JPS60201003A - Ceramic rotor and manufacture thereof - Google Patents

Ceramic rotor and manufacture thereof

Info

Publication number
JPS60201003A
JPS60201003A JP5733684A JP5733684A JPS60201003A JP S60201003 A JPS60201003 A JP S60201003A JP 5733684 A JP5733684 A JP 5733684A JP 5733684 A JP5733684 A JP 5733684A JP S60201003 A JPS60201003 A JP S60201003A
Authority
JP
Japan
Prior art keywords
shaft
ceramic
holes
molded body
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5733684A
Other languages
Japanese (ja)
Other versions
JPH0585721B2 (en
Inventor
Shigenori Murate
村手 重則
Katsuyoshi Watanabe
渡辺 克芳
Masaya Ito
正也 伊藤
Mitsuyoshi Kawamura
川村 光義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tokushu Togyo KK
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd, Nippon Tokushu Togyo KK filed Critical NGK Spark Plug Co Ltd
Priority to JP5733684A priority Critical patent/JPS60201003A/en
Publication of JPS60201003A publication Critical patent/JPS60201003A/en
Publication of JPH0585721B2 publication Critical patent/JPH0585721B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/025Fixing blade carrying members on shafts

Abstract

PURPOSE:To enhance the mass productivity of a ceramic rotor by a method in which the center of a shaft is fixed by holes drilled in both end portions on the center line of the shaft molded of ceramics, and the shaft is subjected to a polishing process while being turned. CONSTITUTION:A ceramic molding 5 consisting of a disc part and a shaft is subjected to hydrostatic pressure, and holes 51 and 52 are drilled in both end portions on the center line of the shaft. The center of the shaft is fixed by the holes 51 and 52, and while turning the disc part and the shaft part, the molding 5 is subjected to a polishing process. Since the needs to attach the ceramic molding 5 to the other object with the aid of an adhesive is eliminated, the mass productivity of the ceramic rotors can be raised with a high easiness.

Description

【発明の詳細な説明】 本発明は量産性及び品質に優れたセラミックローターに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ceramic rotor that is excellent in mass productivity and quality.

近年セラミックの耐熱性に着目し、エンジン周辺部品就
中ターボ過給機等に使用されるタービンローターのセラ
ミック化が望まれている。一般に高速回転体は動バラン
スの良い事が要求され、タービンローターにおいても毎
分士数万回転の速度で回転することから相当良好な動バ
ランス性が要求される。ところがセラミック成形体は焼
成収縮によシ変形と寸法のバラツギを生じるため、上記
の要求を満足するには焼成後必ず長時間の研摩加工を行
なわなければならない。従来のローター製造方法では、
ローターとすべき焼成体の両端面はエポキシ樹脂系接着
剤を用いて金属体等の別体を接着し、焼成体を回転させ
てバランスを観県しながら該別体の略軸中心線上の位置
に孔を穿設し、改めてこの孔を結ぶ線を中心に焼成体を
回転させながら、ダイヤモンド砥石によって研摩されて
いた。また予め別体の軸中心に孔を穿設し、該別体な焼
成体の両端面に接着して焼成体を研摩する場合もあった
。しかしながらいずれの場合も、研1柄後に焼成体から
別体を分離し、焼成体の両端面に付着している接着剤等
不要部分を削シ落とさなければならないので面倒である
こと、ダイヤモンド砥石を使用しなければならないので
加工賃が高くつくこと等の難点があった。加えて後者の
場合は別体に穿設されている孔を焼成体の軸中心線上に
一致させることが困難であった。
In recent years, attention has been focused on the heat resistance of ceramics, and it has been desired to use ceramics for engine peripheral parts, especially turbine rotors used in turbochargers and the like. In general, high-speed rotating bodies are required to have good dynamic balance, and turbine rotors also require fairly good dynamic balance because they rotate at a speed of several tens of thousands of revolutions per minute. However, ceramic molded bodies undergo deformation and dimensional variations due to firing shrinkage, so in order to satisfy the above requirements, a long polishing process must be performed after firing. In traditional rotor manufacturing methods,
Both end surfaces of the fired body that will become the rotor are glued to a separate body such as a metal body using an epoxy resin adhesive, and while checking the balance by rotating the fired body, the position is approximately on the axial center line of the separate body. A hole was drilled in the hole, and the fired body was polished using a diamond whetstone while rotating around the line connecting the holes. In some cases, a hole is drilled in advance at the center of the axis of a separate body, and the fired body is polished by adhering it to both end surfaces of the separate body. However, in either case, it is troublesome as it is necessary to separate the separate body from the fired body after one sharpening and scrape off unnecessary parts such as adhesives attached to both end faces of the fired body, and it is difficult to use a diamond whetstone. Since it has to be used, processing costs are high. In addition, in the latter case, it was difficult to align the hole drilled in a separate body with the axial center line of the fired body.

本発明は上記の難点を克服するものであって、翼車部及
び軸よシなるセラミック成形体に、500kg/cm2
以上の静水圧力を加えた後、軸中心線上の側端面に孔を
穿設し、これら二つの孔で軸中心を固定し、前記翼車部
及び軸を回転させながら研摩加工し、焼成することを特
徴とするセラミックローターの製造方法とこれによって
製造されるセラミックローターを提供するものである。
The present invention overcomes the above-mentioned difficulties, and the ceramic molded body of the impeller part and the shaft has a weight of 500 kg/cm2.
After applying the above hydrostatic pressure, a hole is bored in the side end surface on the shaft center line, the shaft center is fixed with these two holes, and the impeller part and shaft are polished while rotating and fired. The present invention provides a method for manufacturing a ceramic rotor characterized by the following, and a ceramic rotor manufactured by the method.

以下図面にもとづいて本発明を説明する。The present invention will be explained below based on the drawings.

第1図は本発明製造方法の初期段階の一例を示すセラミ
ック成形体の断面図で、1は該セラミック成形体を示し
、翼車部11と軸12とが一体成形されてなる。第21
図は本発明製造方法の初期段階の他の例を示すセラミッ
ク成形体の断面図で、2は該セラミック成形体を示し、
翼車部21と軸22とを別途成形後、該翼車部21のノ
・ブ穴に軸22の一端な嵌合固定してなる。
FIG. 1 is a cross-sectional view of a ceramic molded body showing an example of the initial stage of the manufacturing method of the present invention. Reference numeral 1 indicates the ceramic molded body, in which a blade wheel portion 11 and a shaft 12 are integrally molded. 21st
The figure is a sectional view of a ceramic molded body showing another example of the initial stage of the manufacturing method of the present invention, and 2 shows the ceramic molded body,
After separately molding the impeller part 21 and the shaft 22, one end of the shaft 22 is fitted and fixed into the knob hole of the impeller part 21.

上記各成形体は射出成形法、泥漿鋳込み成形法。The above molded bodies are made by injection molding and slurry casting.

粉体加圧成形法等周知の成形法に従いまたこれら成形法
を組み合わせて成形されて良いが、この段階では成形個
所によってセラミック粒子の充填状態の異なる不均質な
成形体である。例えば射出成形法の場合は成形用素地の
注入口近傍とそれ以外の部分では生密度に差があること
が多い。この不均質状態に何等矯正処理を施さずして焼
成すれば収縮率の差により著しい変形が生じる。本発明
の第一の要点はこのような不均質成形体に500 h/
1yyr2以上の静水圧力を加えることにある。すなわ
ちあらゆる方向から均一に加圧すると成形体内部で粒子
が密な部分から疎な部分へと移動して粒子の充填状態の
不均質さが解消されることから、焼成変形を極小に抑制
し得る処にある。この効果は該静水圧力が5001g 
/ cm2 に満たないと現われない。また成形体中に
結合剤等の有機成分が含まれている場合は、脱脂後に静
水圧力が加えられるのが望ましい。本発明の第二の要点
は上記静水圧力を加えた後、セラミック成形体1,2の
軸中心線上の側端面に孔を穿設することにある。すなわ
ち上記静水圧加圧によシ成形体の生密度及び生強度が向
上するので、側端面の二つの孔をもって軸中心を固定す
れば成形体を回転させて容易に研削、研摩加工すること
ができ、゛さらに研摩された成形体は前述の通シ焼成さ
れてもほとんど焼成変形を生じないことから位成後の加
工が不要となる処にある。この点でも静水圧力は500
 kg / t、yr12以上を必要とし、孔の穿設を
容易ならしめるにはi、oo。
The molded body may be molded according to a well-known molding method such as a powder pressure molding method or by a combination of these molding methods, but at this stage, the molded body is a non-uniform molded body in which the filling state of ceramic particles differs depending on the molded location. For example, in the case of injection molding, there is often a difference in green density between the vicinity of the injection port and other parts of the molding base. If this heterogeneous state is fired without any correction treatment, significant deformation will occur due to the difference in shrinkage rate. The first point of the present invention is to apply 500 h/h to such a heterogeneous molded body.
The purpose is to apply a hydrostatic pressure of 1 yyr2 or more. In other words, when pressure is applied uniformly from all directions, the particles move from dense areas to sparse areas inside the molded body, eliminating unevenness in the filling state of particles, which can minimize firing deformation. It's there. This effect is due to the hydrostatic pressure of 5001g
/ cm2, it will not appear. Furthermore, if the molded article contains an organic component such as a binder, it is desirable to apply hydrostatic pressure after degreasing. The second point of the present invention is that after applying the above-mentioned hydrostatic pressure, holes are formed in the side end surfaces of the ceramic molded bodies 1 and 2 on the axial center line. In other words, the green density and green strength of the green body are improved by the above-mentioned hydrostatic pressurization, so if the axial center is fixed with the two holes on the side end surface, the green body can be rotated and easily ground and polished. Furthermore, the polished molded body hardly undergoes firing deformation even if it is subjected to the above-mentioned through-firing, so that processing after polishing is unnecessary. At this point, the hydrostatic pressure is 500
kg/t, yr 12 or more is required, and i, oo is required to facilitate the drilling of holes.

ig 、/ cm 2以上が望ましい。而して従来使わ
れていた金属体等の別体の接着、分離に付随する煩わし
さを避けることができるうえ、工具としてもダイヤモン
ド砥石であることを要せずGo砥石で十分であるので加
工賃を低減できるのである。かかる孔は上記の如く軸中
心を固定する機能のみ有する最小限の大きさに形成され
ても良いが、ローター軸のオイルギヤラリ−側端面に金
属軸を接合する場合は、第6図に示すように二つの孔3
.4のうちオイルギヤラリ−側端面の孔4を軸中心の固
定を目的とする小径部4aとこの小径部4aに連なシこ
の小径部よシも浅い大径部4bとで411¥成すれば、
該大径部は金属軸との接合後に翼車側より伝わる熱を断
熱する機能を有する。このように金属軸との接合部に断
熱用空孔な設けてなる構成または図示しないが翼車部と
軸とを別途成形して両者を接合するものにおいて接合部
に空胴を設けてなる41”4成は本願出願人がそれぞれ
特願昭58−208344号発明「タービン軸の接合4
1°11造」又は昭和58年12月19日付特許出願発
明「タービン軸」において提案したものだが1本願発明
は該断熱用空孔な形成する大径部4bと前記小径お1≦
4aとを同時に穿設加工でき°る利点がある。かくして
研摩加工後の成形体は焼成されてそのまま動バランスの
良いセラミックローターとなる。第4図は第1図のセラ
ミック成形体1を本発明製造方法に従って加工、焼成し
て得られたセラミックローターの断面図で、5は該セラ
ミックローターを示し、軸中心線上の両端面に孔51.
52を有している。
ig,/cm2 or more is desirable. Therefore, it is possible to avoid the trouble associated with adhering and separating separate bodies such as metal bodies, which was conventionally used, and the tool does not require a diamond whetstone; a Go whetstone is sufficient for processing. This means that wages can be reduced. Such a hole may be formed to the minimum size that only has the function of fixing the shaft center as described above, but when a metal shaft is joined to the oil gear rally side end surface of the rotor shaft, it may be formed as shown in FIG. 6. two holes 3
.. If the hole 4 on the oil gear rally side end surface of 4 is formed by a small diameter part 4a for the purpose of fixing the shaft center and a large diameter part 4b that is connected to this small diameter part 4a and is also shallow, then
The large diameter portion has a function of insulating heat transmitted from the impeller side after joining with the metal shaft. In this structure, a heat insulating hole is provided at the joint with the metal shaft, or, although not shown, in a structure in which the impeller and shaft are separately molded and the two are joined, a cavity is provided at the joint.41 ``Turbine shaft joining 4'' was invented by the applicant in Japanese Patent Application No. 58-208344.
1 degree 11 construction" or the patent application invention "Turbine shaft" dated December 19, 1981. However, the present invention has a large diameter portion 4b formed by the heat insulating hole and a small diameter portion 1≦
There is an advantage that drilling can be performed simultaneously with 4a. The molded body thus polished is fired and becomes a ceramic rotor with good dynamic balance. FIG. 4 is a cross-sectional view of a ceramic rotor obtained by processing and firing the ceramic molded body 1 of FIG. 1 according to the manufacturing method of the present invention. ..
52.

以下実施例を示す。Examples are shown below.

実施例1 重111.基準で、平均粒径0.611mのα−8i3
N4粉末89係、Y2O35,5%及びAI!、085
,5%をアルミナ質トロンミルでエタノール中50時間
混合シ、乾燥後全無機粉末100部に対しアタクチック
ポリプロピレン13部、パラフィン5部及びヂエチルン
タレート6部を添加し、温度80℃で加熱混練し、ペレ
タイザーでベレット化した。このベレットを射出成形機
に注入し、第7図に示すように翼車部11と軸12とを
一体成形し、昇温速度1.5℃/)1rで500 ’C
まで加熱して脱脂し、第1表に示す静水圧力を加えた後
、成形体を回転させて軸12の偏芯と翼車部11のハブ
部背面軸121一対する垂直度とを観察しながら成形体
の両端面の略軸中心線上と推6IjJする位置にドリル
で孔を穿設した。静水圧力の異なるごとに10個の成形
体を作り、孔の穿設加工成功率を調べた結果を第1表に
示す。
Example 1 Heavy 111. As standard, α-8i3 with an average particle size of 0.611 m
N4 powder 89, Y2O35.5% and AI! ,085
, 5% was mixed in ethanol using an alumina thoron mill for 50 hours, and after drying, 13 parts of atactic polypropylene, 5 parts of paraffin, and 6 parts of diethyl ntalate were added to 100 parts of the total inorganic powder, and the mixture was heated and kneaded at a temperature of 80°C. Then, it was made into pellets using a pelletizer. This pellet was injected into an injection molding machine, and the impeller part 11 and shaft 12 were integrally molded as shown in Fig. 7, and heated to 50'C at a heating rate of 1.5°C/)1r.
After heating and degreasing the molded body, and applying the hydrostatic pressure shown in Table 1, the molded body was rotated to observe the eccentricity of the shaft 12 and the perpendicularity of the hub part rear shaft 121 of the impeller part 11. Holes were made with a drill at positions substantially on the axial center line of both end faces of the molded body. Ten molded bodies were made at different hydrostatic pressures, and the success rate of hole drilling was investigated. Table 1 shows the results.

第 1 表 注※υ 穿設加工成功率 静水圧力を加えなかった成形
体の場合10個中4個が穿設加工時に破壊し、更に4個
が孔チッピングを生じたので成功率を20%とし、また
静水圧力0.5 tonA!12を加えた成形体の場合
10個中4個が孔チッピングを生じたので成功率を60
%とした。
Table 1 Note *υ Drilling success rate In the case of compacts to which no hydrostatic pressure was applied, 4 out of 10 were destroyed during the drilling process, and 4 more had hole chipping, so the success rate was set at 20%. , and the hydrostatic pressure is 0.5 tonA! In the case of the molded product with 12 added, hole chipping occurred in 4 out of 10, so the success rate was reduced to 60.
%.

※2)円周5a上の任意の1点を0点として回転させた
ときの半径の最大値と最小値の差を円周5aの最大振れ
幅とした。
*2) The difference between the maximum and minimum radius when rotating with any one point on the circumference 5a as 0 point was taken as the maximum swing width of the circumference 5a.

第1表から本発明範囲内の成形体は加工を容易ならしめ
るに十分な生強度を備えていることがわかる。次に今度
は両端面に穿設された二つの孔で軸中心を固定して成形
体を回転させ、軸方向よシ観察しながら該成形体が軸対
称となるようにGO砥石で研摩加工した後、窒素雰囲気
中温度1600℃で焼成することによって第4図に示す
セラミックローター5を製造した。セラミックローター
5の両端1面の二りの孔51.52で軸中心を固定し、
該セラミックローター5を回転させたときの前記ハブ部
背面の円周5aの最大振れ幅を測定した結果の平均値を
第1表に併記する。比較のために静水圧加圧処理及び孔
の穿設加工のいずれも施さずして成形体を焼成し、焼成
体の両端面にエポキシ系接着剤で金属の別体を接着し、
該別体の略軸中心線上の位置に孔を穿設し、これら二つ
の孔を結ぶ線を中心に焼成体を回転させながらダイヤモ
ンド砥石で焼成体が軸対称となるように翼車部及び軸の
外周を研摩加工することによって孔51゜52を備えて
いない以外は上記セラミックローター5と同一形状のセ
ラミックローターを製造し、該別体を接着したままこの
セラミックローターのハブ部の背面の円周の最大振れ幅
を測定した結果の平均値をも第1表に併記する。尚、ハ
ブ部背面の直径はすべて45蛸とした。第1表かられが
るように本発明の範囲内である5 001g / ty
s2 以上の静水圧力を加えたものは振れ幅が比較例と
同程度に小さくて動バランスの良いものであったが、静
水圧力を加えなかったものは振れ幅が大きくて動バラン
スの悪いものであった。
It can be seen from Table 1 that the molded articles within the scope of the present invention have sufficient green strength to facilitate processing. Next, the molded body was rotated with the axial center fixed through two holes drilled in both end faces, and polished using a GO grindstone so that the molded body became axially symmetrical while observing the axial direction. Thereafter, the ceramic rotor 5 shown in FIG. 4 was manufactured by firing at a temperature of 1600° C. in a nitrogen atmosphere. Fix the shaft center with two holes 51 and 52 on one side of both ends of the ceramic rotor 5,
The average value of the results of measuring the maximum amplitude of the circumference 5a of the back surface of the hub portion when the ceramic rotor 5 is rotated is also listed in Table 1. For comparison, a molded body was fired without either hydrostatic pressure treatment or hole drilling, and a separate metal body was adhered to both end surfaces of the fired body with an epoxy adhesive.
A hole is drilled at a position approximately on the axial center line of the separate body, and while the fired body is rotated around a line connecting these two holes, the blade wheel portion and the shaft are By polishing the outer circumference of the ceramic rotor 5, a ceramic rotor having the same shape as the ceramic rotor 5 described above except that it does not have the holes 51 and 52 is manufactured. The average value of the results of measuring the maximum amplitude of vibration is also listed in Table 1. Note that the diameter of the back surface of the hub portion was all 45mm. As shown in Table 1, 5,001g/ty is within the scope of the present invention.
The one to which a hydrostatic pressure of s2 or more was applied had a vibration amplitude as small as the comparative example and had a good dynamic balance, but the one to which no hydrostatic pressure was applied had a large vibration amplitude and a poor dynamic balance. there were.

実施例2 重量基準で、平均粒径0;2μmのβ−8iO粉末96
部、炭化硼素2部、炭素2部およびアルギン酸ソーダ0
.5部を湿式混合し泥漿とし、鋳型に流し込んで鋳込成
形した後、第2表に示す静水圧力を加えて実施例1の成
形体と同一形状の成形体を作シ、実施例1と同様に該成
形体の両端面の略軸中心線上と推測する位置に孔を穿設
した。静水圧力の異なるごとに10個の成形体について
孔の穿設加工成功率を調べた結゛果を第2表に示す。
Example 2 β-8iO powder 96 with an average particle size of 0; 2 μm on a weight basis
parts, 2 parts of boron carbide, 2 parts of carbon and 0 parts of sodium alginate
.. 5 parts were wet-mixed to form a slurry, poured into a mold and cast, and then the hydrostatic pressure shown in Table 2 was applied to produce a molded body having the same shape as the molded body of Example 1, the same as in Example 1. Holes were drilled at positions estimated to be approximately on the axial center line of both end faces of the molded body. Table 2 shows the results of examining the success rate of hole drilling in 10 molded bodies at different hydrostatic pressures.

第2表 注※リ 穿設加工成功率 静水圧力を加えなかった成形
体の場合10個甲乙個が穿設加工時に破壊し、更に4個
が孔チッピングを生じたので成功率を0%とし、また静
水圧力0.5 ton/α2を加えた成形体の場合10
個甲乙個が孔チッピングを生じたので成功率を60%と
した。
Note to Table 2: Drilling success rate In the case of molded bodies to which no hydrostatic pressure was applied, 10 pieces were destroyed during the drilling process, and four more had hole chipping, so the success rate was set as 0%. In addition, in the case of a molded body to which a hydrostatic pressure of 0.5 ton/α2 is applied, 10
Since hole chipping occurred in each case, the success rate was set at 60%.

第2表から本発明範囲内の成形体は加工を容易ならしめ
るに十分な生強度を備えていることがわかる。
Table 2 shows that the molded articles within the scope of the present invention have sufficient green strength to facilitate processing.

次に今度は両端面に穿設された二つの孔で軸中心を固定
し、成形体を回転させ、実施例1と同様に研摩加工した
後、真空中温度2100 ’Qで焼成することによって
第2図に示すセラミックローター3を製造した。実施例
1と同様にハブ部背面の円周5aの最大振れ幅を測だし
た結果の平均値を第2表に併記する。
Next, the axial center was fixed with two holes drilled in both end faces, the molded body was rotated, and the molded body was polished in the same manner as in Example 1, and then fired in a vacuum at a temperature of 2100'Q. A ceramic rotor 3 shown in FIG. 2 was manufactured. As in Example 1, the average value of the results of measuring the maximum swing width of the circumference 5a on the back surface of the hub portion is also shown in Table 2.

第2表かられかるように本発明範囲内である5 00 
、、kg / cm2 以上の静水圧力を加えたものは
振れ幅が実施例1で示した比較例と同程度に小さくて動
バランスの良いものであったが、静水圧力を加えなかっ
たものは振れ幅が大きくて動バランスの悪いものであっ
た。
As shown in Table 2, 500 is within the scope of the present invention.
, kg/cm2 or more of hydrostatic pressure was applied, the amplitude of vibration was as small as that of the comparative example shown in Example 1, and the dynamic balance was good, but the vibration amplitude of the specimen to which hydrostatic pressure was not applied was small. It was wide and had poor dynamic balance.

実施例6 実施例1と同一組成のベレットを射出成形機に注入し、
翼車部と軸とをそれぞれ別途に成形することと1両者を
脱脂後、第2図に示すように県車部21のハブ穴に軸2
2の一端を嵌合固定し、第3表に示す静水圧力を加える
こと以外は実施例1と同一条件で成形体を作シ、静水圧
力の異なるごとに10個の成形体について孔の穿設加工
成功率を調べた結果を第3表に示す。また孔を穿設加工
された成形体を実施例1と同様に研摩加工し、実施例1
と同一条件で焼成することによって図示しないが外観的
には実施例1で示したセラミックローター5と同一形状
のセラミックローターを製造した。実施例1と同−要領
で最大振れ幅を測定し、その平均値を第1表に併記する
Example 6 A pellet with the same composition as Example 1 was injected into an injection molding machine,
After molding the impeller part and the shaft separately and degreasing both parts, insert the shaft 2 into the hub hole of the prefect wheel part 21 as shown in FIG.
Molded bodies were produced under the same conditions as in Example 1, except that one end of 2 was fitted and fixed, and the hydrostatic pressure shown in Table 3 was applied. Holes were drilled in 10 molded bodies for each different hydrostatic pressure. Table 3 shows the results of examining the processing success rate. In addition, the molded body with holes drilled therein was polished in the same manner as in Example 1.
By firing under the same conditions as above, a ceramic rotor (not shown) having the same external shape as the ceramic rotor 5 shown in Example 1 was manufactured. The maximum amplitude was measured in the same manner as in Example 1, and the average value is also shown in Table 1.

第 3 表 第3表から翼車部と軸とを別途成形した場合でも本発明
範囲内の成形体は加工な容易ならしめるに十分な生強度
を備えていることがわかる。また本発明セラミックロー
ターは実施例1で示した比較例と同程反仁動バランスの
良いものであることがわかる。
Table 3 It can be seen from Table 3 that even when the impeller part and the shaft are molded separately, the molded bodies within the scope of the present invention have sufficient green strength to be easily processed. Further, it can be seen that the ceramic rotor of the present invention has a good anti-drive balance as well as the comparative example shown in Example 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明製造方法の初期段階の一例を示すセラミ
ック成形体の断面図、第2図、第3図は同じく他の例を
示すセラミック成形体の断面図、第4図は第1図のセラ
ミック成形体を本発明製造方法に従って加工、焼成して
得られたセラミックローターの断面図である。 1.2・・・セラミック成形体、11.21・・・翼車
部、12.22・−・軸、3.4.51.52・一孔、
4a・−・小径部、4b・・・大径部、5・・・セラミ
ックローター 代理人 弁理士 竹 内 守 第1図 第2図 第3図 第4図 手 続 袖 正 −1)−(自発) 昭、↑1+ 597rP−1月25日 特許庁団官 若 杉 >U 夫 殿 1、事件の表示 昭4059年特it’f掃■写57336号2発明の名
称 セラミックローター及びその製造方法 3袖正をする省 4(件との関節 特11−出願人 住 所 愛知県名古)塁市瑞穂区1(ム辻+or 14
市18号名 称 (454)日本特殊陶朶株式会社代表
名小川修次 4・1(埋 人 〒101 居 所 ユ!L京!ili千代田区円神1j4二丁[1
15番13号6補正により種属1する発明の畝 1 (1)訂正す貝−訃 1通、(2)理由−JF 1通(
別 紙) (1)願計に「(特許法第38条ただし〒Iの規定によ
る% iiT’出願)」の記載を加入する。 (2)願貴の「1、発明の名称」の欄のつぎにr2.’
i芋許請求の1(jjj、囲に記載された発明の数 2
」を加入する。 (3) 従って願書の項目番号は、1、発明の名称、2
特、I’F請求の範囲に記I或された発明の&り、3シ
ヘ明者、4.特1′F出願人、5゜代理人、6.添付征
埴の目録、” D’l iiQ以外の発り」省となる。 (4)願書の発明者の表示の4i5J r Piか4名
」とあるを「ほか3名」に11正する。
FIG. 1 is a cross-sectional view of a ceramic molded body showing an example of the initial stage of the manufacturing method of the present invention, FIGS. 2 and 3 are cross-sectional views of a ceramic molded body showing other examples, and FIG. FIG. 2 is a cross-sectional view of a ceramic rotor obtained by processing and firing a ceramic molded body according to the manufacturing method of the present invention. 1.2... Ceramic molded body, 11.21... Impeller part, 12.22... Shaft, 3.4.51.52... One hole,
4a...Small diameter part, 4b...Large diameter part, 5...Ceramic rotor representative Patent attorney Mamoru Takeuchi Figure 1 Figure 2 Figure 3 Figure 4 Procedure Tadashi Sode -1) - (Voluntary initiative) ) Showa, ↑1+ 597rP-January 25th Patent Office Officer Wakasugi >U Husband 1. Indication of the case 1987 special it'f copy No. 57336 2. Name of the invention Ceramic rotor and its manufacturing method 3. Ministry of Justice 4 (Article 11-Applicant Address: Nago, Aichi Prefecture) 1, Mizuho-ku, Rui City (Mutsuji+or 14)
City No. 18 Name Title (454) Nippon Tokushu Toto Co., Ltd. Representative name Shuji Ogawa 4.1 (Buried 101 Address Yu!Lkyo!ili Chiyoda-ku Enjin 1j4 2-chome [1
No. 15, No. 13, No. 6 amendment to the invention that changed the species to 1 (1) Corrected shell - 1 copy of the deceased, (2) Reason - 1 copy of JF (
(Attachment) (1) Add the statement "(%iiT' application pursuant to Article 38 of the Patent Act, however, Article I)" to the application plan. (2) Next to Ganki's "1. Title of invention" column, enter r2. '
i Request for permission 1 (jjj, number of inventions stated in the box 2
” to join. (3) Therefore, the item numbers in the application are 1, title of the invention, 2
Particularly, the scope of the invention set forth in the claims, 3. Special 1'F applicant, 5° agent, 6. Attached is the catalog of the expedition, ``origins other than D'l iiQ''. (4) In the description of the inventors in the application, the phrase ``4i5J r Pi or 4 people'' is corrected to ``3 other people''.

Claims (1)

【特許請求の範囲】 1)軸中心線上の両端面に孔を具備していることを特徴
とするセラミックローター。 2)孔のうちオイルギヤラリ−両端面の孔か、小径部と
該小径部に連なシ該小径部よシも浅い大径部とでなる特
許請求の範囲第一項記載のセラミックローター。 5)g車部及び軸よりなるセラミック成形体に500 
kg / cm2以上の静水圧力を加えた後、軸中心線
上の両端面に孔を穿設し、これら二つの孔で軸中心を固
定″し、前記翼車部及び軸を回転させなからイシF摩加
工し、焼成することを特徴とするセラミックローターの
製造方法。
[Claims] 1) A ceramic rotor characterized by having holes on both end faces on the axis center line. 2) The ceramic rotor according to claim 1, wherein the hole includes a hole on both end faces of the oil gear rally, or a small diameter portion, and a large diameter portion that is connected to the small diameter portion and is also shallower than the small diameter portion. 5) 500 g on the ceramic molded body consisting of the wheel part and shaft.
After applying a hydrostatic pressure of kg/cm2 or more, holes are drilled in both end faces on the shaft center line, and the shaft center is fixed with these two holes, and the impeller part and shaft are prevented from rotating. A method for manufacturing a ceramic rotor, which includes grinding and firing.
JP5733684A 1984-03-27 1984-03-27 Ceramic rotor and manufacture thereof Granted JPS60201003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5733684A JPS60201003A (en) 1984-03-27 1984-03-27 Ceramic rotor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5733684A JPS60201003A (en) 1984-03-27 1984-03-27 Ceramic rotor and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS60201003A true JPS60201003A (en) 1985-10-11
JPH0585721B2 JPH0585721B2 (en) 1993-12-08

Family

ID=13052725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5733684A Granted JPS60201003A (en) 1984-03-27 1984-03-27 Ceramic rotor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60201003A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5788201A (en) * 1980-11-20 1982-06-02 Ngk Insulators Ltd Ceramic rotor and manufacture thereof
JPS58124003A (en) * 1982-01-20 1983-07-23 Ngk Spark Plug Co Ltd Manufacture of ceramic turbine rotor
JPS58122702U (en) * 1982-02-16 1983-08-20 本田技研工業株式会社 turbine wheel
JPS58162201U (en) * 1982-02-10 1983-10-28 本田技研工業株式会社 Radial turbine wheel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5788201A (en) * 1980-11-20 1982-06-02 Ngk Insulators Ltd Ceramic rotor and manufacture thereof
JPS58124003A (en) * 1982-01-20 1983-07-23 Ngk Spark Plug Co Ltd Manufacture of ceramic turbine rotor
JPS58162201U (en) * 1982-02-10 1983-10-28 本田技研工業株式会社 Radial turbine wheel
JPS58122702U (en) * 1982-02-16 1983-08-20 本田技研工業株式会社 turbine wheel

Also Published As

Publication number Publication date
JPH0585721B2 (en) 1993-12-08

Similar Documents

Publication Publication Date Title
JP2722182B2 (en) Porous SiC bearing material having three types of pore structure and method of manufacturing the same
JPH0691409A (en) Insert and method for cutting workpiece
JPS6224603B2 (en)
CN105881717B (en) Ceramic nozzle isostatic pressing mold
US2860961A (en) Method for making abrasive articles
US4634453A (en) Ceramic bonded grinding wheel
JPS60201003A (en) Ceramic rotor and manufacture thereof
CN205630941U (en) Ceramic nozzle isostatic compaction mould
JPS60142002A (en) Radial type ceramic turbine rotor and its manufacturing method
JPS6251658B2 (en)
JPH07504619A (en) Method for manufacturing abrasive tools and tools manufactured using this method
US4903439A (en) Method for grinding rough-shaped objects to a clean spherical form
KR100318503B1 (en) A manufacturing method of Resinoid wheel for processing a Ball Bearing
US4880598A (en) Method for manufacturing a tubular compact
JP2000246647A (en) Vitrified extra-abrasive grain grinding wheel and manufacture thereof
JPH0686815B2 (en) Method for manufacturing ceramic turbocharger rotor
JPS58126401A (en) Manufacturing method for ceramic turbine rotor
JPH0375510B2 (en)
JP2579384Y2 (en) Vacuum chuck for polishing
JP2001121430A (en) Grinding wheel with bushing
JPS5834431B2 (en) Composite whetstone and its manufacturing method
JPS58124003A (en) Manufacture of ceramic turbine rotor
JP3226632B2 (en) Manufacturing method of axial grinding tool blank with superabrasive layer
JPS61226501A (en) Ceramic turbo-rotor
JP2021123055A (en) Method for producing ceramic ball

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees