JPS63120602A - Manufacture of ceramic turbine rotor - Google Patents

Manufacture of ceramic turbine rotor

Info

Publication number
JPS63120602A
JPS63120602A JP26813386A JP26813386A JPS63120602A JP S63120602 A JPS63120602 A JP S63120602A JP 26813386 A JP26813386 A JP 26813386A JP 26813386 A JP26813386 A JP 26813386A JP S63120602 A JPS63120602 A JP S63120602A
Authority
JP
Japan
Prior art keywords
shaft
molded body
degreasing
turbine rotor
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26813386A
Other languages
Japanese (ja)
Inventor
下川 行夫
村知 幹夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP26813386A priority Critical patent/JPS63120602A/en
Publication of JPS63120602A publication Critical patent/JPS63120602A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、射出成形法によるセラミックタービンロータ
の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a ceramic turbine rotor by injection molding.

[従来の技術1 自動車エンジンのターボ過給機に用いられるセラミック
ターボロータは、シャフトと、該シャフトの一端に一体
的に連接されたハブ部と、該ハブの外周面に形成された
翼部とから成る。
[Prior Art 1] A ceramic turbo rotor used in a turbocharger for an automobile engine includes a shaft, a hub portion integrally connected to one end of the shaft, and a wing portion formed on the outer peripheral surface of the hub. Consists of.

従来セラミックターボロータは、まずセラミック粉末と
熱可塑性樹脂とを混合し、これを射出成形した後加熱に
より脱脂し、その後焼成して製造している。
Conventionally, ceramic turbo rotors are manufactured by first mixing ceramic powder and thermoplastic resin, injection molding the mixture, degreasing it by heating, and then firing it.

しかし、かかる従来の方法によって製造したセラミック
ターボロータには、内部欠陥が存在しがちであり、この
ため、寸法精度や強度に問題があった。内部欠陥は、セ
ラミックターボロータに厚内部と薄肉部の混在すること
に原因があるように思う。即ち、脱脂時において、熱可
塑性樹脂の除去は、薄肉部においては比較的良好に行わ
れる。
However, ceramic turbo rotors manufactured by such conventional methods tend to have internal defects, resulting in problems with dimensional accuracy and strength. I think the internal defects are caused by the mixture of thick internal parts and thin parts in the ceramic turbo rotor. That is, during degreasing, the thermoplastic resin is removed relatively well from the thin walled portions.

しかし、厚肉部(ハブ)の脱脂を充分に行おうとすると
、熱可塑性樹脂の分解で生じたガスの圧力によって、亀
裂、密度分布等の内部欠陥が発生しがちである。また、
もし厚肉部における脱脂が不十分な場合は、内部に残留
する樹脂が焼成時に分解してガス化し、その圧力によっ
て亀裂等を生じさせがちである。
However, when attempting to sufficiently degrease the thick walled portion (hub), internal defects such as cracks and density distribution tend to occur due to the pressure of gas generated by decomposition of the thermoplastic resin. Also,
If the thick portions are not sufficiently degreased, the resin remaining inside will decompose and gasify during firing, and the resulting pressure will tend to cause cracks and the like.

この問題点に対し例えば実開昭57−57201号には
、成形体の脱脂工程前に成形体厚内部に略半径方向に沿
った小孔を設ける方法が開示されている。また特公昭5
6−41403号には、シャフトとハブとを別体として
成形し、焼成したシャフトを未焼成のハブに挿入して一
体で加熱して焼結の進行に伴う収縮作用により接合する
方法が提案されている。
In order to solve this problem, for example, Japanese Utility Model Application No. 57-57201 discloses a method of forming small holes along a substantially radial direction within the thickness of a molded body before the degreasing process of the molded body. In addition, the Tokuko Sho 5
No. 6-41403 proposes a method in which a shaft and a hub are molded separately, the fired shaft is inserted into an unfired hub, and the two are heated together and joined by shrinkage as sintering progresses. ing.

[発明が解決しようとする問題点〕 上記の方法、例えば厚肉部に穴を設けて脱脂性を良くす
る方法は、穴が設けられた厚肉部の強度および性能上に
問題を有する。また分割して成形したのち焼成時に接合
する方法は、接合部での欠陥をなくすため、軸と穴の加
工精度を高める必要があり工数m加の要因となる。
[Problems to be Solved by the Invention] The above-mentioned method, for example, the method of improving degreasing performance by providing holes in a thick-walled portion, has problems in terms of strength and performance of the thick-walled portion in which the holes are provided. Furthermore, in the method of forming the parts into parts and then joining them during firing, it is necessary to improve the machining accuracy of the shaft and the hole in order to eliminate defects at the joined parts, which causes the number of man-hours to be increased.

本発明はかかる事情に鑑み案出されたもので、成形品の
12m時間の短縮および性能、強度に悪影響を与えるこ
とない射出成形法を提案するものである。
The present invention was devised in view of the above circumstances, and proposes an injection molding method that reduces the molded product time by 12 m and does not adversely affect performance and strength.

[問題点を解決するための手段] 本発明のセラミックタービンロータの製造方法は、あら
かじめ成形、仮焼成したシャフト部をインサートして射
出成形してm部をもつ成形体を形成する工程、射出成形
で得られた成形体を脱脂する工程、脱脂した該成形体を
被覆して静水加圧する工程、ついで焼成する工程とから
なることを特徴とする。
[Means for Solving the Problems] The method for manufacturing a ceramic turbine rotor of the present invention includes a step of inserting a previously formed and pre-fired shaft portion and injection molding to form a molded body having m portions, and injection molding. The method is characterized by comprising a step of degreasing the molded body obtained in step 1, a step of covering the degreased molded body and subjecting it to hydrostatic pressure, and then a step of firing.

シャフト部は、成形、仮焼成され0.1μm以上の連通
孔を有する多孔質体で、成形後類シャフト部の少なくと
も一端が四部より突出している。
The shaft part is a porous body having communicating holes of 0.1 μm or more after being molded and pre-fired, and after molding, at least one end of the shaft part protrudes from the four parts.

シャフト部は射出成形後脱脂、仮焼成され20%以上の
0.1μm以上の連通孔を有する多孔質体である。この
シャフト部が多孔質体であることは、成形体の脱脂時、
翼部の内層でシャフト部に近い所に存在する熱可塑性樹
脂が多孔質体を通路として外部に排出される。くわえて
熱可塑性樹脂が多孔質体を通路として排出するのを容易
にするようにシャフト部が翼部より突出していることが
必要である。このことにより12mが成形体の表面およ
び内部のシャフト部を通して外へ排出されるため脱脂効
率が向上し時間の短縮ができる。
The shaft portion is a porous body that is degreased and calcined after injection molding and has 20% or more of communicating pores of 0.1 μm or more. The fact that this shaft part is a porous body means that when degreasing the molded body,
The thermoplastic resin present in the inner layer of the wing near the shaft is discharged to the outside through the porous body. In addition, it is necessary that the shaft portion protrude from the wing portions to facilitate the thermoplastic resin being discharged through the porous body as a passageway. As a result, 12 m is discharged to the outside through the surface of the molded body and the internal shaft portion, thereby improving the degreasing efficiency and reducing the time.

上記のシャフトをインサートして射出成形して四部をも
つ成形体を作る工程は、通常の方法にて容易に得られる
。この成形体は厚肉の形状がないため成形性が良くなる
。Il物の材料組成は、収縮率が近いことが必要でシャ
フト部と同一であることが好ましい。
The step of inserting the shaft and injection molding to produce a four-part molded body can be easily obtained by a conventional method. Since this molded body does not have a thick-walled shape, moldability is improved. The material composition of the material needs to have a similar shrinkage rate and is preferably the same as that of the shaft part.

脱脂工程は通常の方法、常圧または減圧下に直接または
バット材に成形体を埋めて加熱して行なう。いづれの方
法も適用できる。
The degreasing process is carried out by a conventional method, either directly under normal pressure or reduced pressure, or by burying the molded body in a batt material and heating it. Either method can be applied.

前記した如くシャフト部を熱可塑性樹脂の排気通路とし
たため、脱Itgh串がよくなり、短時間に脱脂が完了
し、残存による内部歪の発生は阻止され、ワレ発生要因
が押えられる。静水加圧の工程は、焼成時にインサート
部と成形部との収縮差が大きいとワレの原因となると思
われるため均一に成形体全体に圧力を加えて収縮の度合
を調整する。
As described above, since the shaft portion is used as an exhaust passage for the thermoplastic resin, the degreasing is improved, the degreasing is completed in a short period of time, the occurrence of internal distortion due to residue is prevented, and the cause of cracking is suppressed. In the hydrostatic pressing process, if there is a large difference in shrinkage between the insert part and the molded part during firing, it may cause cracking, so the degree of shrinkage is adjusted by uniformly applying pressure to the entire molded body.

常法にしたがって、膜で被覆し、所定の圧力で加圧する
。焼成工程は、通常の方法で行なう。焼結後のターボロ
ータは、上記の各工程を順に実施することにより、内部
歪ワレの発生しない製品が得られる製造法が案出された
Cover with a membrane and pressurize at a predetermined pressure according to a conventional method. The firing step is carried out in a conventional manner. A manufacturing method has been devised in which a sintered turbo rotor can be manufactured by sequentially carrying out the above steps to produce a product free from internal strain cracks.

[実施例] 窒化珪素(SiiNa)92重量%、酸化イツトリウム
(YtOz>4盾分%、スピネル(MGIAIzOa)
41m%との粉末をボールミルにより充分混合したのち
、射出成形用助剤の熱可塑性樹!115重量%添加、混
練して射出成形用のペレットを作成した。
[Example] Silicon nitride (SiiNa) 92% by weight, yttrium oxide (YtOz>4% by weight, spinel (MGIAIzOa)
After thoroughly mixing the powder with 41m% in a ball mill, it is made into a thermoplastic resin as an injection molding aid! 115% by weight was added and kneaded to create pellets for injection molding.

上記で得たペレットを用い、シャフト部を射出成形し、
脱脂した後、1300℃で3時間仮焼成を行った。Rシ
ャフトは電子!I微鏡で調べた結果0.1μm以上の連
通孔の存在を確認した。
Using the pellets obtained above, injection mold the shaft part,
After degreasing, temporary firing was performed at 1300° C. for 3 hours. R shaft is electronic! As a result of examination using an I-microscope, the presence of communicating pores of 0.1 μm or more was confirmed.

上記仮焼成シャフトをインサート材として金型に固定し
、前記のペレットを用いて第1図に示す形状のタービン
ロータを射出成形により成形した。
The pre-fired shaft was fixed to a mold as an insert material, and the pellets were used to mold a turbine rotor having the shape shown in FIG. 1 by injection molding.

得られた成形体を、室温から450℃まで5℃/時間の
昇温速度で加熱し脱脂した。
The obtained molded body was heated from room temperature to 450°C at a heating rate of 5°C/hour to degrease it.

ついで脱脂成形体を静水加圧用の被覆を行い1500k
Q/cs2の圧力で30秒間の静水加圧を行った。
Next, the degreased molded body was coated for hydrostatic pressurization and heated to 1500k.
Hydrostatic pressurization was performed for 30 seconds at a pressure of Q/cs2.

ついで静水加圧被膜を窒素ガス下で500℃に加熱し除
去した後、窒素ガス下で1750℃で4時間焼成してタ
ービンロータの焼結体を得た。インサート部と翼部とを
同一組成、同一成形法で製造しているため脱W1時にお
ける両者の収縮率の差は0.3%であり脱脂中にはワレ
は認められなかった。又焼成前に成形体全体を静水加圧
を行ったことにより焼成時の両者の収縮率の差は0.6
%であり焼成時にワレの発生は認められなかった。
The hydrostatic pressure coating was then heated to 500° C. under nitrogen gas to remove it, and then fired at 1750° C. for 4 hours under nitrogen gas to obtain a sintered body of a turbine rotor. Since the insert part and the wing part were manufactured with the same composition and the same molding method, the difference in shrinkage rate between the two at the time of dewaxing was 0.3%, and no cracking was observed during degreasing. Also, because the entire molded body was subjected to hydrostatic pressure before firing, the difference in shrinkage rate between the two during firing was 0.6.
%, and no cracking was observed during firing.

また回転試験の結果、買カケ、破損は認められなかった
Also, as a result of the rotation test, no chips or damage were found.

第1図に示すシャフト径とハブ径との比(d+/dt−
0+/Dx)が2の形状の場合は脱脂に要する時間が多
孔質体シャフトでない場合に比べて40%短縮された。
The ratio of the shaft diameter to the hub diameter (d+/dt-
In the case of a shape in which 0+/Dx) is 2, the time required for degreasing was reduced by 40% compared to the case without a porous shaft.

実施例1と同様の方法により第2図および第3図の形状
のタービンロータの成形を行なった。ワレの発生は認め
られなかった。
A turbine rotor having the shape shown in FIGS. 2 and 3 was formed by the same method as in Example 1. No cracking was observed.

[効果] 本発明は、シャフトをインサートして射出成形を行うた
め翼部の肉厚のバランスがとれ成形性が良好となるため
、厚肉による欠陥のウェルドヒケが減少するとともに、
接合部が書着されるのでシャフト部を精度良く仕上る必
要がない。
[Effect] The present invention performs injection molding by inserting the shaft, so the wall thickness of the wing portion is balanced and moldability is improved, so weld sinkage due to defects due to thick wall is reduced,
Since the joints are glued, there is no need to finish the shaft part with high precision.

インサート成形した部分には厚内部が無いため脱脂除去
すべき熱可塑性樹脂の総量が少なく、シャフト部の気孔
を通して熱可塑性樹脂が排出されるため脱脂性が著しく
向上し、かつ短時間で脱脂ができる。
Since the insert-molded part does not have a thick interior, the total amount of thermoplastic resin to be degreased and removed is small, and the thermoplastic resin is discharged through the pores of the shaft, so degreasing performance is significantly improved and degreasing can be done in a short time. .

さらに静水加圧工程を実施することにより成形体が均等
に加圧を加えるため焼結時の収縮差による損傷がおきな
い利点がある。
Furthermore, by carrying out the hydrostatic pressurization process, the molded body is pressurized evenly, so there is an advantage that damage due to shrinkage differences during sintering does not occur.

上記のように、厚肉品形状を有するセラミックターボロ
ータも本発明のシャフト部をインサートして成形する方
法を適用することにより厚肉部がなくなり、成形性、脱
脂性が著しく向上しまたインサートによる両者の収縮差
による欠陥も解消した製造法である。
As mentioned above, by applying the method of inserting and molding a shaft part of the present invention to a ceramic turbo rotor having a thick-walled product shape, the thick-walled part is eliminated, and moldability and degreasing properties are significantly improved. This manufacturing method also eliminates defects caused by the difference in shrinkage between the two.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1の形状、第2図は実施例2の形状、第
3図は実施例3の形状で成形したターボロータの断面図
である。 12.22.32・・・シャフト 11.21.31・・・ハブ部 特許出願人   トヨタ自動車株式会社代理人    
弁理士 大川 宏 同     弁理士 丸山明夫 第1図
FIG. 1 is a sectional view of a turbo rotor molded in the shape of Example 1, FIG. 2 is the shape of Example 2, and FIG. 3 is the shape of Example 3. 12.22.32...Shaft 11.21.31...Hub portion patent applicant Toyota Motor Corporation Agent
Patent attorney Hirodo Okawa Patent attorney Akio Maruyama Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)あらかじめ成形、仮焼成したシャフト部をインサ
ートして射出成形して翼部をもつ成形体を作る工程、 射出成形で得られた成形体を脱脂する工程、脱脂した該
成形体を被覆して静水加圧する工程、ついで焼成する工
程とからなるセラミックタービンロータの製造法。
(1) A process of inserting and injection molding a pre-molded and pre-fired shaft part into a molded body with wing parts, a process of degreasing the molded body obtained by injection molding, and a process of coating the degreased molded body. A method for manufacturing a ceramic turbine rotor comprising the steps of hydrostatic pressurization and then firing.
(2)シャフト部は、成形仮焼成され、0.1μm以上
の連通孔を有する多孔質体であり、成形後該シャフトの
少なくとも一端が翼部より突出している特許請求の範囲
第1項記載のセラミックタービンロータの製造法。
(2) The shaft portion is a porous body having a communicating hole of 0.1 μm or more, which is formed and pre-fired, and after molding, at least one end of the shaft protrudes from the wing portion. Manufacturing method of ceramic turbine rotor.
JP26813386A 1986-11-11 1986-11-11 Manufacture of ceramic turbine rotor Pending JPS63120602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26813386A JPS63120602A (en) 1986-11-11 1986-11-11 Manufacture of ceramic turbine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26813386A JPS63120602A (en) 1986-11-11 1986-11-11 Manufacture of ceramic turbine rotor

Publications (1)

Publication Number Publication Date
JPS63120602A true JPS63120602A (en) 1988-05-25

Family

ID=17454346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26813386A Pending JPS63120602A (en) 1986-11-11 1986-11-11 Manufacture of ceramic turbine rotor

Country Status (1)

Country Link
JP (1) JPS63120602A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003503228A (en) * 1999-06-23 2003-01-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Ceramic pin heating element with integrated connector contacts and method of manufacturing this ceramic pin heating element
JP2009131295A (en) * 2007-11-28 2009-06-18 Fujifilm Corp Simple washing system for endoscope and case unit for simple washing
JP2019094539A (en) * 2017-11-24 2019-06-20 三菱重工航空エンジン株式会社 Production method of metal component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003503228A (en) * 1999-06-23 2003-01-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Ceramic pin heating element with integrated connector contacts and method of manufacturing this ceramic pin heating element
JP4755372B2 (en) * 1999-06-23 2011-08-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Ceramic pin heating element with integrated connector contacts and method for manufacturing this ceramic pin heating element
JP2009131295A (en) * 2007-11-28 2009-06-18 Fujifilm Corp Simple washing system for endoscope and case unit for simple washing
JP2019094539A (en) * 2017-11-24 2019-06-20 三菱重工航空エンジン株式会社 Production method of metal component

Similar Documents

Publication Publication Date Title
EP0052913B1 (en) Ceramic rotor
JPS6224603B2 (en)
JPH0231648B2 (en)
US4647414A (en) Method of manufacturing ceramics
US4552510A (en) Radial type ceramic turbine rotor and method of producing the same
US4820128A (en) Composite ceramic structure and method for manufacturing the same
JPS59109304A (en) Manufacture of radial type ceramic turbine rotor
US4096120A (en) Method of making a ceramic turbine wheel and turbine wheel made thereby
JPS63120602A (en) Manufacture of ceramic turbine rotor
JP2500138B2 (en) Method of manufacturing ceramics with pores
JPH0627482B2 (en) Manufacturing method of radial type ceramic turbine rotor
EP0112146B1 (en) Radial blade type ceramic rotor and method of producing the same
JPS61293809A (en) Manufacture of ceramic product
JPS621502A (en) Manufacture fo turbo-wheel made of ceramic
JPS61290007A (en) Manufacture of ceramic product
JPS61111975A (en) Manufacture of ceramic structural material
JPS6143163B2 (en)
JPS6283378A (en) Manufacture of enhanced silicon nitride sintered body
JPS6265990A (en) Production of ceramics turbo wheel
JPS6259077B2 (en)
JP2997900B2 (en) Ceramic exhaust manifold and method of manufacturing the same
JPS62202874A (en) Manufacture of ceramic sintered body
JPH03281902A (en) Radial type ceramic rotor
JPS6329001A (en) Ceramic turbo wheel
JPS58124003A (en) Manufacture of ceramic turbine rotor