JPS6312170A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6312170A
JPS6312170A JP15642086A JP15642086A JPS6312170A JP S6312170 A JPS6312170 A JP S6312170A JP 15642086 A JP15642086 A JP 15642086A JP 15642086 A JP15642086 A JP 15642086A JP S6312170 A JPS6312170 A JP S6312170A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
metal silicide
oxide film
silicon
bpsg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15642086A
Other languages
Japanese (ja)
Other versions
JPH0545060B2 (en
Inventor
Mitsutaka Morimoto
光孝 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15642086A priority Critical patent/JPS6312170A/en
Publication of JPS6312170A publication Critical patent/JPS6312170A/en
Publication of JPH0545060B2 publication Critical patent/JPH0545060B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To make an interlayer insulating film thin, by using a double-layer structure, in which metal silicide, which is wrapped with BPSG, is mounted on polycrystalline silicon, as element electrodes and interconnections. CONSTITUTION:A silicon oxide film 12 is formed on the surface of a silicon substrate 11. Then, polycrystalline silicon 13 is deposited. High-melting-point metal silicide 14 of Mo and the like is further formed thereon. BPSG 15 and the like are deposited thereon. Then, photoresist 19 for a gate electrode pattern is formed. With the photoresist 19 as a mask, the BPSG 15, the high-melting- point metal silicide 14 and the polycrystalline silicon 13 are etched. The photoresist 19 is removed, and heat treatment is performed. The end part of the BPSG 15, which is processed in a eaves shape, undergoes reflow, and the high-melting-point metal silicide 14 is wrapped. Finally, a thin oxide film 17 is formed on the side surface of the polycrystalline silicon. Then, a second interconnection layer 16 is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法、特に多結晶シリコン上
に金属シリサイドを載せた2層構造(ポリサイド構造)
を素子電極や配線として用いる半導体装置の製造方法に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, particularly a two-layer structure (polycide structure) in which metal silicide is placed on polycrystalline silicon.
The present invention relates to a method of manufacturing a semiconductor device using the semiconductor device as an element electrode or wiring.

〔従来の技術〕[Conventional technology]

半導体集積回路の大規模化、高密度化に伴い配線は幅や
厚さが減少し、長さが増大してその抵抗値は急増する傾
向にある。高速性を維持するための対策の1つとして、
従来の多結晶シリコン配線の代わりに、より低抵抗のポ
リサイド構造が使われるようになった。例えば、第2図
に示すような第1の配線層として多結晶シリコン23と
高融点金属シリサイド24とからなるポリサイド構造を
用い、第2の配線層として金属26を用いる一般的な2
層配線の場合、2層間の絶縁膜25には減圧気相成長法
(減圧CVD法)により堆積した0、5p程度の比較的
厚いシリコン酸化膜などを用いるのが通例である。しか
しながら、第1と第2の配線層間に極めて薄くかつ絶縁
耐圧の高い絶縁膜が要求される場合も多い。例えば2つ
の配線層間で容量を形成するような場合、或いは電荷結
合デバイス(CCD)で異なる2相の駆動信号がそれぞ
れ印加される2つの転送ゲートの役目を前記2つの配線
層が果たす場合などがそれである。これらの場合いずれ
も第1配線層の上面だけでなく側面にも絶縁耐圧が高く
かつ薄い絶縁膜を要するが、CVD膜では均一性や絶縁
破壊強度などの点で十分とはいえない。第1の配線層が
多結晶シリコンのみで形成されているのであれば、シリ
コン表面を熱酸化法により酸化して側面、上面ともに均
一で薄くかつ十分な絶縁耐−圧を持つシリコン酸化膜が
形成できる。
As semiconductor integrated circuits become larger and more densely packed, the width and thickness of interconnects tend to decrease, their length increases, and their resistance values rapidly increase. As one of the measures to maintain high speed,
Lower-resistance polycide structures are now being used to replace traditional polycrystalline silicon interconnects. For example, as shown in FIG. 2, a general two-layer structure in which a polycide structure consisting of polycrystalline silicon 23 and high melting point metal silicide 24 is used as the first wiring layer, and metal 26 is used as the second wiring layer is used.
In the case of layer wiring, it is customary to use a relatively thick silicon oxide film of about 0.5p deposited by low pressure vapor deposition (low pressure CVD) as the insulating film 25 between two layers. However, in many cases, an extremely thin insulating film with high dielectric strength is required between the first and second wiring layers. For example, when a capacitance is formed between two wiring layers, or when the two wiring layers serve as two transfer gates to which two different phase drive signals are applied in a charge-coupled device (CCD), etc. That's it. In all of these cases, a thin insulating film with high dielectric strength is required not only on the top surface but also on the side surfaces of the first wiring layer, but CVD films are not sufficient in terms of uniformity and dielectric breakdown strength. If the first wiring layer is made only of polycrystalline silicon, the silicon surface is oxidized by thermal oxidation to form a silicon oxide film that is uniform, thin, and has sufficient dielectric strength on both the side and top surfaces. can.

[発明が解決しようとする問題点〕 しかし、ポリサイド構造では多結晶シリコンと金属シリ
サイドの酸化速度は異なり、シリサイドを構成する金属
材料の種類によっては酸化できないものもある。また酸
化できても得られる酸化膜の絶縁破壊強度は多結晶シリ
コンの熱酸化膜に比べて劣る。更に酸化膜厚の均一性が
シリサイド自体の均一性に依存し薄膜化を困難にしてい
る。
[Problems to be Solved by the Invention] However, in a polycide structure, the oxidation rates of polycrystalline silicon and metal silicide are different, and some metal materials constituting the silicide cannot be oxidized depending on the type of metal material. Furthermore, even if oxidation is possible, the dielectric breakdown strength of the resulting oxide film is inferior to that of a thermally oxidized film of polycrystalline silicon. Furthermore, the uniformity of the oxide film thickness depends on the uniformity of the silicide itself, making it difficult to reduce the thickness of the oxide film.

本発明は上記ポリサイド構造の問題点を解消することを
目的とする。
The present invention aims to solve the above-mentioned problems of the polycide structure.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は半導体基板上あるいは半導体基板上に設けられ
た絶縁膜上に多結晶シリコンを堆積する工程と、当該多
結晶シリコン上に金属シリサイドを形成する工程と、さ
らにその上に高温での流動性が高いシリコン酸化膜を堆
積する工程と、任意のパターン形状のフォトレジストを
エツチングマスクとして前記シリコン酸化膜、金属シリ
サイド、多結晶シリコンを順次エツチングする工程と、
前記金属シリサイドの側面のみを選択的にエツチングす
る工程と、前記シリコン酸化膜が流動する温度条件の下
で熱処理する工程と、多結晶シリコン側面を酸化する工
程とを含むことを特徴とする半導体装置の製造方法であ
る。
The present invention involves a process of depositing polycrystalline silicon on a semiconductor substrate or an insulating film provided on the semiconductor substrate, a process of forming metal silicide on the polycrystalline silicon, and a process of depositing metal silicide on the polycrystalline silicon. a step of depositing a silicon oxide film with a high etching temperature, and a step of sequentially etching the silicon oxide film, metal silicide, and polycrystalline silicon using a photoresist having an arbitrary pattern shape as an etching mask;
A semiconductor device comprising the steps of selectively etching only the side surfaces of the metal silicide, heat-treating under temperature conditions where the silicon oxide film flows, and oxidizing the side surfaces of the polycrystalline silicon. This is a manufacturing method.

〔実施例〕〔Example〕

本発明の代表的な実施例について図を参照しながら説明
する。第1図(a)において、シリコン基板11表面に
、熱酸化法でゲート絶縁膜となるシリコン酸化膜12を
200人 の厚さに形成したのち、CVD法により20
00人の多結晶シリコン13を堆積する。
Representative embodiments of the present invention will be described with reference to the drawings. In FIG. 1(a), a silicon oxide film 12, which will become a gate insulating film, is formed on the surface of a silicon substrate 11 by thermal oxidation to a thickness of 200 mm, and then by CVD to a thickness of 20 mm.
00 polycrystalline silicon 13 is deposited.

更にその上にモリブデン(Mo)などの高融点金属シリ
サイド14をスパッタリング法を用いて直接、あるいは
高融点金属を堆積後に熱処理を加えて多結晶シリコン表
面と反応させることにより1000人形成し、該高融点
金属シリサイド14上にBPSG (Boro−pho
sphosilicate Glass)15などをC
VO法で2000人堆積する。次いで一般的なフォトレ
ジスト工程を経てゲート電極パターンのフォトレジスト
19を形成する。第1図(b)において、このレジスト
パターンをマスクにして反応性イオンエツチング(RI
E)法で、まずBPSG15を、続いて高融点金属シリ
サイド14を、次に多結晶シリコン13をそれぞれ異方
性エツチングし、高融点金属シリサイド14の側壁をも
選択的にエツチングする。高融点金属シリサイド14の
側壁の選択的エツチングはBPSGエツチング後であれ
ばどの時点で実施しても構わず、CCU4と02混合ガ
ス雰囲気でのRIHによれば多結晶シリコンエツチング
時にMoシリサイドを同時にサイドエツチングすること
も可能である。フォトレジストを除去したのち900℃
程度の温度で熱処理を行い庇状に加工されたBPSG1
5の端部をリフローし、第1図(c)のように高融点金
属シリサイド14を包み込む。第1図(d)は熱酸化法
により多結晶シリコン側面に葎い酸化膜17を形成し、
ついで第2層目の配線16を形成した状態を示す。
Furthermore, a high melting point metal silicide 14 such as molybdenum (Mo) is formed directly on it using a sputtering method, or by applying heat treatment after depositing the high melting point metal to react with the polycrystalline silicon surface. BPSG (Boro-pho
sphosphosilicate Glass) 15 etc.
Deposit 2000 people using the VO method. Next, a photoresist 19 having a gate electrode pattern is formed through a general photoresist process. In FIG. 1(b), reactive ion etching (RI) is performed using this resist pattern as a mask.
In method E), first the BPSG 15, then the high melting point metal silicide 14, and then the polycrystalline silicon 13 are anisotropically etched, and the side walls of the high melting point metal silicide 14 are also selectively etched. Selective etching of the sidewalls of the high melting point metal silicide 14 can be performed at any time after the BPSG etching, and according to RIH in a CCU4 and 02 mixed gas atmosphere, Mo silicide is sidewalled simultaneously during polycrystalline silicon etching. Etching is also possible. 900℃ after removing photoresist
BPSG1 processed into an eave shape by heat treatment at a temperature of
5 is reflowed to enclose the high melting point metal silicide 14 as shown in FIG. 1(c). FIG. 1(d) shows that an oxide film 17 is formed on the side surface of polycrystalline silicon by thermal oxidation method.
Next, a state in which a second layer of wiring 16 is formed is shown.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高融点金属シリサイド表面を直接熱酸
化することなく、ポリサイド構造を薄くかつ十分な絶縁
破壊強度をもつシリコン酸化膜で覆うことができ、高次
の配線層との間隔を狭くする、すなわち層間絶縁膜を薄
くする必要のある場合に有効である。
According to the present invention, it is possible to cover a polycide structure with a thin silicon oxide film having sufficient dielectric breakdown strength without directly thermally oxidizing the high-melting point metal silicide surface, thereby narrowing the distance between higher-order wiring layers. This is effective when it is necessary to thin the interlayer insulating film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明の製造方法の一実施例を
工程順に示す断面図、第2図は従来のポリサイド構造を
含む多層配線構造を示す断面図である。 11・・・シリコン基板、12・・・シリコン酸化膜、
13・・・多結晶シリコン、14・・・高融点金属シリ
サイド、15・・・BPSG、16・・・配線、17・
・・シリコン酸化膜、19・・・フォトレジスト 第1図 第1図 第2図
FIGS. 1(a) to 1(d) are cross-sectional views showing an embodiment of the manufacturing method of the present invention in the order of steps, and FIG. 2 is a cross-sectional view showing a conventional multilayer wiring structure including a polycide structure. 11... Silicon substrate, 12... Silicon oxide film,
13... Polycrystalline silicon, 14... High melting point metal silicide, 15... BPSG, 16... Wiring, 17.
...Silicon oxide film, 19...Photoresist Figure 1 Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)半導体基板上あるいは半導体基板上に設けられた
絶縁膜上に多結晶シリコンを堆積する工程と、当該多結
晶シリコン上に金属シリサイドを形成する工程と、さら
にその上に高温での流動性が高いシリコン酸化膜を堆積
する工程と、任意のパターン形状のフォトレジストをエ
ッチングマスクとして前記シリコン酸化膜、金属シリサ
イド、多結晶シリコンを順次エッチングする工程と、前
記金属シリサイドの側面のみを選択的にエッチングする
工程と、前記シリコン酸化膜が流動する温度条件の下で
熱処理する工程と、多結晶シリコン側面を酸化する工程
とを含むことを特徴とする半導体装置の製造方法。
(1) The process of depositing polycrystalline silicon on a semiconductor substrate or an insulating film provided on the semiconductor substrate, the process of forming metal silicide on the polycrystalline silicon, and the process of depositing metal silicide on the polycrystalline silicon, and further adding fluidity at high temperature. a step of depositing a silicon oxide film with a high silicon oxide film, a step of sequentially etching the silicon oxide film, metal silicide, and polycrystalline silicon using a photoresist in an arbitrary pattern as an etching mask, and selectively etching only the side surfaces of the metal silicide. A method for manufacturing a semiconductor device, comprising the steps of etching, heat treatment under temperature conditions that cause the silicon oxide film to flow, and oxidizing side surfaces of polycrystalline silicon.
JP15642086A 1986-07-02 1986-07-02 Manufacture of semiconductor device Granted JPS6312170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15642086A JPS6312170A (en) 1986-07-02 1986-07-02 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15642086A JPS6312170A (en) 1986-07-02 1986-07-02 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS6312170A true JPS6312170A (en) 1988-01-19
JPH0545060B2 JPH0545060B2 (en) 1993-07-08

Family

ID=15627362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15642086A Granted JPS6312170A (en) 1986-07-02 1986-07-02 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6312170A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122561U (en) * 1990-03-27 1991-12-13

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122561U (en) * 1990-03-27 1991-12-13

Also Published As

Publication number Publication date
JPH0545060B2 (en) 1993-07-08

Similar Documents

Publication Publication Date Title
US4381595A (en) Process for preparing multilayer interconnection
JPS6312170A (en) Manufacture of semiconductor device
JPS6312169A (en) Manufacture of semiconductor device
JPS6312152A (en) Semiconductor device and manufacture thereof
JPS6255949A (en) Manufacture of semiconductor device
JPH0243726A (en) Connection wiring formation
JPH035656B2 (en)
JPH11121903A (en) Multilayer resist structure and manufacture thereof
JPS61152043A (en) Manufacture of semiconductor device
JPS61295628A (en) Method for forming barrier metal in contact hole
JPS60124969A (en) Control electrode of semiconductor device and manufacture thereof
JPH0613605A (en) Semiconductor device and manufacture thereof
JPH02117132A (en) Manufacture of semiconductor device
JPH0484422A (en) Formation of fine metal wiring
JPH0254524A (en) Manufacture of semiconductor device
JPS6057648A (en) Formation of metallic wiring pattern
JPH0797583B2 (en) Method for forming interlayer insulating film
JPH03188672A (en) Charge transfer device
JPS6181665A (en) Formation of semiconductor region
JPS60140736A (en) Manufacture of semiconductor device
JPS61100949A (en) Formation of multilayer interconnection
JPS6145859B2 (en)
JPH0684901A (en) Method of manufacturing semiconductor device
JPH06349828A (en) Manufacture of integrated circuit device
JPS5843908B2 (en) Manufacturing method of semiconductor device