、高温域
での加熱温度を300℃に固定して、ヒータ(6)への
低温域での電圧を0から0.4vの範囲で変化させた。The peak output to carbon monoxide is related to heater power at low temperatures. This peak appeared more prominently as the heater power was reduced in the low temperature range. The room temperature was 20°C, the heating temperature in the high temperature range was fixed at 300°C, and the voltage applied to the heater (6) in the low temperature range was varied in the range of 0 to 0.4V.
低温域でのヒータ電圧を0.4V(低温域に長時間放置
した際のセンサ温度は80℃、以下この温度を定常加熱
温度として示す。)とすると、出力のピークは生じなか
った。次に0.3V(定常加熱温度60°C)では微か
なピークが生じ、0.2V(定常加熱温度40℃)では
明りょうなピークが生じた。従ってこのセンサの場合、
低温域でのヒータ電圧を0.25V以下、より好ましく
は0.2v以下とするのが良い。そして低温域での出力
のピークを用いることにより、一酸化炭素の検出に要す
る時間を短縮できる。第2図に比較例として、同じセン
サに付いて、ヒータ(6)への電圧を1.2V(300
°C)と0.4V(80°C)との間で変化させた際の
挙動を示す。時刻0でヒータ電圧を1.2Vから0゜4
vへ変化させると、一酸化炭素への出力はなだらかに増
加し、ピークは生じない。また水素への出力は鋭いピー
クを示した後徐々に減少するが、第1図の低温側でのヒ
ータ電力を0とするものに比べ、変化は緩慢である。一
酸化炭素と水素との相対感度に着目すると、第2図では
充分な相対感度を得るのに要する時間が長く、第1図で
は短い。When the heater voltage in the low temperature range was set to 0.4 V (the sensor temperature when left in the low temperature range for a long time was 80° C., hereinafter this temperature will be referred to as the steady heating temperature), no output peak occurred. Next, a faint peak occurred at 0.3 V (steady heating temperature 60° C.), and a clear peak occurred at 0.2 V (steady heating temperature 40° C.). Therefore, for this sensor,
The heater voltage in the low temperature range is preferably 0.25V or less, more preferably 0.2V or less. By using the output peak in the low temperature range, the time required to detect carbon monoxide can be shortened. As a comparative example, Fig. 2 shows a voltage of 1.2V (300V) to the heater (6) attached to the same sensor.
℃) and 0.4V (80℃). At time 0, change the heater voltage from 1.2V to 0°4
When changing to v, the output to carbon monoxide increases gradually and no peak occurs. Further, the output to hydrogen shows a sharp peak and then gradually decreases, but the change is slower than that in FIG. 1 where the heater power is set to 0 on the low temperature side. Focusing on the relative sensitivity between carbon monoxide and hydrogen, the time required to obtain sufficient relative sensitivity is long in FIG. 2 and short in FIG. 1.
従って一酸化炭素への出力のピークを生じさせることに
より、検出のデッドタイムを短縮できることが分かる。Therefore, it can be seen that the detection dead time can be shortened by producing a peak in the output to carbon monoxide.
第3図に、10秒−10秒の周期で、ヒータ電圧を1.
2VとOV、1.6VとOvとの間で変化させた際のセ
ンサ温度を示す。また鎖線で低温側の放冷時間を10秒
間延長した際の特性を示す。In FIG. 3, the heater voltage is changed to 1.
The sensor temperature is shown when changing between 2V and OV, and between 1.6V and Ov. Furthermore, the chain line shows the characteristics when the cooling time on the low temperature side was extended for 10 seconds.
さらに低温側のヒータ電圧を0.4Vとした際の特性も
示す。冷却開始時の温度はさして重要ではなく、10秒
程度経過するとセンサ温度は余り変わらない。また第1
図の10秒口の一酸化炭素へのピークは、100℃弱に
相当する。そして一酸化炭素への最大感度が得られる温
度はほぼこの付近に有4゜低温側のヒータ電圧を0.4
Vとすると、冷却は遅く一酸化炭素への検出が遅れるこ
とも分かる。Furthermore, the characteristics when the heater voltage on the low temperature side is set to 0.4V are also shown. The temperature at the start of cooling is not very important, and the sensor temperature does not change much after about 10 seconds. Also the first
The peak of carbon monoxide at 10 seconds in the figure corresponds to a little less than 100°C. The temperature at which the maximum sensitivity to carbon monoxide is obtained is approximately around this range.
It can also be seen that when V is used, cooling is slow and detection of carbon monoxide is delayed.
第4図に、−10℃RH100%と、20℃RH65%
と、508CRH60%の3つの条件での、センサの挙
動を示す。センサに影響するのは温度よりも湿度であり
、特に絶対湿度が重要である。−10℃は乾燥条件に、
20℃は標準条件に、50℃は湿潤条件に対応する。横
軸の時間スケールは第1図と同様、低温側への移行後1
分経過前と経過後とで変化させである。Figure 4 shows -10°C RH 100% and 20°C RH 65%.
The sensor behavior is shown under three conditions: and 508CRH60%. Humidity affects the sensor more than temperature, and absolute humidity is especially important. -10℃ is a dry condition,
20°C corresponds to standard conditions and 50°C to humid conditions. The time scale on the horizontal axis is the same as in Figure 1, 1 after the transition to the low temperature side.
It is changed before and after minutes have passed.
100 ppmの一酸化炭素へのIO秒目付近でのピー
ク、11000ppの一酸化炭素への20〜30秒目で
の目付クは、いずれの湿度でも生じている。The peak at 100 ppm carbon monoxide around the 10th second, and the peak at 20 to 30 seconds at 11000 ppm carbon monoxide occur at any humidity.
次に低温側への移行後長時間経過すると、H2Oの蓄積
による表面伝導が生じている。例えば50℃の清浄空気
中での出力は時間と共にかなり増加する。これに対し一
10℃での清浄空気への出力は極めて低く、図示できな
かった。また100 ppmの一酸化炭素への出力でも
、20℃では徐々に増加し、−10℃では徐々に減少す
る。これらのものがセンサに吸着した水に起因すること
は、センサ抵抗が検出電圧に依存することからも明らか
であった。即ちセンサ抵抗は検出電圧の関数であり、検
出電圧を増す程見掛けのセンサ抵抗は低下する。モして
センサ抵抗の検出電圧依存性は、冷却の進行と共に増加
した。またセンサ抵抗の検出電圧依存性、あるいは湿度
依存性はセンサの形状により変化し、電極間隔を縮める
と増し、また電極と半導体との接触面積を減らすと増し
た。Next, after a long period of time after the transition to the low temperature side, surface conduction occurs due to accumulation of H2O. For example, the power output in clean air at 50° C. increases considerably over time. On the other hand, the output to clean air at -10°C was extremely low and could not be illustrated. Also, even when the output is 100 ppm carbon monoxide, it gradually increases at 20°C and gradually decreases at -10°C. It was also clear from the fact that the sensor resistance depended on the detection voltage that these problems were caused by water adsorbed on the sensor. That is, the sensor resistance is a function of the detected voltage, and as the detected voltage increases, the apparent sensor resistance decreases. Furthermore, the dependence of the sensor resistance on the detected voltage increased with the progress of cooling. In addition, the dependence of the sensor resistance on the detection voltage or humidity changed depending on the shape of the sensor, and increased when the electrode spacing was shortened, and when the contact area between the electrode and the semiconductor was decreased.
これらのことはセンサに吸着した水、あるいは吸着水と
センサ中の残存塩素イオン等の不純物との複合作用によ
る表面伝導の存在を強く示唆する。These strongly suggest the existence of surface conduction due to water adsorbed on the sensor, or a combined effect of adsorbed water and impurities such as residual chlorine ions in the sensor.
実施例で用いたIVの検出電圧との回路条件、2つのコ
イル状電極(4)、(6)を15mmの間隔で対向させ
るとのセンサ形状は、表面伝導を抑制し、湿度依存性を
改善するためである。検出電圧を増すと湿度依存性はよ
り著しく、またコイル状電極の中心に線状の中心電極を
配置したセンサでは、中心電極と半導体との接触面積が
小さく、かつ中心電極付近で電界が集中するため湿度依
存性がより増加する。各電極をコイル状としたのは、電
極と半導体との接触面積を増し、電界の集中を避けるた
めである。The circuit conditions with the IV detection voltage used in the example, and the sensor shape in which the two coiled electrodes (4) and (6) are opposed with an interval of 15 mm suppress surface conduction and improve humidity dependence. This is to do so. As the detection voltage increases, the humidity dependence becomes more pronounced, and in a sensor with a linear center electrode placed at the center of a coiled electrode, the contact area between the center electrode and the semiconductor is small, and the electric field is concentrated near the center electrode. Therefore, humidity dependence increases. The reason why each electrode is coiled is to increase the contact area between the electrode and the semiconductor and to avoid concentration of electric field.
第4図で湿度条件の差によるセンサ出力の変化を見ると
、CO比出力ピーク付近では小さく、その後徐々に増大
している。従ってピークに対応した時点で一酸化炭素を
検出するのは、湿度依存性を減少させる意義を有する。Looking at the change in sensor output due to differences in humidity conditions in FIG. 4, it is small near the peak of the CO specific output, and then increases gradually. Therefore, detecting carbon monoxide at a time point corresponding to the peak has the significance of reducing humidity dependence.
第5図に、NOxの影響や湿度の影響を整理して示す。Figure 5 summarizes the effects of NOx and humidity.
これらのデータは第1図や、第4図の結果を整理したも
のである。20℃の相対湿度65%で、I OOppm
の一酸化炭素への出力を基準とし、これとの比をもって
結果を示す。NOxの影響、湿度の影響とも、最も少な
いのは、10秒口の一酸化炭素への出力のピークに対応
した時点である。These data are organized from the results shown in Figures 1 and 4. At 20°C and 65% relative humidity, IOOppm
The output to carbon monoxide is the standard, and the results are shown as a ratio to this. Both the influence of NOx and the influence of humidity are the least at the time corresponding to the peak of the output to carbon monoxide at the 10-second mark.
センサ抵抗の検出電圧依存性に付いて、表1に示す。0
0100ppmで20℃、65%の雰囲気を基準に、−
10°C100%や、50°C60%での出力を示す。Table 1 shows the dependence of the sensor resistance on the detected voltage. 0
0100ppm, 20℃, 65% atmosphere as standard, -
Shows the output at 10°C 100% and 50°C 60%.
実施例のセンサでは2■以下、より好ましくは1.5V
以下の検出電圧が良く、検出電圧を吸着水の表面伝導が
生じる電圧以下にすることにより湿度依存性を抑制でき
る。In the sensor of the example, 2■ or less, more preferably 1.5V
The following detection voltage is good, and humidity dependence can be suppressed by setting the detection voltage below the voltage at which surface conduction of adsorbed water occurs.
表 1 検出電圧依存性
Vc σ/σ。(10秒目付 σ/σ。(60
秒1)検出電圧−10°C5隻! −10℃ 1隻!
0.5V O,51,60,+5 2.7IV
O,51,60,132,92V O,4+、
8 0.1 3.25V O,42,20,+
410V O,32,50,0851)σ
。は20°C65%での100 ppmのCOへのセン
サ出力で、湿度条件の変化によるセンサ出力の変化を示
す。Table 1 Detection voltage dependence Vc σ/σ. (10 second weight σ/σ. (60
Second 1) Detection voltage -10°C 5 ships! -10℃ 1 boat!
0.5V O,51,60,+5 2.7IV
O,51,60,132,92V O,4+,
8 0.1 3.25V O,42,20,+
410V O,32,50,0851)σ
. is the sensor output for 100 ppm CO at 20°C and 65%, and shows the change in sensor output due to changes in humidity conditions.
NOxの影響は、NOXの還元触媒領域(10)でNO
xをCOと反応させ除去することにより緩和される。こ
こではNOx還元触媒を検出用の半導体と同種としたが
、RhやRuO2)Pt、Pd等の貴金属触媒を用いた
もの、あるいはMn2O3、Fe2O3、Cr、03等
の遷移金属酸化物触媒を用いたもの等、任意のNOx還
元触媒を用いることが出来る。貴金属触媒を用いる場合
、担体は任意であり、遷移金属酸化物触媒を用いる場合
、貴金属触媒を担持させて併用しても良い。NOx還元
触媒の厚さや材質による効果を表2に示す。The influence of NOx is caused by NOx reduction in the NOx reduction catalyst region (10).
It is relieved by reacting x with CO and removing it. Here, the NOx reduction catalyst was of the same type as the detection semiconductor, but a noble metal catalyst such as Rh, RuO2) Pt, Pd, or a transition metal oxide catalyst such as Mn2O3, Fe2O3, Cr, 03, etc. was used. Any NOx reduction catalyst can be used. When using a noble metal catalyst, the carrier is optional. When using a transition metal oxide catalyst, a noble metal catalyst may be supported and used in combination. Table 2 shows the effects of the thickness and material of the NOx reduction catalyst.
0.1mm 0.40
、3 mm 0 、
70 、5 mm 0
、80.1mm+Mn触媒0.2mm 0
.80.1mm+RuO2触媒0.2mm 0.
81)触媒の厚さはSnO2+0.3Pd触媒の厚さを
示し、Mn触媒やRu O2触媒は厚さ0 、2 mm
で、Mn触媒ではγ−A120360重量部を担体に、
3重量部のRhを添加したMn20337重量部を担持
、Rus、触媒では、7 A120395重量部にR
u O25重量部を担持、2)σは100 ppmのC
Oと50ppmのNOxの共存時のセンサ出力を、σ。0.1mm 0.40
, 3 mm 0 ,
70, 5 mm 0
, 80.1mm + Mn catalyst 0.2mm 0
.. 80.1mm+RuO2 catalyst 0.2mm 0.
81) The thickness of the catalyst indicates the thickness of the SnO2+0.3Pd catalyst, and the thickness of the Mn catalyst and RuO2 catalyst is 0 and 2 mm.
So, for the Mn catalyst, 360 parts by weight of γ-A120 is used as a carrier,
Supported 20337 parts by weight of Mn to which 3 parts by weight of Rh was added;
u carrying 25 parts by weight of O, 2) σ is 100 ppm C
The sensor output when O and 50 ppm NOx coexist is σ.
は] OOppmのCO中でのセンサ出力を示す、雰囲
気は20℃65%。] Shows the sensor output in OOppm CO, atmosphere is 20°C 65%.
5nOtに0.1〜0 、5 wt%程度の貴金属触媒
を加えたNOX還元触媒の場合、好ましい触媒層の厚さ
は0.25mm以上である。In the case of a NOX reduction catalyst in which about 5 nOt is added with about 0.1 to 0.5 wt% of a noble metal catalyst, the preferred thickness of the catalyst layer is 0.25 mm or more.
[発明の効果]
この発明では、一酸化炭素への検出感度の向上と、NO
Xや湿度の影響の抑制とがはかられる。[Effect of the invention] This invention improves the detection sensitivity to carbon monoxide and improves the detection sensitivity to NO.
The effects of X and humidity can be suppressed.
第1図は実施例の一酸化炭素の検出方法の特性図、第2
図は従来例の一酸化炭素検出方法の特性図、第3図〜第
5図は実施例の特性図、第6図は検出回路の回路図、第
7図は実施例に用いたガスセンサの一部切り欠き部付き
斜視図、第8図はその断面図である。
図において、(2)金属酸化物半導体、(4)、(6)
コイル状電極、(8)検出領域、(10)NOx還元触
媒領域、
(20)制御回路、(22)、(24) スイッチ、
(26) ADコンバータ。Figure 1 is a characteristic diagram of the carbon monoxide detection method of the embodiment, Figure 2
The figure is a characteristic diagram of a conventional carbon monoxide detection method, Figures 3 to 5 are characteristic diagrams of an embodiment, Figure 6 is a circuit diagram of a detection circuit, and Figure 7 is a diagram of a gas sensor used in an embodiment. FIG. 8 is a perspective view with a cutaway portion, and FIG. 8 is a sectional view thereof. In the figure, (2) metal oxide semiconductor, (4), (6)
Coiled electrode, (8) detection area, (10) NOx reduction catalyst area, (20) control circuit, (22), (24) switch,
(26) AD converter.
Claims (4)
センサを、ヒータにより高温域と低温域とに交互に加熱
し、低温域でのガスセンサ出力から一酸化炭素を検出す
る方法において、 低温域移行後の一酸化炭素へのガスセンサ出力のピーク
に対応する時点でのガスセンサ出力から、一酸化炭素を
検出することを特徴とする、一酸化炭素の検出方法。(1) A method in which a gas sensor that utilizes changes in the resistance value of a metal oxide semiconductor is heated alternately to a high temperature range and a low temperature range using a heater, and carbon monoxide is detected from the gas sensor output in the low temperature range. A method for detecting carbon monoxide, comprising detecting carbon monoxide from a gas sensor output at a time point corresponding to a peak of the gas sensor output to carbon monoxide after transition.
法において、 低温域でのヒータ電力を0とすることを特徴とする、一
酸化炭素の検出方法。(2) The method for detecting carbon monoxide according to claim 1, characterized in that the heater power is set to 0 in a low temperature range.
法において、 ガスセンサはSnO_2を金属酸化物半導体に用いたも
のであり、かつ前記ピークに対応する時点は低温域への
移行後8〜40秒後で、その時点でのセンサ温度は12
0℃〜室温としたことを特徴とする、一酸化炭素の検出
方法。(3) In the method for detecting carbon monoxide according to claim 2, the gas sensor uses SnO_2 as a metal oxide semiconductor, and the time point corresponding to the peak is 8 hours after the transition to the low temperature range. After ~40 seconds, the sensor temperature at that point is 12
A method for detecting carbon monoxide, characterized in that the temperature is 0°C to room temperature.
法において、 前記ピークに対応する時点は、低温域への移行後8〜2
0秒後であることを特徴とする、一酸化炭素の検出方法
。(4) In the method for detecting carbon monoxide according to claim 3, the time point corresponding to the peak is 8 to 2 seconds after the transition to the low temperature range.
A method for detecting carbon monoxide, characterized in that the detection time is 0 seconds.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26891286A JPS63121742A (en) | 1986-11-11 | 1986-11-11 | Detection of carbon monoxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26891286A JPS63121742A (en) | 1986-11-11 | 1986-11-11 | Detection of carbon monoxide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63121742A true JPS63121742A (en) | 1988-05-25 |
Family
ID=17464994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26891286A Pending JPS63121742A (en) | 1986-11-11 | 1986-11-11 | Detection of carbon monoxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63121742A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0329798A (en) * | 1989-06-21 | 1991-02-07 | Tokico Ltd | Oil feed apparatus |
JPH11304746A (en) * | 1998-04-24 | 1999-11-05 | Matsushita Seiko Co Ltd | Gas detecting device |
JP2010008097A (en) * | 2008-06-24 | 2010-01-14 | Toyota Central R&D Labs Inc | Gas detector |
JP2011237447A (en) * | 2002-04-15 | 2011-11-24 | E.I.Du Pont De Nemours And Company | Method for restoring the sensitivity, speed or stability of a gas-sensitive material |
-
1986
- 1986-11-11 JP JP26891286A patent/JPS63121742A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0329798A (en) * | 1989-06-21 | 1991-02-07 | Tokico Ltd | Oil feed apparatus |
JPH11304746A (en) * | 1998-04-24 | 1999-11-05 | Matsushita Seiko Co Ltd | Gas detecting device |
JP2011237447A (en) * | 2002-04-15 | 2011-11-24 | E.I.Du Pont De Nemours And Company | Method for restoring the sensitivity, speed or stability of a gas-sensitive material |
JP2010008097A (en) * | 2008-06-24 | 2010-01-14 | Toyota Central R&D Labs Inc | Gas detector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5941952B2 (en) | Zirconia sintered body for oxygen concentration sensor | |
JPS63121742A (en) | Detection of carbon monoxide | |
JP2012026789A (en) | Oxygen sensor element | |
JPH10123093A (en) | Solid electrolytic hydrogen sensor | |
WO2008134066A1 (en) | Device and method for detecting sulfur dioxide at high temperatures | |
JP3078485B2 (en) | Contact combustion type gas sensor | |
JP4248127B2 (en) | Abnormality detection method and apparatus for gas sensor | |
CA1198345A (en) | Sensor for determining the oxygen content in a gas | |
US9304101B1 (en) | Method of sensor conditioning for improving signal output stability for mixed gas measurements | |
RU2360237C1 (en) | Solid-state gas sensor (versions) | |
GB1578769A (en) | Method of preparing gas sensor elements and sensor elements and sensor elements produced thereby | |
JP4315992B2 (en) | Gas sensor, gas detector and gas detection method | |
JPH0225456B2 (en) | ||
JP4086267B2 (en) | Gas sensor and gas detection device | |
JP2004163192A (en) | Combustible gas sensor | |
EA034222B1 (en) | Nitrogen dioxide sensor | |
CN101846610B (en) | Gas detection device and gas detection system | |
JPH07294473A (en) | Carbon monoxide gas detector | |
JPS599851B2 (en) | Flammable gas sensor device | |
JPH0862169A (en) | Carbon monoxide gas detector | |
JP2002022159A (en) | Detecting device for carbon monoxide | |
JP2000055859A (en) | Alcohol gas detection catalysis, gas sensor, and gas leakage detector | |
JPH06207921A (en) | Detecting element for nitrogen oxide gas | |
JPH04269648A (en) | Gas sensor | |
JP2002350381A (en) | Hot-wire type semiconductor gas sensor |