JPS6312162A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS6312162A
JPS6312162A JP61156630A JP15663086A JPS6312162A JP S6312162 A JPS6312162 A JP S6312162A JP 61156630 A JP61156630 A JP 61156630A JP 15663086 A JP15663086 A JP 15663086A JP S6312162 A JPS6312162 A JP S6312162A
Authority
JP
Japan
Prior art keywords
region
recess
semiconductor layer
charge transfer
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61156630A
Other languages
Japanese (ja)
Inventor
Takahiro Yamada
隆博 山田
Sumio Terakawa
澄雄 寺川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61156630A priority Critical patent/JPS6312162A/en
Priority to KR1019870013466A priority patent/KR910001877B1/en
Publication of JPS6312162A publication Critical patent/JPS6312162A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To improve the sensitivity of a CCD image pickup device remarkably and to improve resolution, by forming a CCD in a long recess part, which is formed in a high resistance semiconductor layer in one direction. CONSTITUTION:A recess part, which has a width W and a depth H, is formed approximately vertically from the surface of a p-type semiconductor substrate 101 having a high resistance value. First polysilicon 103 and second polysilicon 104 are formed through an insulating film 102. A p<+> region 105 is formed as a channel stop directly beneath the recess part phi1 pulses are applied to the first polysilicon 103, and phi2 pulses are applied to the second polysilicon. Thus charge transfer is carried out in the longitudinal direction of the recess part. When the channel stop 105 is used, two charge transfer region 106 and 107 can be utilized. when the channel stop is not formed, one charge transfer region 109 is utilized. In this way, a plurality of transfer gate electrodes are provided on the surface of the long recess part, which is formed in the highly resistive semiconductor layer in one direction. Therefore the maximum charge transfer quantity of the CCD, which is formed at the side well of the recess part, depends on the depth H of the recess part.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高密度に対応する電荷転送を利用した半導体装
置およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor device using charge transfer capable of handling high density and a method for manufacturing the same.

従来の技術 電荷転送を利用した従来の半導体装置の代表的なものと
して、COD (Charge Coupled De
vice)Press )中でも、CCD型撮像装置の
普及が近年著しい。CCD型撮像装置は、第9図に示す
様に、光電変換領域901と垂直CCD部902から成
る受光部分903、および水平CjCD部904、出力
回路905で構成される。受光部分903を拡大したの
が第10図で、p基板906表面に形成されたn領域9
07がpnフォトダイオードの光電変換領域903を構
成し、高抵抗のn−領域908が転送ゲート電極909
と共に垂直CCD部902を構成する。
Conventional technology COD (Charge Coupled Device) is a typical example of conventional semiconductor devices that utilize charge transfer.
(vice) Press) Among them, the spread of CCD type imaging devices has been remarkable in recent years. As shown in FIG. 9, the CCD type imaging device is composed of a light receiving section 903 consisting of a photoelectric conversion region 901 and a vertical CCD section 902, a horizontal CJCD section 904, and an output circuit 905. FIG. 10 shows an enlarged view of the light-receiving portion 903, showing the n-region 9 formed on the surface of the p-substrate 906.
07 constitutes a photoelectric conversion region 903 of a pn photodiode, and a high resistance n- region 908 constitutes a transfer gate electrode 909.
Together, they constitute a vertical CCD section 902.

発明が解決しようとする問題点 しかしながら、上記の様な構成では、撮像装置の基本性
能である感度、解像度、ダイナミックレンジを同時に向
上するのは容易ではない。
Problems to be Solved by the Invention However, with the above configuration, it is not easy to simultaneously improve sensitivity, resolution, and dynamic range, which are the basic performances of an imaging device.

第11図は、半導体技術の先導的役割を果たしているダ
イナミックRAM (以下、DRAMと表記する)の容
量に対する線幅、チップ面積、セル面積の推移を示した
ものである。第11図から分かる事は、CCD撮像装置
のチップ面積に対応する微細加工技術の進展度合が大き
く、例えば%インチ受光部分(面積)は4MbDRAM
のチップ面積に相当し、4MbDRAMのセル面積を画
素面積と考えるならば、%インチCCD撮像装置の画素
数は、2000X2000 (個)まで可能である事が
分かる。
FIG. 11 shows the changes in line width, chip area, and cell area with respect to the capacity of dynamic RAM (hereinafter referred to as DRAM), which plays a leading role in semiconductor technology. What can be seen from Figure 11 is that the degree of progress in microfabrication technology corresponding to the chip area of a CCD imaging device is large; for example, the % inch light receiving area (area) is 4Mb DRAM.
If we consider the cell area of a 4 Mb DRAM as the pixel area, it can be seen that the number of pixels in the % inch CCD imaging device can be up to 2000 x 2000 (pieces).

ところが、撮像装置の感度は開口率(すなわち光電変換
領域901の総面積の受光部分903に対する面積占有
割合)に依存し、一方、ダイナミックレンジは、垂直C
0D902の最大電荷転送量を決めるチャネル幅(すな
わち高抵抗のn−領域908の幅)に依存する。更に、
解像度は画素数に依存し、画素数の増加は画素分離領域
(例えば第1o図のチャネルストップ領域910など)
の総面積を増大させ、感度、ダイナミックレンジの低下
を招くため、受光部分903の面積が与えられると感度
、解像度、ダイナミックレンジの最適値がほぼ決定され
てしまい、これら基本性能をさらに向上させられないと
いう問題点を有していた。
However, the sensitivity of the imaging device depends on the aperture ratio (i.e., the area occupation ratio of the total area of the photoelectric conversion region 901 to the light receiving portion 903), and on the other hand, the dynamic range depends on the vertical C
It depends on the channel width (i.e., the width of the high resistance n-region 908) which determines the maximum charge transfer amount of the 0D 902. Furthermore,
The resolution depends on the number of pixels, and an increase in the number of pixels is caused by a pixel isolation region (such as the channel stop region 910 in Figure 1o).
Therefore, given the area of the light-receiving portion 903, the optimal values of sensitivity, resolution, and dynamic range are almost determined, and these basic performances cannot be further improved. The problem was that there was no

本発明は、この様な点に注目し、ダイナミックレンジの
性能を損なうことなく、感度、解像度の性能向上を実現
する半導体装置およびその製造方法の提供を目的とする
The present invention has focused on these points, and aims to provide a semiconductor device and a method for manufacturing the same that can improve sensitivity and resolution without impairing dynamic range performance.

問題点を解決するだめの手段 本発明は、高抵抗半導体層に形成されえ一方向に長い凹
部表面に絶縁膜を介して複数個の転送ゲート電極を有し
、主動作状態で前記凹部周辺の半導体層に電荷転送領域
が形成される半導体装置およびその製造方法である。
Means for Solving the Problems The present invention has a plurality of transfer gate electrodes on the surface of a recess long in one direction, which is formed in a high-resistance semiconductor layer, with an insulating film interposed therebetween. A semiconductor device in which a charge transfer region is formed in a semiconductor layer and a method for manufacturing the same.

作用 本発明は前記した構成により、凹部側壁下の半導体層に
電荷転送領域を形成するので、痕大電荷転送量を決める
チャネル幅は凹部の深さに対応する。この結果、CCD
撮像装置のダイナミックレンジに関係する垂直CODに
必要な面積は画素分離領域と同程度にな9、怠度、解像
度の大幅な性能向上が可能になる。
Effect Since the present invention forms a charge transfer region in the semiconductor layer under the sidewall of the recess with the above-described structure, the channel width that determines the amount of large charge transfer corresponds to the depth of the recess. As a result, CCD
The area required for the vertical COD, which is related to the dynamic range of the imaging device, is now comparable to that of the pixel separation area9, making it possible to significantly improve performance in terms of resolution and resolution.

実施例 第1図は本発明の第1の実施例における半導体装置の構
造図を示すもので、同図(a)は平面図、同図(b)は
同図(?L)のB−B’断面図、同図(C)は同図e)
 (Dc −c’断面図、同図(d)は同図(8−)の
D −D’断面図、同図(e)は同図(2L)(7) 
K −1’断面図、同図(f)は同図(d)のF−F’
断面(C沿った主動作状態のエネルギーバンド図、同図
(g)は、本実施例を一部変更した場合の同図(a)の
D−D’断面図である。又同図(h)は、駆動パルス図
である。
Embodiment FIG. 1 shows a structural diagram of a semiconductor device according to a first embodiment of the present invention. FIG. 1(a) is a plan view, and FIG. 'Cross-sectional view, the same figure (C) is the same figure e)
(Dc-c' sectional view, the same figure (d) is the D-D' sectional view of the same figure (8-), the same figure (e) is the same figure (2L) (7)
K-1' sectional view, the same figure (f) is F-F' of the same figure (d)
The energy band diagram in the main operating state along the cross section (C). Figure (g) is a sectional view taken along line DD' in Figure (a) when this embodiment is partially modified. ) is a drive pulse diagram.

第1図において、高抵抗のp形半導体基板101表面か
らほぼ垂直に幅W、深さHの凹部を形成し、絶縁膜10
2を介して第1のポリシリコン1Q3゜第2のポリシリ
コン104を形成する。なお凹部直下にはチャネルスト
ップのp 領域105を形成する。106 、107は
、主動作状態で現われる電荷転送領域で、第1図(f)
の表面チャネル部108に対応する。
In FIG. 1, a recess with a width W and a depth H is formed almost perpendicularly from the surface of a high-resistance p-type semiconductor substrate 101, and an insulating film 101 is
The first polysilicon 1Q3° and the second polysilicon 104 are formed through the polysilicon 2 and the second polysilicon 104. Note that a channel stop p region 105 is formed directly below the recess. 106 and 107 are charge transfer regions that appear in the main operating state, as shown in Fig. 1(f).
corresponds to the surface channel portion 108 of.

第1図(g)は、チャネルストップのp−領域105を
形成しない場合に対応し、109はこの場合の電荷転送
領域を表わす。
FIG. 1(g) corresponds to the case where the channel stop p-region 105 is not formed, and 109 represents the charge transfer region in this case.

以上の様に構成された本実施例の半導体装置について以
下、その動作を説明する。
The operation of the semiconductor device of this embodiment configured as described above will be described below.

第1図よ)が本実施例の駆動パルスであシ、例えば、第
1のポリシリコン103にφ1パルスヲ印加し、第2の
ポリシリコンにφ2パルスを印加す7 ることにより、
凹部の長手方向に電荷転送が行なわれる。第1図(d)
の様にチャネルストップ105が用いられると、2つの
電荷転送領域106゜107が利用でき、第1図(g)
の様にチャネルストップが形成されない時は、1つの電
荷転送領域109が利用できる。
1) are the driving pulses of this embodiment. For example, by applying a φ1 pulse to the first polysilicon 103 and a φ2 pulse to the second polysilicon 7,
Charge transfer occurs in the longitudinal direction of the recess. Figure 1(d)
When a channel stop 105 is used as shown in FIG. 1(g), two charge transfer regions 106 and 107 can be used.
When no channel stop is formed, as in the case of FIG. 1, one charge transfer region 109 can be used.

以上の様に本実施例によれば、高抵抗半導体層に形成さ
れた一方向に長い凹部表面に絶縁膜を介して複数個の転
送ゲート電極を設ける事により、凹部側壁に形成された
CODの最大電荷転送量は、凹部深さHに依存する。一
方凹部の幅Wは4MbDRAM 相補のプロセスを用い
れば0.8μm程度とな9、COD形成に必要な占有面
積は極めて小さい。
As described above, according to this embodiment, by providing a plurality of transfer gate electrodes via an insulating film on the surface of a recess long in one direction formed in a high-resistance semiconductor layer, the COD formed on the side wall of the recess is The maximum charge transfer amount depends on the recess depth H. On the other hand, the width W of the concave portion is approximately 0.8 μm if a complementary process is used for a 4 Mb DRAM9, and the occupied area required for COD formation is extremely small.

なお、本実施例におけるチャネルストップのp゛領域1
06のかわりに、厚い絶縁膜を該当部分に形成してもよ
い。
In addition, in this example, the p' region 1 of the channel stop
Instead of 06, a thick insulating film may be formed in the corresponding portion.

第2図は、本発明の第2の実施例の半導体装置の構造図
を示すもので、同図e)は平面図、同図(b)は同図(
2L)のB−B’断面図、同図(C)は同図(a−)の
C−C′断面図、同図(d)は同図(2L)のD −D
’断面図、同図(e)は同図(a) OR−E’断面図
、同図(f)は、同図(d) t7)F −F’断面に
沿った主動作状態のエネルギーバンド図である。
FIG. 2 shows a structural diagram of a semiconductor device according to a second embodiment of the present invention, in which e) is a plan view and (b) is a plan view.
2L), the same figure (C) is a CC' cross-sectional view of the same figure (a-), the same figure (d) is the same figure (2L) D-D
t7) Energy band in main operating state along F-F' cross-section It is a diagram.

第2図において、p基板201上の高抵抗のn形半導体
202表面からほぼ垂直に幅W、深さHの凹部を形成(
この時、p基板201に凹部の底が到達してもよい。)
し、絶縁膜203を介して、第1図と同様に、第1のポ
リシリコン103、第2のポリシリコン104を形成す
る。なお凹部直下にはチャネルストップのp+領域20
4が形成される。205.206は、主動作状態で現わ
れる電荷転送領域で、第2図(f)の埋込みチャネル部
207に対応する。
In FIG. 2, a recess with a width W and a depth H is formed almost perpendicularly from the surface of a high-resistance n-type semiconductor 202 on a p-substrate 201 (
At this time, the bottom of the recess may reach the p-substrate 201. )
Then, a first polysilicon 103 and a second polysilicon 104 are formed with an insulating film 203 in between, as in FIG. In addition, there is a channel stop p+ region 20 directly below the recess.
4 is formed. 205 and 206 are charge transfer regions that appear in the main operating state, and correspond to the buried channel portion 207 in FIG. 2(f).

本実施例の動作は、第1の実施例と同様である。The operation of this embodiment is similar to that of the first embodiment.

以上の様に本実施例によれば、電荷転送領域を形成する
ための高抵抗の半導体層をn形とする事で、埋込みチャ
ネルが形成され、凹部表面の結晶欠陥等の影響を避ける
事が出き、canの転送効率が向上し、雑音が低減する
As described above, according to this embodiment, by making the high-resistance semiconductor layer for forming the charge transfer region n-type, a buried channel is formed and the effects of crystal defects on the surface of the recess can be avoided. The output and can transfer efficiency is improved, and noise is reduced.

第3図は、本発明の第3の実施例の半導体装置の構造図
を示すもので、同図e)は平面図、同図(b)は同図(
2L)のB−B’断面図、同図(C)は同図(a)のC
−C′断面図、同図(d)は同図e)のD −D’断面
図、同図(6)は、同図e)のE−E’断面図である。
FIG. 3 shows a structural diagram of a semiconductor device according to a third embodiment of the present invention, where e) is a plan view, and FIG.
2L) BB' cross-sectional view, the same figure (C) is C of the same figure (a)
-C' sectional view, the same figure (d) is a DD' sectional view of the same figure e), and the same figure (6) is the EE' sectional view of the same figure e).

第3図において、p基板301表面からほぼ垂直に幅W
、深さHの凹部を形成し、高抵抗のn形半導体層302
を凹部周辺に形成後、チャネルストップのp″−領域3
03を形成する。その後絶縁膜304を介して、第1の
ポリシリコン103゜第2のポリシリコン104を形成
する。305゜306は、主動作状態で現われる電荷転
送領域で、埋込みチャネルとなっている。本実施例の動
作は、第1の実施例と同様である0 第2の実施例と本実施例の差は、高抵抗のn形半導体層
の形成方法であり、用途、プロセスに応じて使い分ける
事ができる。
In FIG. 3, the width W is approximately perpendicular to the surface of the p-substrate 301.
, a high-resistance n-type semiconductor layer 302 is formed with a recessed portion having a depth H.
After forming around the recess, p″-region 3 of the channel stop
Form 03. Thereafter, a first polysilicon layer 103 and a second polysilicon layer 104 are formed with an insulating film 304 interposed therebetween. Reference numerals 305 and 306 indicate charge transfer regions that appear in the main operating state and serve as buried channels. The operation of this embodiment is the same as that of the first embodiment. The difference between the second embodiment and this embodiment is the method of forming a high-resistance n-type semiconductor layer, which can be used depending on the application and process. I can do things.

第4図は、本発明の第4の実施例の半導体装置の構造図
を示すもので、同図(a)は平面図、同図(b)は同図
(&)のB−ピ断面図、同図(C)は同図(2L)のC
−C′断面図、同図(d)は同図(2L)のD −D’
断面図、同図(6)は、同図(2L)のE −E’断面
図、同図(0は、本実施例を一部変更した場合の同図(
2L)のC−C’断面図、同図(りは、同図(f)のG
 −G’断面図である。同図Φ)は駆動パルス図である
FIG. 4 shows a structural diagram of a semiconductor device according to a fourth embodiment of the present invention, in which (a) is a plan view, and (b) is a cross-sectional view taken along line B in the figure (&). , the same figure (C) is C of the same figure (2L)
-C' sectional view, the same figure (d) is D -D' of the same figure (2L)
The cross-sectional view (6) is the E-E' cross-sectional view of the figure (2L);
2L) CC' cross-sectional view of the same figure (FIG.
-G' sectional view. Φ) in the figure is a drive pulse diagram.

第4図e)〜(e)において、p基板401表面からほ
ぼ垂直に幅W、深さHの凹部を形成し、高抵抗のn形半
導体層402を凹部周辺に形成後、第1のチャネルスト
ップのp+領域403を形成する。
4e) to (e), a recess with a width W and a depth H is formed almost perpendicularly from the surface of the p-substrate 401, and after forming a high-resistance n-type semiconductor layer 402 around the recess, the first channel A stop p+ region 403 is formed.

一方、p基板401表面には、光゛電変換領域としてp
n接合を構成するためn+領域404を形成する、その
後、絶縁膜405を介して、第1のポリシリコン406
、第2のポリシリコン407を形成する。p+領域41
0は画素分離用チャネルストップである。
On the other hand, on the surface of the p-substrate 401, there is a p-substrate as a photoelectric conversion region.
An n+ region 404 is formed to form an n junction, and then a first polysilicon layer 406 is formed via an insulating film 405.
, a second polysilicon 407 is formed. p+ region 41
0 is a channel stop for pixel separation.

なお・、第4図(fl 、 (g)に示すように、面積
w x u 。
In addition, as shown in FIG. 4 (fl, (g)), the area w x u.

深さhの凹部を形成した後、n+頌域408を形成して
光電変換領域としてもよい。(p+領域409(1、画
素分離用チャネルストップであるう)以上の様に構成さ
れた本実施例の半導体装置の動作説明をする。第4図の
)が本実施例の駆動パルスであり、例えば、第1のポリ
シリコン406にφ1パルスヲ印加し、第2のポリシリ
コン40了にφ2パルスを印加する事により、φ1.φ
2のvHパルスで、n 領域404(又は408)の光
電変換されて蓄積中の信号電荷が、n領域402の電荷
転送領域411に読比され、V、パルスで、凹部長手方
向に電荷転送さf;)。
After forming a recessed portion with a depth h, an n+ hollow region 408 may be formed to serve as a photoelectric conversion region. (P+ region 409 (1, channel stop for pixel isolation) The operation of the semiconductor device of this embodiment configured as above will be explained. FIG. 4) is the driving pulse of this embodiment, For example, by applying a φ1 pulse to the first polysilicon 406 and a φ2 pulse to the second polysilicon 40, the φ1. φ
With a VH pulse of 2, the photoelectrically converted and accumulated signal charge in the n region 404 (or 408) is transferred to the charge transfer region 411 of the n region 402, and with a V pulse, the charge is transferred in the longitudinal direction of the recess. sf;).

以上の様に、本実施例によれば、4MbDRAMのプロ
セスを用いた場合(第11図参照)、読比しゲート領域
412とCCD部を合わせた幅Xが4μm程度で済むた
め、本実施例を左右上下に繰り返して2次元撮像装置を
構成した場曾、杓インチ受光面積のCODで(ま開口率
が約8Q%、Aインチ受光面積のCCDでは開口率が約
78%となる。(但し、素子分離領域の幅を0.8μm
、読出しゲート領域のチャネル長を1.6μmとした。
As described above, according to this embodiment, when a 4Mb DRAM process is used (see FIG. 11), the width X of the reading ratio gate region 412 and the CCD section is only about 4 μm. If a two-dimensional imaging device is constructed by repeating the above steps horizontally and vertically, then the COD with an inch-inch light-receiving area has an aperture ratio of about 8Q%, and the aperture ratio of a CCD with an A-inch light-receiving area is about 78%. , the width of the element isolation region is 0.8 μm
, the channel length of the read gate region was set to 1.6 μm.

)これは、現在のCODの開口率22係に比べ約3.5
〜4倍にも達する。従って現在のCCDの画素数をその
ままとすれば、感度を4倍にする事ができ、感度をその
ままとすれば、画素数を約2.5   、倍にする事が
できる。すなわち、%インチCODで500X500の
素子に対して、感度を維持したままで、800X800
の素子が構成できる事を意味する。又、%インチCOD
での感度を維持して、1インチCCIIを作るならば1
600×1600の素子が得られるという様に大きな効
果を有する。
) This is approximately 3.5 compared to the current COD aperture ratio of 22
~4 times as many. Therefore, if the current number of pixels of the CCD remains unchanged, the sensitivity can be increased four times, and if the sensitivity remains unchanged, the number of pixels can be increased approximately 2.5 times. In other words, for a 500X500 element in % inch COD, 800X800 while maintaining sensitivity.
This means that an element can be constructed. Also, % inch COD
If you maintain the sensitivity and make 1 inch CCII, 1
This has a great effect, as an element of 600×1600 can be obtained.

第6図は、本発明の第5の実施例の半導体装置の構造図
を示すもので、同図(+a)は平面図、同図(b)は同
図e)のB−B’断面図、同図(C)は同図(a)のC
−C′断面図、同図(d)は同図(2L)のD −D’
断面図、同図(e)は同図(2L)のe −e’断面図
、同図(0はシリコン単結晶の部分を示す実体図、同図
k)はシリコン多結晶の部分を示す実体図である。
FIG. 6 shows a structural diagram of a semiconductor device according to a fifth embodiment of the present invention, in which (+a) is a plan view, and (b) is a sectional view taken along line BB' in (e) of the same figure. , the same figure (C) is C of the same figure (a)
-C' sectional view, the same figure (d) is D -D' of the same figure (2L)
Cross-sectional view, Figure (e) is an e-e' cross-sectional view of Figure (2L), Figure (0 is an actual diagram showing the silicon single crystal part, Figure k) is an actual diagram showing the silicon polycrystal part. It is a diagram.

第5図において、p基板601上に高抵抗のn形半導体
502、p影領域6o3(これは読出しゲート領域を構
成する。)、n 領域504を形成し、n−領域504
表面から、はぼ垂直に、幅W1.深さHlの第1・O凹
部を形成、一方、第1の凹部に直交してm W2 +深
さH2の第2の凹部を形成する。なお、第1の凹部直下
にチャネルストップのp+頌域506を形成する。凹部
に絶、縁膜506を形成後、第1のポリシリコン507
゜508、第2のポリシリコン509.510を形成し
て、転送ゲー)!極を構成する。但し、第1のポリシリ
コン508と第2のポリシリコン510は読出しゲート
領域の構成要素でもある。なお、511.511’は、
主力作状態で現わnる電荷転送領域である。転送ゲート
電極の印加電圧が大きい場合には、E511,611’
に融合して1つになる事もあり得る。
In FIG. 5, a high resistance n-type semiconductor 502, a p shadow region 6o3 (this constitutes a readout gate region), and an n region 504 are formed on a p substrate 601.
From the surface, approximately perpendicularly, the width W1. A first recessed portion having a depth Hl is formed, while a second recessed portion having a depth m W2 +H2 is formed orthogonally to the first recessed portion. Note that a channel stop p+ hollow region 506 is formed directly below the first recess. After forming an insulating film 506 in the recess, a first polysilicon film 507 is formed.
゜508, form the second polysilicon 509, 510, transfer game)! constitute the poles. However, first polysilicon 508 and second polysilicon 510 are also components of the read gate region. In addition, 511.511' is
This is the charge transfer region that appears in the main operation state. When the voltage applied to the transfer gate electrode is large, E511,611'
It is also possible that they will merge into one.

不実乃例の動作j・=、第4の実施レリと巨J様である
The action of the untrue example is j・=, the fourth implementation reli and the giant J.

本実施例と第4の実施例との差1寸、本実施例の読出し
ゲート領域も凹部側壁に形成するため、より高密度化が
可能になる。4MbDRAM相当のプロセスを用いて、
凹部の幅を0.8μmとすれば、%インチCCI:の開
口率は89%、V2インチCCDの開口率は87%とな
り、第4の実施例に比べて9%向上する。
There is a difference of 1 inch between this embodiment and the fourth embodiment, and since the read gate region of this embodiment is also formed on the side wall of the recess, higher density can be achieved. Using a process equivalent to 4Mb DRAM,
If the width of the recess is 0.8 μm, the aperture ratio of % inch CCI: is 89%, and the aperture ratio of V2 inch CCD is 87%, which is an improvement of 9% compared to the fourth embodiment.

しかも、本実施例のプロセスは、第4の実施り11に比
べて、簡略化されている。
Moreover, the process of this embodiment is simplified compared to the fourth embodiment 11.

第6図は、第5図に示した第5の実施例の半導体装置の
製造方法を示すものである。
FIG. 6 shows a method of manufacturing the semiconductor device of the fifth embodiment shown in FIG.

(1)  第6図(a)に示す様に、p基板501上に
高抵抗on領域5o2(不純物密度N (1o15c:
n−’ )を気相成長などによシ形成し、続いて、p領
域503 (1015(N(10”)、n+領域504
(1o”< N< 1o” )を払散又は気相成長ある
いはイオン注入等により形成する。な2、鹸領域504
を先に形成した後、イオン注入によりp領域503を形
成してもよい。
(1) As shown in FIG. 6(a), a high resistance ON region 5o2 (impurity density N (1o15c:
n−') is formed by vapor phase growth, etc., and then p region 503 (1015 (N (10”)), n+ region 504
(1o"<N<1o") is formed by ablation, vapor phase growth, ion implantation, or the like. 2. Ken area 504
After forming p region 503 first, p region 503 may be formed by ion implantation.

(2)第6図(b)に示す様に、nt領域5040表面
に601の酸化膜(厚さ1〜1000人)と602の窒
化膜(1000人くt〈20oOA)を熱酸化及びcv
n法により形成する。
(2) As shown in FIG. 6(b), an oxide film 601 (thickness 1 to 1000 mm) and a nitride film 602 (1000 mm thick <20 OA) are formed by thermal oxidation and CVD on the surface of the NT region 5040.
Formed by n method.

(3)第6図(C)に示す様に、603のホトレジスト
膜を通常のホトリソグラフ技術により形成する。
(3) As shown in FIG. 6(C), a photoresist film 603 is formed by a normal photolithography technique.

(4)第6図(d)に示す様に、プラズマエッチ、スパ
ッタエッチ、ケミカルエッチなどによp602の窒化膜
、601の酸化膜、次いで、504のn+領領域503
のp領域、502のn領域を方向性エッチにより主表面
と壁面がほぼ垂直になる様に除去する。又、方向性エッ
チの手段としてはアルカリエッチ又は、プラズマエッチ
などにより行なう。
(4) As shown in FIG. 6(d), the nitride film of p602, the oxide film of 601, and then the n+ region 503 of 504 are etched by plasma etching, sputter etching, chemical etching, etc.
The p region of 502 and the n region of 502 are removed by directional etching so that the main surface and the wall surface are substantially perpendicular. Further, as a means for directional etching, alkaline etching, plasma etching, or the like is used.

(5)第6図(e)に示す様に、同図(d)で切り込ん
だ領域に604の酸化膜を熱酸化などによシ形成する。
(5) As shown in FIG. 6(e), an oxide film 604 is formed in the region cut in FIG. 6(d) by thermal oxidation or the like.

(6)第6図(0に示す様に、605のホトレジストを
退館のホトリソグラフ技術によシ形成した後、(4)に
述べた指向性エッチで切り込み部分の底部の604の酸
化膜を除去する。
(6) As shown in Figure 6 (0), after forming the photoresist 605 using the photolithography technique described in (4), the oxide film 604 at the bottom of the incision is removed by the directional etching described in (4). Remove.

(7)  第6図(g−1)に示す様に605のホトレ
ジストを除去した後、(6〕の工程で、604の酸化膜
を除去した領域に606のp 領域(N)1o20 c
、−5)を拡散あるいはイオン注入により形成する。こ
の後、熱酸化などにより、604′の酸化膜を形成する
(7) After removing the photoresist 605 as shown in FIG. 6 (g-1), in the step (6), a p region (N) 1o20 c of 606 is added to the area where the oxide film 604 was removed.
, -5) are formed by diffusion or ion implantation. Thereafter, an oxide film 604' is formed by thermal oxidation or the like.

この時第6図(g−1)のG−G’断面図は第6図(g
−2)である。
At this time, the GG' sectional view in Figure 6 (g-1) is shown in Figure 6 (g-1).
-2).

(8)第6図き)に示す様に、607のホトレジスト膜
を通常のホトリソグラフ技術により形成する。
(8) As shown in FIG. 6), a photoresist film 607 is formed by a conventional photolithography technique.

(9)第6図(1)に示す様に、(4)の工程を用いて
、n領域502の途中まで方向性エッチで主表面と壁面
がほぼ垂直になる様に除去する。
(9) As shown in FIG. 6(1), using the step (4), the n-region 502 is removed halfway through by directional etching so that the main surface and wall surface are substantially perpendicular.

(10)第6図(j−1)に示す様に同図(i)で切り
込んだ領域に608の酸化膜を熱酸化などにより形成す
る。第6図(j−1)のJ −J’断面図は第6図(コ
ー2)に示す。
(10) As shown in FIG. 6(j-1), an oxide film 608 is formed in the region cut in FIG. 6(i) by thermal oxidation or the like. A sectional view taken along line J-J' in FIG. 6 (j-1) is shown in FIG. 6 (C-2).

(11)第6図(k−1) 、 (k−2) 、 (k
−3)(但し、同図(k−1)のK −K’断面図が同
図(k−2)、同図(k−1)のL = L’断面図が
同図(k−3)である。)に示すように、第1のポリシ
リコンロ09をn領域502に対応する切り込み部分に
埋め込む。これは、例えばポリイミドなどを全面塗布後
、ホトレジストを形成し、パターン出しして後、第1の
ポリシリコンロ09を埋め込む部分のポリイミドをエッ
チしたのち、スパッタ又はCVDで第1のポリシリコン
ロ09を埋め込むとよい。
(11) Figure 6 (k-1), (k-2), (k
-3) (However, the K-K' sectional view of the same figure (k-1) is the same figure (k-2), and the L = L' sectional view of the same figure (k-1) is the same figure (k-3) ), a first polysilicon layer 09 is embedded in the cut portion corresponding to the n region 502. For example, after coating the entire surface with polyimide, forming a photoresist, patterning it, etching the polyimide in the area where the first polysilicon layer 09 is to be buried, and then applying the first polysilicon layer 09 by sputtering or CVD. It is a good idea to embed.

(12)第6図(β−1)、(β−2)、(7!−3)
に示す様に、再び第1のポリシリコンロ09′をp領域
503の厚さだけ形成する。工程は(11)で示したも
のと同様でよい。この後、熱酸化などにより酸化膜61
0を形成する。
(12) Figure 6 (β-1), (β-2), (7!-3)
As shown in FIG. 3, the first polysilicon layer 09' is again formed to have the thickness of the p region 503. The steps may be similar to those shown in (11). After this, the oxide film 61 is formed by thermal oxidation or the like.
form 0.

(13)第6図(m−1) 、 (m−2) 、 (m
−3)に示す様に、(11)の工程を用いて、第2のポ
リシリコンロ11を残りの切り込み部分に埋め込む。
(13) Figure 6 (m-1), (m-2), (m
As shown in -3), the second polysilicon layer 11 is embedded in the remaining cut portion using the step (11).

(14)第6図(n−1’) 、 (n−2)、 (n
−3)に示す様に、再び第2のポリ7リコ7611′を
p領域503の厚さだけ形成し、熱酸化などで、この後
、絶縁物としてポリイミドを全面塗布すれば、第5図(
2L)〜(6)に示したcap撮像装置が製作できる。
(14) Figure 6 (n-1'), (n-2), (n
As shown in FIG. 5(-3), a second poly7-lico 7611' is again formed to the thickness of the p-region 503, and then polyimide is applied as an insulator over the entire surface by thermal oxidation or the like.
The cap imaging devices shown in 2L) to (6) can be manufactured.

さらに、第6図に示したCCD撮像装置の光電変換部と
して、第7図のS部分に示す様なp工nフォトダイオー
ドを形成してもよい。701は1領域(N (10” 
cm−’  )、702はp+領領域N> 1o19c
m−5)、703は金属電極である。
Furthermore, as the photoelectric conversion section of the CCD image pickup device shown in FIG. 6, a p-type n photodiode as shown in section S in FIG. 7 may be formed. 701 is one area (N (10”
cm-'), 702 is the p+ region N> 1o19c
m-5), 703 is a metal electrode.

又、第8図のQ部分に示す様なS I T (5tat
icInduction Transistorの略)
フォト・トランジスタを形成する事もできる。801は
ゲートのp+領領域802はソースのn 領域、803
はソース電極、804はゲート電極である。
Also, S I T (5tat
(abbreviation for icInduction Transistor)
A phototransistor can also be formed. 801 is the p+ region of the gate 802 is the n region of the source, 803
804 is a source electrode, and 804 is a gate electrode.

発明の効果 以上の説明の様に、本発明によれば、凹部にCODを形
成する事により受光部分における小さな占有面積で十分
なダイナミックレンジが得られる為、CCD撮像装置の
大幅な感度向上、解像度向上が可能で、その実用的効果
は大きい。
Effects of the Invention As explained above, according to the present invention, by forming a COD in the concave portion, a sufficient dynamic range can be obtained with a small occupied area in the light receiving part, thereby significantly improving the sensitivity and resolution of the CCD imaging device. Improvements are possible and have great practical effects.

第1図は本発明の第1の実施例における半導体装置の構
造図を示すもので、同図(a)は平面図、同図中)は同
図(a)のB−B’断面図、同図(C)は同図(a)の
c −c’断面図、同図(d)は同図(a)OD −D
’断面図、同図(6)は同図(2L)のE −E’断面
図、同図(f)は同図(d)のF−F’断面に沿った主
動作状態のエネルギーバンド図、同図(g)は、本実施
例を一部変更した場合の同図(a)のD−D’断面図で
ある。又同図中)は駆動パルス図である。
FIG. 1 shows a structural diagram of a semiconductor device according to a first embodiment of the present invention. FIG. 1(a) is a plan view, FIG. The same figure (C) is a c-c' sectional view of the same figure (a), the same figure (d) is the same figure (a) OD-D
' Cross-sectional view, Figure (6) is a cross-sectional view of E-E' in Figure (2L), Figure (f) is an energy band diagram of the main operating state along the F-F' cross-section of Figure (d). , FIG. 3(g) is a sectional view taken along the line DD' in FIG. 1(a) when the present embodiment is partially modified. (in the figure) is a drive pulse diagram.

第2図は、本発明の第2の実施例の半導体装置の構造図
を示すもので、同図e)は平面図、同図(b)は同図(
a)のB−B’断面図、同図(C)は同図e)のC−C
′断面図、同図((1)は同図(a)のD−D’断面図
、同図(e)は同図(a)のE −E’断面図、同図(
r)は、同図(d)のF−F’断面に沿った主動作状態
のエネルギーバンド図である。
FIG. 2 shows a structural diagram of a semiconductor device according to a second embodiment of the present invention, in which e) is a plan view and (b) is a plan view.
BB' sectional view of a), the same figure (C) is CC of the same figure e)
' sectional view, the same figure ((1) is the DD' cross-sectional view of the same figure (a), the same figure (e) is the E-E' cross-sectional view of the same figure (a), the same figure (
r) is an energy band diagram of the main operating state along the FF' cross section in FIG. 2(d).

第3図は、本発明の第3の実施例の半導体装置の構造図
を示すもので、同図(a)は平面図、同図(b)は同図
(&)のB −B’断面図、同図(C)は同図(a)の
C−C′断面図、同図(d)は同図(a)のD −D’
断面図、同図(e)は、同図(&)のE −E’断面図
である。
FIG. 3 shows a structural diagram of a semiconductor device according to a third embodiment of the present invention, in which (a) is a plan view, and (b) is a cross section taken along line B-B' in (&) of the same figure. The figure (C) is a sectional view taken along the line CC' in the figure (a), and the figure (d) is the cross-sectional view taken along the line D-D' in the figure (a).
The cross-sectional view (e) is a cross-sectional view taken along the line E-E' of the figure (&).

第4図は、不発明の第4の実施例の半導体装置の構造図
を示すもので、同図(&)は平面図、同図(b)は同図
(2L)のB −B’断面図、同図(C)は同図(IL
)のC−C′断面図、同図(d)は同図(2L)のD 
−D’断面図、同図(θ〕は、同図(IL)のE−E’
断面図、同図(f)は、本実施例を一部変更した場合の
同図(a)のc −c’断面図、同図(g)は、同図(
f)の(1,−G’断面図である。同図(h)は駆動パ
ルス図である。
FIG. 4 shows a structural diagram of a semiconductor device according to a fourth embodiment of the invention. The same figure (C) is the same figure (IL
), the same figure (d) is a cross-sectional view of D in the same figure (2L).
-D' sectional view, the same figure (θ) is E-E' of the same figure (IL)
The cross-sectional view (f) is a cross-sectional view taken along line c-c' of (a) in the case where this embodiment is partially modified, and (g) is the cross-sectional view (
It is a (1,-G' sectional view of f). The same figure (h) is a drive pulse diagram.

第5図は、本発明の第6の実施例の半導体装置の構造図
を示すもので、同図(a)は平面図、同図(b)は同図
(?L)のB −B’断面図、同図(C)は同図(a)
のC−C′断面図、同図(d)は同図(2L)のD−D
’断面図、同図(6)は同図(a)のe −e’断面図
、同図(f)は、シリコン単結晶の部分を示す実体図、
同図Cg)は、シリコン多結晶の部分を示す実体図であ
る。
FIG. 5 shows a structural diagram of a semiconductor device according to a sixth embodiment of the present invention, in which (a) is a plan view, and (b) is a B-B' of the same figure (?L). Cross-sectional view, the same figure (C) is the same figure (a)
C-C' sectional view of , the same figure (d) is D-D of the same figure (2L)
' Cross-sectional view, Figure (6) is a cross-sectional view e-e' of Figure (a), Figure (f) is a solid view showing the silicon single crystal part,
Figure Cg) is a solid diagram showing a silicon polycrystalline portion.

第6図(fa−)〜(n)は、第5の実施例の半導体装
置の製造方法を示す図、第7図はp工nフォトダイオー
ドを有・する実施例の構成図、第8図はSITフォト・
トランジスタを有する実施例の構成図、第9図は従来の
COD撮像装置のブロック図、第10図は第9図の画素
断面図、第11図は、DRAMと撮像装置の対応を示す
グラフである。
6(fa-) to (n) are diagrams showing a method for manufacturing a semiconductor device of the fifth embodiment, FIG. 7 is a block diagram of an embodiment having a p-type n photodiode, and FIG. 8 is SIT photo
FIG. 9 is a block diagram of a conventional COD imaging device, FIG. 10 is a sectional view of a pixel in FIG. 9, and FIG. 11 is a graph showing the correspondence between DRAM and imaging device. .

101.201.301.401.501 ・−・・p
基半導体基板、102 、203 、304 、405
゜506・・・・・・絶縁膜、103・旧・・第1のポ
リシリコン、104・・・・・・第2のポリシリコン、
1o6゜107.205.206.305.306.4
11゜511.511’・・・・・・電荷転送領域。
101.201.301.401.501 ・-・・p
Base semiconductor substrate, 102 , 203 , 304 , 405
゜506... Insulating film, 103 Old... First polysilicon, 104... Second polysilicon,
1o6゜107.205.206.305.306.4
11°511.511'...Charge transfer region.

代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 (h) % 箇 4IΣI 第5図 第6図 第6図 第 6 図 (J−1ン             (j−2+第7
[7J ”、Qf7on733 第 814 第9図
Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure (h) % 4IΣI Figure 5 Figure 6 Figure 6 Figure 6 (J-1 (j-2 +
[7J”, Qf7on733 No. 814 Fig. 9

Claims (6)

【特許請求の範囲】[Claims] (1)高抵抗半導体層に形成された一方向に長い凹部表
面に絶縁膜を介して複数個の転送ゲート電極を有し、主
動作状態で前記凹部周辺の半導体層に電荷転送領域が形
成される事を特徴とする半導体装置。
(1) A plurality of transfer gate electrodes are formed on the surface of a recess long in one direction formed in a high-resistance semiconductor layer via an insulating film, and a charge transfer region is formed in the semiconductor layer around the recess in the main operating state. A semiconductor device characterized by:
(2)凹部直下の半導体層に前記電荷転送領域に対する
阻止分離領域を形成し、主動作状態で前記凹部側壁下の
半導体層に2個の電荷転送領域が形成される事を特徴と
する特許請求の範囲第(1)項記載の半導体装置。
(2) A patent claim characterized in that a blocking separation region for the charge transfer region is formed in the semiconductor layer directly under the recess, and two charge transfer regions are formed in the semiconductor layer under the sidewall of the recess in the main operating state. The semiconductor device according to scope (1).
(3)高抵抗半導体層表面に複数個の光電変換領域を設
け、前記電荷転送領域との間に、読出しゲート領域を設
けた事を特徴とする特許請求の範囲第(1)項記載の半
導体装置。
(3) A semiconductor according to claim (1), characterized in that a plurality of photoelectric conversion regions are provided on the surface of the high-resistance semiconductor layer, and a readout gate region is provided between the charge transfer region and the charge transfer region. Device.
(4)光電変換領域が第2の凹部を有する事を特徴とす
る特許請求の範囲第(3)項記載の半導体装置。
(4) The semiconductor device according to claim (3), wherein the photoelectric conversion region has a second recess.
(5)第1導電型の半導体基板に、第2導電型の高抵抗
半導体層、第1導電型の半導体層、第2導電型の半導体
層を形成する第1の工程と、前記第2導電型の半導体層
表面から、前記表面にほぼ垂直で前記高抵抗半導体層が
露出する側面を有する凹部を形成する第2の工程と、前
記凹部表面に絶縁膜を形成する第3の工程と、前記凹部
の前記高抵抗半導体層に対応する転送ゲート電極を形成
する第4の工程とを含む半導体装置の製造方法。
(5) A first step of forming a high resistance semiconductor layer of a second conductivity type, a semiconductor layer of a first conductivity type, and a semiconductor layer of a second conductivity type on a semiconductor substrate of a first conductivity type; a second step of forming a recess from the surface of the semiconductor layer of the mold, the side surface being substantially perpendicular to the surface and exposing the high-resistance semiconductor layer; a third step of forming an insulating film on the surface of the recess; a fourth step of forming a transfer gate electrode corresponding to the high-resistance semiconductor layer in the recess.
(6)凹部を形成する第2の工程が、前記半導体基板に
達する凹部を形成後、第1導電型の低抵抗領域を形成す
る工程を含む事を特徴とする特許請求の範囲第(5)項
記載の半導体装置の製造方法。
(6) Claim (5) characterized in that the second step of forming the recess includes a step of forming a low resistance region of the first conductivity type after forming the recess reaching the semiconductor substrate. A method for manufacturing a semiconductor device according to section 1.
JP61156630A 1986-07-03 1986-07-03 Semiconductor device and manufacture thereof Pending JPS6312162A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61156630A JPS6312162A (en) 1986-07-03 1986-07-03 Semiconductor device and manufacture thereof
KR1019870013466A KR910001877B1 (en) 1986-07-03 1987-11-28 Semiconductor device and the producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61156630A JPS6312162A (en) 1986-07-03 1986-07-03 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6312162A true JPS6312162A (en) 1988-01-19

Family

ID=15631889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61156630A Pending JPS6312162A (en) 1986-07-03 1986-07-03 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6312162A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164072A (en) * 1988-12-19 1990-06-25 Mitsubishi Electric Corp Solid-state image sensing device, charge transfer device therefor, and manufacture thereof
EP0418500A2 (en) * 1989-07-25 1991-03-27 Matsushita Electric Industrial Co., Ltd. Semiconductor device for charge transfer
US5156985A (en) * 1990-05-08 1992-10-20 Matsushita Electric Industrial Co., Ltd. Method for making a charge transfer semiconductor device having an oblong trench
US5173756A (en) * 1990-01-05 1992-12-22 International Business Machines Corporation Trench charge-coupled device
US5223726A (en) * 1989-07-25 1993-06-29 Matsushita Electric Industrial Co., Ltd. Semiconductor device for charge transfer device
US5334868A (en) * 1991-02-08 1994-08-02 International Business Machines Corporation Sidewall charge-coupled device with trench isolation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296556A (en) * 1986-06-17 1987-12-23 Matsushita Electronics Corp Photodetector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296556A (en) * 1986-06-17 1987-12-23 Matsushita Electronics Corp Photodetector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164072A (en) * 1988-12-19 1990-06-25 Mitsubishi Electric Corp Solid-state image sensing device, charge transfer device therefor, and manufacture thereof
EP0418500A2 (en) * 1989-07-25 1991-03-27 Matsushita Electric Industrial Co., Ltd. Semiconductor device for charge transfer
US5223726A (en) * 1989-07-25 1993-06-29 Matsushita Electric Industrial Co., Ltd. Semiconductor device for charge transfer device
US5173756A (en) * 1990-01-05 1992-12-22 International Business Machines Corporation Trench charge-coupled device
US5156985A (en) * 1990-05-08 1992-10-20 Matsushita Electric Industrial Co., Ltd. Method for making a charge transfer semiconductor device having an oblong trench
US5334868A (en) * 1991-02-08 1994-08-02 International Business Machines Corporation Sidewall charge-coupled device with trench isolation

Similar Documents

Publication Publication Date Title
JP3225939B2 (en) Solid-state imaging device and manufacturing method thereof
JPH0685234A (en) Image sensor device and its manufacture
US4742381A (en) Semiconductor charge-coupled device with an increased surface state
JPS6312162A (en) Semiconductor device and manufacture thereof
US6465819B2 (en) Solid state imaging apparatus with transistors having different gate insulating film thickness and manufacturing method for the same
JPH05226378A (en) Manufacture of charge transfer element
US4806498A (en) Semiconductor charge-coupled device and process of fabrication thereof
JP2909158B2 (en) Charge coupled device
JP3218665B2 (en) Method for manufacturing charge transfer device
KR100899546B1 (en) Charged Coupled Device and method for manufacturing thereof
JP2000286409A (en) Solid-state image pickup element and manufacture thereof
JP3047965B2 (en) Solid-state imaging device
JP3603438B2 (en) Amplification type solid-state imaging device and manufacturing method thereof
JPH02105460A (en) Manufacture of solid-state image sensing device
US5910013A (en) Process for manufacturing a solid-state pick-up device
JPH0355854A (en) Semiconductor device and its manufacture
JP3156779B2 (en) Charge transfer device and method of manufacturing the same
JPH04207077A (en) Manufacture of solid-state image pickup element
JP3570385B2 (en) Solid-state imaging device
JPH05145056A (en) Solid state image sensor
JPH0513470A (en) Charge coupled device
JPS61123172A (en) Solid-state image pickup device
KR910001877B1 (en) Semiconductor device and the producing method
JPH04130665A (en) Solid state image sensor
JPH06181225A (en) Signal-charge transmission apparatus