JPS58124003A - Manufacture of ceramic turbine rotor - Google Patents
Manufacture of ceramic turbine rotorInfo
- Publication number
- JPS58124003A JPS58124003A JP701382A JP701382A JPS58124003A JP S58124003 A JPS58124003 A JP S58124003A JP 701382 A JP701382 A JP 701382A JP 701382 A JP701382 A JP 701382A JP S58124003 A JPS58124003 A JP S58124003A
- Authority
- JP
- Japan
- Prior art keywords
- rotor
- fitting hole
- silicon carbide
- turbine disk
- turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/284—Selection of ceramic materials
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はロータ部とディスク部を一体に接合したセラミ
ックタービンロータの製造法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a ceramic turbine rotor in which a rotor portion and a disk portion are integrally joined.
タービンロータは形状が非常に複雑であり、これをセラ
ミックで製作するには従来、流し込み成形法や射出成形
法により製作されてきた。しかし、各部分毎の肉厚に差
異があるために、成形工程や鋭脂工程あるいは焼成工程
時にクラックや変形を生じ易く、一体化した成形体を得
ることは非常に困難であった。又、用いられる成形型自
体が複雑1.ヵ、あ。操作Ir1lな技−4求。ゎ工業
的には適していなかった。又、複雑形状の成形に適する
反応焼結法によって得られた窒化珪素焼結体は、強度的
に弱く、応力の大きくかかるタービンディスク部には適
さない。そこで、ロータ部とタービンディスク部を接合
する方法が種々1人された。例えば特公昭53−387
21〜3872/1の方法もその1つであるが、この方
法は、軸流タービンロータの製造に関するもので反応焼
結窒化珪素材料を用い射出成形によりロータ部を作り、
それをカーボン成形型中にセットし、タービンディスク
部をホットプレス法により成形するとともに、ロータ部
とを接合する方法である。しかし、この方法はホットプ
レスのモールドセット条件、加圧条件が非常に厳密であ
るため、生産性よくタービンロータを作ることは困難で
あった。Turbine rotors have a very complex shape, and traditionally they have been manufactured using ceramic casting or injection molding methods. However, since the thickness of each part is different, cracks and deformation are likely to occur during the molding process, sharpening process, or firing process, making it extremely difficult to obtain an integrated molded body. In addition, the mold itself used is complicated.1. Ka, ah. Operation Ir1l techniques - 4 requests. It was not suitable for industrial use. Furthermore, the silicon nitride sintered body obtained by the reaction sintering method, which is suitable for molding into complex shapes, has low strength and is not suitable for the turbine disk portion, which is subject to large stress. Therefore, various methods have been proposed for joining the rotor portion and the turbine disk portion. For example, Tokuko Sho 53-387
The method of No. 21-3872/1 is one of them, and this method is related to manufacturing an axial flow turbine rotor, and involves making a rotor part by injection molding using a reactive sintered silicon nitride material.
This is a method of setting it in a carbon mold, molding the turbine disk part by hot pressing, and joining it to the rotor part. However, this method requires very strict hot press mold setting conditions and pressurizing conditions, making it difficult to manufacture turbine rotors with good productivity.
そこで、本発明者はロータ部とタービンディスク部を強
固に、しかも確実で容易に接続づる方法につき、鋭意検
討の結果、炭化珪素からなる複雑形状のロータ部を予め
、焼成しておき、炭化l素と炭素組成物からなるタービ
ンディスク部のグリーン成形体とを珪素成分の存在下に
焼結しC接合すれば良いことを見出し本発明を完成した
。Therefore, the inventor of the present invention has conducted extensive research into a method of connecting the rotor part and the turbine disk part firmly, reliably, and easily. As a result, the present inventor has previously fired the complex-shaped rotor part made of silicon carbide, The present invention was completed by discovering that it is sufficient to sinter and C-bond a green molded body of a turbine disk portion made of a carbon composition and a green molded body of a turbine disk part in the presence of a silicon component.
すなわち、本発明は、次のa−CI程を含むセラミック
タービンロータの製造方法を要旨とするものである。That is, the gist of the present invention is a method of manufacturing a ceramic turbine rotor including the following a-CI step.
a 軸芯に嵌合孔を設けた常圧焼結炭化珪素又は反応焼
結炭化珪素からなるロータ部を成形焼結し製造する。a. A rotor portion made of pressureless sintered silicon carbide or reaction sintered silicon carbide with a fitting hole provided in the shaft core is manufactured by molding and sintering.
b 炭化珪素粉末と炭素粉末とバインダー、又は炭化珪
素粉末と炭素粉末と1000℃以上で炭化する[11物
とバインダー、又は炭化珪素粉末と1000℃以上で炭
化する有機物とバインダーよりなる混合原料から、上記
嵌合孔に挿入される嵌合軸部を備えたタービンディスク
部のグリーン成形体を成形する。b Silicon carbide powder, carbon powder, and a binder, or silicon carbide powder, carbon powder, and a mixed raw material that carbonizes at 1000°C or higher [11 substances and a binder, or silicon carbide powder, an organic substance that carbonizes at 1000°C or higher, and a binder, A green molded body of a turbine disk portion including a fitting shaft portion to be inserted into the fitting hole is molded.
C上記a工程で得られたロータ部の嵌合孔に上記す工程
で得られたタービンディスク部のグリーン成形体の嵌合
軸部を挿入し、珪素成分の存在下でタービンディスク部
のグリーン成形体の原料組成中の炭素分と珪素を反応さ
せて反応焼結炭化珪素を形成させ、ロータ部とクービン
ディスク部とを強固に一体化する。C Insert the fitting shaft part of the green molded body of the turbine disk part obtained in the above step into the fitting hole of the rotor part obtained in step a above, and green mold the turbine disk part in the presence of a silicon component. The carbon content in the raw material composition of the body is reacted with silicon to form reactive sintered silicon carbide, thereby firmly integrating the rotor part and the Kubin disk part.
以下に本発明を更に詳述するに、本発明では、まず、a
工程としてロータ部〈ブレード部)1を製造する。その
形状は、ラジアルロー夕の場合第1図に示す実施例のよ
うに、背板部から先端部まで同一の内径を有し、軸芯を
とおる嵌合孔2を備え背板部に背板3を設けた翼形、又
は第2図に示す他の実施例のように、嵌合孔2を背板部
では大きな内径とし、先端部に向うにつれて小さな内径
として、内周が先細りのテーパー状の円錐形として、背
板部の背板3を第1図のものより薄くした翼形のものの
いずれでもよい。なお第2図のものは、第1図に比べて
背板部の背板3が薄いので、嵌合孔2内における後記の
タービンディスク部4の嵌合軸部4aとの接触面積が拡
大されているので、接合がより強固になるという利点が
ある。このようなロータ部1を製造するには、炭化珪素
粉末と焼結助剤等を周知の射出成形法、流し込み成形法
等により成形し、焼結する常圧焼結法又は炭化珪素粉末
と炭素粉末等を周知の射出成形法、流し込み成形法等に
より成形し焼結する反応焼結法により焼結する。なおこ
の際、第3図に示すように、嵌合孔2の内周表面にある
いは第4図に示すように嵌合軸表面に、タービンディス
ク部4のグリーン成形体の材質と同一組成からなる共素
地2a又は4bを形成しておくと、ロータ部1の嵌合孔
2とタービンディスク部4の嵌合軸部4aとの接合面が
焼結過程において界面反応を起し、接合強度が大となり
好ましい。このような共素地2akは4bを嵌合軸4a
表面に形成させるには例えば、スプレによる吹き付け、
筆塗りなどの方法がある。又、更に、焼結後前記嵌合孔
2の内周全体の表面を予めエツチング法又はサンドブラ
スト法により粗面にしておくとタービンディスク部4の
嵌合軸4aとの接合がより強固な・ものとなる。The present invention will be described in more detail below. First, in the present invention, a
As a process, a rotor part (blade part) 1 is manufactured. In the case of a radial rotor, as in the embodiment shown in FIG. 3, or as in another embodiment shown in FIG. The conical shape may be any airfoil shape in which the back plate 3 of the back plate portion is thinner than that in FIG. In addition, in the case shown in FIG. 2, the back plate 3 of the back plate part is thinner than that shown in FIG. This has the advantage of making the bond stronger. In order to manufacture such a rotor part 1, silicon carbide powder and a sintering aid are molded and sintered using a well-known injection molding method, a casting molding method, etc., or a pressureless sintering method is used, or a silicon carbide powder and a carbon Sintering is performed by a reaction sintering method in which a powder or the like is molded by a well-known injection molding method, a casting method, etc., and then sintered. At this time, as shown in FIG. 3, a material made of the same composition as the green molded body of the turbine disk portion 4 is applied to the inner circumferential surface of the fitting hole 2 or to the fitting shaft surface as shown in FIG. If the common base material 2a or 4b is formed, an interfacial reaction will occur at the joint surface between the fitting hole 2 of the rotor part 1 and the fitting shaft part 4a of the turbine disk part 4 during the sintering process, increasing the joint strength. That's preferable. Such a common substrate 2ak connects 4b to the fitting shaft 4a.
To form it on the surface, for example, spraying,
There are methods such as brush painting. Furthermore, if the entire inner circumferential surface of the fitting hole 2 is roughened in advance by etching or sandblasting after sintering, the connection between the turbine disk portion 4 and the fitting shaft 4a can be made stronger. becomes.
次に、上記a工程とは別に、炭化珪素粉末を主成分とす
る焼結原料からタービンディスク部4を成形する。即ち
、例えば炭化珪素粉末に例えば炭素粉末や有機バインダ
ー、又は炭素と1000℃以上の焼結温度で炭化する例
えばフェノール樹脂のような有機物及びバインダー、又
は1000℃以上の焼結温度で炭化するフェノール樹脂
のような有機物及びバインダー等を加えた混合物を焼結
原料としてタービンディスク部4のグリーン成形体を成
形する。その成形においては、射出成形法、流し込み成
形法、あるいは静水圧プレス成形法等がある。次にC工
程で焼結により、ロータ部1とタービンディスク部4と
を一体化する。即ち、前記ロータ部1の嵌合孔2にター
ビンディスク部4のグリーン成形体の嵌合軸4aを挿入
し、反応焼結炭化珪素焼成用カーボンルツボ内へ直き、
1550〜2000℃で1〜6時間、減圧にして珪素成
分存在下で反応焼結させる。なお珪素成分は金属珪素の
加熱によって発生させるか、又は加熱し溶融した金属珪
素を含浸させることによって存在させる。かくして、タ
ービンディスク部4のグリーン成形体組成分が反応焼結
炭化珪素焼結体となり両者は嵌合孔2と嵌合軸部4aの
接合部で一体化して第5図又は第6図のような強固なタ
ービンロータが得られる。尚、前記のように、嵌合孔2
の内周面、あるいは嵌合軸部4aの表面をエツチング法
、サンドブラスト法により粗面にしたり、接合部にター
ビンディスク部4と同質の共素地を存在させたりするこ
とにより、より一層強固な接合が得られる。また第7図
は軸流タービンロータに本発明を応用した例を示すもの
で、リンーグ状に予め射出成形した炭化珪素焼結体より
なるロータ部20と、炭化珪素よりなるタービンディス
ク部21のグリーン成形体を嵌合部22で嵌合させ、前
記と同様の手法によって反応焼結させて一体化した例を
示す。Next, separate from step a, the turbine disk portion 4 is formed from a sintered raw material containing silicon carbide powder as a main component. That is, for example, silicon carbide powder, for example, carbon powder or an organic binder, or carbon and an organic substance and binder, such as a phenolic resin, which is carbonized at a sintering temperature of 1000°C or higher, or a phenolic resin, which is carbonized at a sintering temperature of 1000°C or higher. A green molded body of the turbine disk portion 4 is formed by using a mixture of organic substances such as the above, a binder, etc. as a sintering raw material. Molding methods include injection molding, casting molding, and isostatic press molding. Next, in step C, the rotor section 1 and the turbine disk section 4 are integrated by sintering. That is, the fitting shaft 4a of the green molded body of the turbine disk part 4 is inserted into the fitting hole 2 of the rotor part 1, and placed into a carbon crucible for firing reactive sintered silicon carbide.
Reaction sintering is carried out at 1550 to 2000° C. for 1 to 6 hours under reduced pressure in the presence of silicon components. Note that the silicon component is generated by heating metal silicon, or is present by impregnating heated and molten metal silicon. In this way, the green molded body composition of the turbine disk portion 4 becomes a reaction-sintered silicon carbide sintered body, and both are integrated at the joint between the fitting hole 2 and the fitting shaft portion 4a, as shown in FIG. 5 or 6. A strong turbine rotor can be obtained. Furthermore, as mentioned above, the fitting hole 2
An even stronger joint can be achieved by roughening the inner circumferential surface of the inner peripheral surface or the surface of the mating shaft portion 4a by etching or sandblasting, or by providing a common base material of the same quality as the turbine disk portion 4 at the joint portion. is obtained. Further, FIG. 7 shows an example in which the present invention is applied to an axial flow turbine rotor, in which a rotor part 20 made of a silicon carbide sintered body pre-injected into a ring shape and a turbine disk part 21 made of silicon carbide are green. An example will be shown in which molded bodies are fitted at the fitting portion 22 and integrated by reaction sintering using the same method as described above.
本発明は以上のべたように、予め作成した嵌合孔を設け
た炭化珪素焼結体よりなるロータ部と、上記嵌合孔に挿
入される嵌合軸を設けた炭化珪素及び炭素含有成分より
なるタービンディスク部のグリーン成形体を上記嵌合孔
と嵌合軸の間で接合させ、珪素成分の存在下に反応焼結
させて両者が一体化した反応焼結炭化珪素よりなるセラ
ミックタービンロータを得るものであり、工業的に簡単
な操作で複雑な構造のタービンロー夕をクラック、変形
等を起すことなく作ることができる利点がある。更に本
発明方法はタービンロータのみならず、熱間で高応力の
かかるセラミック高温部(4において、セラミック同志
の接合を必要とする個所に応用できる。As described above, the present invention comprises a rotor portion made of a silicon carbide sintered body provided with a previously prepared fitting hole, and a silicon carbide and carbon-containing component provided with a fitting shaft inserted into the fitting hole. A ceramic turbine rotor made of reaction-sintered silicon carbide in which the green molded body of the turbine disk portion is joined between the fitting hole and the fitting shaft, and the two are integrated by reaction-sintering in the presence of a silicon component. This method has the advantage that a turbine rotor with a complicated structure can be produced with industrially simple operations without causing cracks, deformation, etc. Furthermore, the method of the present invention can be applied not only to turbine rotors but also to ceramic high-temperature parts (4) where ceramics are subjected to high stress and require bonding between ceramics.
次に本発明を実施例を挙げて説明するが本発明はその要
旨を越えない限り以下の実施例に限定されることはない
。Next, the present invention will be described with reference to examples, but the present invention is not limited to the following examples unless the gist of the invention is exceeded.
実施例
炭化珪素粉末と焼結助剤を添加した混合原料を用い、射
出成形法により成形焼結して第1図に示すようなロータ
部1を作った。EXAMPLE A mixed raw material containing silicon carbide powder and a sintering aid was molded and sintered by an injection molding method to produce a rotor portion 1 as shown in FIG.
次に、下記の配合組成の原料
炭化珪素 GC940070重量部
カーボンブラック 30重醋部フェノール樹脂
20重量部ポリエチレングリコール 2
0重量部をステンレスポット超硬原石中に入れアセトン
を加えて24時間粉砕混合した後、乾燥造粒し、タービ
ンディスク部4用焼結原料を調製した。これをゴム製成
形型に入れて800に!+/Cilの圧力で静水圧プレ
ス成形し、脱脂後、旋盤で加工して第1図に示すような
前記ロータ部1の嵌合孔2に、ぴったり挿入できる嵌合
軸部4aを有するタービンディスク部4のグリーン成形
体を作った。次い(″、タービンディスク部4のグリー
ン成形体の嵌合軸部4aをロータ部1の嵌合孔2に挿入
し、反応焼結炭化珪素焼成用のカーボンルツボ内に設置
し、珪素成分の存在下に1600℃で3時間反応焼結し
珪化した。これにより、タービンディスク部4の組成は
炭化珪素焼結体となり、ロータ部1ど同一組成となって
、両者が強固に接合したタービンディスクが得られた。Next, raw material silicon carbide having the following composition: GC940070 parts by weight Carbon black 30 parts Phenol resin 20 parts by weight Polyethylene glycol 2
0 parts by weight was placed in a stainless steel pot of cemented carbide ore, acetone was added thereto, the mixture was ground and mixed for 24 hours, and then dried and granulated to prepare a sintered raw material for the turbine disk part 4. Put this into a rubber mold and make it 800! A turbine disk having a fitting shaft portion 4a that can be formed by isostatic press molding at a pressure of +/Cil, degreased, and then processed using a lathe to fit snugly into the fitting hole 2 of the rotor portion 1 as shown in FIG. A green molded body of Section 4 was made. Next ('', the fitting shaft part 4a of the green molded body of the turbine disk part 4 is inserted into the fitting hole 2 of the rotor part 1, placed in a carbon crucible for reaction-sintered silicon carbide firing, and the silicon component is The composition of the turbine disk part 4 becomes a silicon carbide sintered body, and the composition of the rotor part 1 becomes the same as that of the rotor part 1, so that the turbine disk part 4 has the same composition as the rotor part 1, and the two parts are firmly bonded together. was gotten.
次に一体化したタービンディスクの接合部分を切り出し
、4X8X25mmのテストピースを作成し、接合部に
応力がかがるようにセットして、スパン20111にて
3点曲げ強度を測定したところ、【]−夕郡部が反応焼
結灰IL珪JF!結体の場合には曲げ強11[38,5
k<1/ Ij!: ナリ、常圧m 結F12 化珪素
焼結体の場合には29 、3 kg/mjとなった。な
お測定した際破壊はすべて接合面で生じた。反応焼結炭
化珪素焼結体単味の曲げ強度は約b Ok(]/m屯常
圧焼結炭化珪素焼結体単味の曲げ強度は48kg/1I
llIfであるが、実用、F接合部の曲げ強度は上記の
値で問題ない。Next, we cut out the joint part of the integrated turbine disk, created a 4 x 8 x 25 mm test piece, set it so that stress was applied to the joint part, and measured the 3-point bending strength at Span 20111. -Yugori is the reaction sintered ash IL Kei JF! In the case of a solid body, the bending strength is 11 [38,5
k<1/Ij! : In the case of F12 silicon sintered body under normal pressure, it was 29.3 kg/mj. It should be noted that all the fractures occurred at the joint surface during the measurement. The bending strength of a single reaction-sintered silicon carbide sintered body is approximately b Ok(]/m ton. The bending strength of a single normal-pressure sintered silicon carbide sintered body is 48 kg/1I.
However, in practical use, the bending strength of the F joint has no problem at the above value.
第1図は本発明で用いるロータ部の一例を示す断面図、
第2図は他の例の断面図、第3図は更に他の例を示す断
面図、第4図は嵌合軸の一例を示す断面図、第5図はロ
ータ部とタービンディスク部との接合状態を示す断面図
、第6図は他の例の接合状態を示す断面図、第7図は軸
流タービンロータの場合の接合状態を示す断面図である
。
1・・・・・・ロータ部(ブレード部)2・・・・・・
嵌合孔
2a・・・炭化珪県質共素地
3・・・・・・背板部
4・・・・・・タービンディ臘り部
4a・・・嵌合軸部
20・・・ロータ部(ブレード部)
21・・・タービンディスク部
22・・・嵌合部
代理人 弁理士 足立 勉
第1図 第2図
第3図
第4図FIG. 1 is a sectional view showing an example of a rotor part used in the present invention,
Fig. 2 is a sectional view of another example, Fig. 3 is a sectional view of still another example, Fig. 4 is a sectional view of an example of the fitting shaft, and Fig. 5 is a sectional view of the rotor section and the turbine disk section. FIG. 6 is a cross-sectional view showing a joined state in another example, and FIG. 7 is a cross-sectional view showing a joined state in the case of an axial flow turbine rotor. 1... Rotor section (blade section) 2...
Fitting hole 2a...Silicon carbide base material 3...Back plate part 4...Turbine armrest part 4a...Fitting shaft part 20...Rotor part ( Blade part) 21... Turbine disk part 22... Fitting part agent Tsutomu Adachi, patent attorney Figure 1 Figure 2 Figure 3 Figure 4
Claims (1)
クタービン11−夕のII & ih。 a 軸芯に嵌合孔を設置)た常1,1焼結炭化珪衆又は
反応焼結炭化珪素からなるロータ部を成形焼結し製yh
′!Iる。 b 炭化珪素粉末と炭素粉末とバインダー、又は炭化珪
素粉末と炭素粉末と1000℃以[で炭化する有機物と
バインダー、ヌ1cL炭化!lA粉末と1000℃以上
e炭化するイ:1機物とバインダーよりなる混合原料か
ら、1.2嵌合孔に挿入される嵌合軸部を備えたタービ
ンディスク部のグリーン成形体を成形づる。 C上記a]「稈ぐ得られにロータ部の嵌合孔に−[記り
]X程で得られlこクービン7−イスク部のグリーン成
形体の嵌合軸部を挿入し、11系成分のひC11・ぐタ
ービンディスク部のクリーン成形体の原料組成中の炭素
分と珪素を反応さII(反応焼結炭化口素を形成させ、
ロータ部とタービンディスク部とを強固に一体化する。 2 ロータ部の軸芯に設けた嵌合孔の内径が、背板部か
ら先端に向うにつれて先細りとしたテーパー状に成形さ
れてむり、これに挿入されるタービンディスク部のグリ
ーン成形体の嵌合軸部外径が背板部から先端に向うにつ
れて先細りとしたテーパー状に成形されて前記嵌合孔に
密着するようにした特許請求の範囲第1項記載のセラミ
ックタービンロータの製yh払。 3 金属珪素の加熱によつC発生させた珪素蒸気の存在
下、又は加熱によって溶融した液体珪素の含浸によつC
焼結を行う特許請求の範囲第1項又は第2項記載のセラ
ミックタービンロータの製造法。 4 ロータ部の軸芯に設けた嵌合孔の内周に、予めター
ビンディスク部のグリーン成形体原料と同質の其県地を
塗布しておき焼結を行う特許請求の範囲第1項乃至第3
項のいずれかに記載のセラミンクタービンロータの製造
法。 5 ロータ部の軸芯に設けた嵌合孔の内周に予めtツチ
ング法又はサンドブラスト法により粗面を形成させて焼
結を行う特許請求の範囲第1項乃至第4項のいずれかに
記載のセラミックタービンロー夕の!Il造法。[Scope of Claims] A sesmic turbine 11-II & ih characterized in that it includes four culms of first order a.-C1. a. A rotor part made of 1,1 sintered silicon carbide or reaction sintered silicon carbide with a fitting hole installed in the shaft core is molded and sintered yh
′! I. b Silicon carbide powder, carbon powder, and binder, or silicon carbide powder, carbon powder, organic matter that carbonizes at 1000°C or higher, and binder, 1 cL carbonized! Carbonize at 1000° C. or higher with lA powder A: 1. From a mixed raw material consisting of a material and a binder, mold a green molded body of a turbine disk portion equipped with a fitting shaft portion to be inserted into a fitting hole. C above a] "Insert the fitting shaft of the green molded body of the rotor part obtained in [note] X into the fitting hole of the rotor part, and insert the The carbon content in the raw material composition of the clean molded body of the turbine disk part is reacted with silicon (to form reaction sintered carbide,
To firmly integrate a rotor part and a turbine disk part. 2 The inner diameter of the fitting hole provided in the axis of the rotor part is formed into a tapered shape from the back plate part toward the tip, and the green molded body of the turbine disk part to be inserted into this hole fits. 2. The ceramic turbine rotor according to claim 1, wherein the outer diameter of the shaft portion is formed into a tapered shape from the back plate portion toward the tip so as to fit tightly into the fitting hole. 3 C in the presence of silicon vapor generated by heating metal silicon, or by impregnation with liquid silicon melted by heating
A method for manufacturing a ceramic turbine rotor according to claim 1 or 2, wherein sintering is performed. 4. Claims 1 to 4, in which a material of the same quality as the raw material for the green molded body of the turbine disk part is applied in advance to the inner periphery of the fitting hole provided in the axis of the rotor part, and then sintered. 3
A method for manufacturing a ceramic turbine rotor according to any one of paragraphs. 5. According to any one of claims 1 to 4, in which a rough surface is formed in advance on the inner periphery of a fitting hole provided in the axis of the rotor part by a T-tuching method or a sandblasting method, and then sintered. Ceramic turbine low evening! Il construction method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP701382A JPS58124003A (en) | 1982-01-20 | 1982-01-20 | Manufacture of ceramic turbine rotor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP701382A JPS58124003A (en) | 1982-01-20 | 1982-01-20 | Manufacture of ceramic turbine rotor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58124003A true JPS58124003A (en) | 1983-07-23 |
Family
ID=11654155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP701382A Pending JPS58124003A (en) | 1982-01-20 | 1982-01-20 | Manufacture of ceramic turbine rotor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58124003A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60201003A (en) * | 1984-03-27 | 1985-10-11 | Ngk Spark Plug Co Ltd | Ceramic rotor and manufacture thereof |
EP1724439A2 (en) * | 2005-05-17 | 2006-11-22 | The General Electric Company | Method for making a compositionally graded gas turbine disk |
-
1982
- 1982-01-20 JP JP701382A patent/JPS58124003A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60201003A (en) * | 1984-03-27 | 1985-10-11 | Ngk Spark Plug Co Ltd | Ceramic rotor and manufacture thereof |
JPH0585721B2 (en) * | 1984-03-27 | 1993-12-08 | Ngk Spark Plug Co | |
EP1724439A2 (en) * | 2005-05-17 | 2006-11-22 | The General Electric Company | Method for making a compositionally graded gas turbine disk |
EP1724439A3 (en) * | 2005-05-17 | 2012-09-19 | General Electric Company | Method for making a compositionally graded gas turbine disk |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0052913B1 (en) | Ceramic rotor | |
JPS6224603B2 (en) | ||
JPH0231648B2 (en) | ||
JPH03347B2 (en) | ||
JPS647035B2 (en) | ||
US4096120A (en) | Method of making a ceramic turbine wheel and turbine wheel made thereby | |
KR900003319B1 (en) | Method for preparing ceramic-rotator | |
JPS6240522B2 (en) | ||
JP2500138B2 (en) | Method of manufacturing ceramics with pores | |
JPS6186211A (en) | Ceramics composite structure and manufacture thereof | |
JPH0627482B2 (en) | Manufacturing method of radial type ceramic turbine rotor | |
JPS59109304A (en) | Manufacture of radial type ceramic turbine rotor | |
JPS58124003A (en) | Manufacture of ceramic turbine rotor | |
US4087500A (en) | Method of making a duo density silicon nitride article | |
EP0112146B1 (en) | Radial blade type ceramic rotor and method of producing the same | |
JPS58126401A (en) | Manufacturing method for ceramic turbine rotor | |
US4544327A (en) | Ceramic rotor and manufacturing process therefor | |
JPS61111975A (en) | Manufacture of ceramic structural material | |
JPS60169601A (en) | Manufacture of radial ceramic turbine rotor | |
JP3176190B2 (en) | Ceramic turbine rotor | |
JPS58217474A (en) | Manufacture of ceramic turbine rotor | |
JPS6259077B2 (en) | ||
JPS61111976A (en) | Ceramic turbine rotor and manufacture | |
JPH0735721B2 (en) | Radial type ceramic turbine rotor | |
JPS6339402B2 (en) |