JPS6259077B2 - - Google Patents

Info

Publication number
JPS6259077B2
JPS6259077B2 JP12440479A JP12440479A JPS6259077B2 JP S6259077 B2 JPS6259077 B2 JP S6259077B2 JP 12440479 A JP12440479 A JP 12440479A JP 12440479 A JP12440479 A JP 12440479A JP S6259077 B2 JPS6259077 B2 JP S6259077B2
Authority
JP
Japan
Prior art keywords
turbine
root
resin layer
blade
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12440479A
Other languages
Japanese (ja)
Other versions
JPS5650175A (en
Inventor
Yoshinori Hatsutori
Mikio Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP12440479A priority Critical patent/JPS5650175A/en
Publication of JPS5650175A publication Critical patent/JPS5650175A/en
Publication of JPS6259077B2 publication Critical patent/JPS6259077B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Ceramic Products (AREA)
  • Producing Shaped Articles From Materials (AREA)

Description

【発明の詳細な説明】 本発明はブレード部とデイスク部を一体に接合
したセラミツク軸流タービンローターの製造法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a ceramic axial flow turbine rotor in which a blade portion and a disk portion are integrally joined.

軸流タービンローターは、形状が非常に複雑で
ある為、これをセラミツクで製作する場合、流し
込み成形法、射出成形法等が考えられるが、ブレ
ードとデイスク部を一体化した成形体を得ようと
すると、型が複雑となるばかりでなく、非常に高
度な技術が要求されるので、工業的には適してい
なかつた。
The axial flow turbine rotor has a very complex shape, so when manufacturing it from ceramic, cast molding, injection molding, etc. can be considered, but in order to obtain a molded product that integrates the blade and disk part, This not only made the mold complicated, but also required extremely advanced technology, making it unsuitable for industrial use.

また複雑形状の成形に適する反応焼結法によつ
て得られたセラミツクは、強度的に弱く、応力の
大きくかかるデイスク部には適さない。
Furthermore, ceramics obtained by the reaction sintering method, which are suitable for forming complex shapes, have low strength and are not suitable for disk parts that are subject to large stresses.

そこでブレード部とデイスク部を接合する方法
が種々工夫され、そのうちの1つとして特公昭53
−38721〜38724の方法がある。この方法は反応焼
結の材料を射出成形することによりブレード部を
作り、それをカーボン型中にセツトし、デイスク
部をホツトプレス法により成形すると共にブレー
ド部との接合を行う方法である。しかしこの方法
はホツトプレスのモールドのセツト条件、加圧条
件が非常に厳密であるため、生産性良くタービン
ローターを作ることは困難であつた。
Therefore, various methods were devised to join the blade part and the disc part, and one of them was
There are methods from −38721 to 38724. In this method, a blade part is made by injection molding a reaction sintered material, which is set in a carbon mold, and a disk part is molded by hot pressing and joined to the blade part. However, this method requires very strict hot press mold setting conditions and pressurizing conditions, making it difficult to manufacture turbine rotors with good productivity.

そこで本発明者らはブレード部とデイスク部を
強固にしかも確実で容易に接続する方法につき鋭
意検討の結果、複雑形状のブレード部をあらかじ
め焼成しておき、デイスク部との接合にデイスク
部の焼成収縮を利用すれば良いことを見出し本発
明を完成した。
Therefore, the inventors of the present invention have conducted extensive studies on a method to connect the blade part and the disk part firmly, reliably, and easily.The inventors of the present invention fired the complex-shaped blade part in advance, and fired the disc part before joining it to the disc part. They found that it is sufficient to utilize contraction and completed the present invention.

すなわち本発明の要旨は、次の(a)〜(d)工程を含
むことを特徴とするセラミツク軸流タービンロー
ターの製造法にある。
That is, the gist of the present invention is a method for manufacturing a ceramic axial flow turbine rotor, which is characterized by including the following steps (a) to (d).

(a) 末端方向外方に突出した根部を有する窒化珪
素磁器又は炭化珪素磁器製タービンブレードを
製造する。
(a) manufacturing a silicon nitride porcelain or silicon carbide porcelain turbine blade having a distally outwardly projecting root;

(b) 上記根部表面に、燃焼除去し得る樹脂層を形
成する。なお樹脂層の厚みは焼結時にタービン
デイスクの収縮する寸法分とする。
(b) Forming a resin layer on the root surface that can be removed by combustion. The thickness of the resin layer is determined by the size of the shrinkage of the turbine disk during sintering.

(c) タービンブレードの型の外周に上記根部のみ
を内側に残してセツトし、窒化珪素粉末又は炭
化珪素粉末を主成分とする原料により、タービ
ンデイスク部分を射出成形又は流し込み成形す
る。
(c) The blade is set on the outer periphery of a turbine blade mold leaving only the root portion inside, and the turbine disk portion is injection molded or cast using a raw material whose main component is silicon nitride powder or silicon carbide powder.

(d) 加熱して上記樹脂層を除去後タービンブレー
ドとタービンデイスクの両者を焼結して一体化
する。
(d) After removing the resin layer by heating, both the turbine blade and the turbine disk are sintered and integrated.

以下に本発明を詳細に説明するに、本発明では
まず(a)工程として、ブレード本体1より末端方向
外方に突出した根部2を有するタービンブレード
3を製造する。タービンブレード3の形状は図面
に示した1実施例のように基台4より垂直にブレ
ード本体1を設け、本体1の反対側に根部2を設
け、根部2は先端部分2tを根本部分2nよりも
太く形成し、先端部分2tはタービンデイスク5
の収縮時応力が均一に働くよう球状に形成してお
くのが好ましい。
The present invention will be described in detail below. In the present invention, first, in step (a), a turbine blade 3 having a root portion 2 protruding outward from the blade body 1 in the distal direction is manufactured. As in the first embodiment shown in the drawings, the shape of the turbine blade 3 is such that the blade main body 1 is provided perpendicularly to the base 4, and the root portion 2 is provided on the opposite side of the main body 1. The tip part 2t is made thicker and the tip part 2t is the turbine disk 5.
It is preferable to form it into a spherical shape so that the stress at the time of contraction acts uniformly.

このようなタービンブレード3を製造するには
金属Si粉末、窒化珪素粉末と焼結助剤、炭化珪素
と焼結助剤等とを周知の射出成形法、流し込み成
形法等により一体に成形し、反応焼結法、常圧焼
結法又は高温静水圧加圧焼結法により焼結する。
この際金属Si粉末を用いて反応焼結法により焼結
する場合には、根部2表面をタービンデイスク5
の材質と同一組成のフラツクスを含有する窒化珪
素質層で射出成形法等により覆つておくとタービ
ンデイスク焼成時にタービンデイスクとタービン
ブレード根部の反応が起こり境界の接合強度が強
固となり好ましい。
To manufacture such a turbine blade 3, metal Si powder, silicon nitride powder, sintering aid, silicon carbide, sintering aid, etc. are integrally molded by a well-known injection molding method, a casting method, etc. Sintering is performed by a reaction sintering method, an atmospheric pressure sintering method, or a high temperature isostatic pressure sintering method.
At this time, when sintering is performed by the reaction sintering method using metal Si powder, the surface of the root 2 is connected to the turbine disk 5.
It is preferable to cover the blade with a silicon nitride layer containing a flux having the same composition as the material by injection molding or the like, as this will cause a reaction between the turbine disk and the root of the turbine blade when the turbine disk is fired, thereby increasing the joint strength at the boundary.

次の(b)工程では根部2表面(もしくは、前述の
窒化珪素層の表面)に、後述する(d)工程の焼結時
に燃焼除去し得る樹脂層6を形成する。樹脂層6
を構成する樹脂としては、ブチラール樹脂、フエ
ノール樹脂等の熱可塑性樹脂又か熱硬化性樹脂が
使用でき、これらの樹脂は射出成形、流し込み成
形等することによつて樹脂層6を形成させる。こ
の樹脂層の厚みは、(d)工程の焼結時にタービンデ
イスク5の収縮する寸法分(すなわち収縮代)と
する。収縮率は使用する原料粉末、添加剤量、或
いは(d)工程での焼結方法、焼結圧力、焼結温度で
も異なるが、概ね窒化珪素及び炭化珪素を主成分
とする成形体を常圧焼結又は高温静水圧加圧焼結
する場合には10〜20%程度である。従つて仮に収
縮率が20%である場合には、根部2外径の20%分
を樹脂層6で形成する。そこで層6の厚みlは第
3図のように10%分となる。
In the next step (b), a resin layer 6 is formed on the surface of the root portion 2 (or on the surface of the silicon nitride layer described above), which can be burned and removed during sintering in the step (d) described later. resin layer 6
Thermoplastic resins or thermosetting resins such as butyral resin and phenol resin can be used as the resin constituting the resin layer 6. These resins are used to form the resin layer 6 by injection molding, pour molding, or the like. The thickness of this resin layer is determined by the shrinkage dimension of the turbine disk 5 (ie, the shrinkage allowance) during sintering in step (d). The shrinkage rate varies depending on the raw material powder used, the amount of additives, the sintering method, sintering pressure, and sintering temperature in step (d), but in general, it is possible to In the case of sintering or high temperature isostatic pressure sintering, it is about 10 to 20%. Therefore, if the shrinkage rate is 20%, the resin layer 6 is formed to cover 20% of the outer diameter of the root 2. Therefore, the thickness l of the layer 6 is 10% as shown in FIG.

次の(c)工程では、上記(b)工程で樹脂層6を形成
した多数のタービンブレードを第5図のように金
型7(あるいは石こう型)外周に上記根部2のみ
を金型7の内側に残してセツトし、タービンデイ
スク5部分を射出成形又は流し込み成形する。な
お第5図中8は補強用金属リングであり、素地は
矢印9より挿入される。成形には、窒化珪素粉末
又は炭化珪素粉末を主成分とし、これに焼結助剤
等を添加した原料を用いる。
In the next step (c), a large number of turbine blades on which the resin layer 6 was formed in the above step (b) are placed around the outer periphery of the mold 7 (or plaster mold), and only the root portion 2 is placed in the mold 7 as shown in FIG. It is left inside and set, and the 5 parts of the turbine disk are injection molded or cast. In addition, 8 in FIG. 5 is a reinforcing metal ring, and the base material is inserted from the arrow 9. For molding, a raw material containing silicon nitride powder or silicon carbide powder as a main component, to which a sintering aid or the like is added is used.

成形すると樹脂層6で覆われた根部2のみがタ
ービンデイスク5に埋まつている未焼結のタービ
ンローターができ上る。
When molded, an unsintered turbine rotor is completed in which only the root portion 2 covered with the resin layer 6 is buried in the turbine disk 5.

これを次の(d)工程で焼結して一体化する。焼結
するには、まず樹脂層6を300〜800℃、1〜2時
間加熱することにより分解除去(樹脂抜き)す
る。さもないとブレード根部とデイスク間に残留
Cが多くなり、焼結時の接着強度が低下する。次
に室温に冷却後焼結してもよいが冷却せずそのま
ま昇温し焼結してもよい。但しこの場合は樹脂が
分解する300〜800℃の温度域迄は20〜50℃/時間
のゆつくりした昇温速度をとる必要がある。
This is sintered and integrated in the next step (d). For sintering, first, the resin layer 6 is decomposed and removed (resin removed) by heating at 300 to 800°C for 1 to 2 hours. Otherwise, a large amount of C will remain between the blade root and the disk, resulting in a decrease in adhesive strength during sintering. Next, the material may be cooled to room temperature and then sintered, or it may be heated and sintered without being cooled. However, in this case, it is necessary to take a slow heating rate of 20 to 50°C/hour until the temperature reaches the temperature range of 300 to 800°C, at which the resin decomposes.

焼結はタービンデイスク5と同一収縮率の栃の
上で、常圧焼結法で1700〜2200℃、高温静水圧加
圧焼結法で1700〜2200℃、圧力1〜2000atmで焼
結する。
Sintering is performed on a chestnut having the same shrinkage rate as the turbine disk 5 at 1,700 to 2,200°C using the normal pressure sintering method, and at 1,700 to 2,200°C and a pressure of 1 to 2,000 atm using the high-temperature isostatic pressure sintering method.

このようにして焼結すると、焼結と共にタービ
ンデイスク5は収縮し、タービンデイスク5の焼
結体が、根部2を均一に包み込みタービンブレー
ド3とタービンデイスク5とを強固に接合する。
When sintered in this manner, the turbine disk 5 contracts as it is sintered, and the sintered body of the turbine disk 5 uniformly wraps around the root portion 2, thereby firmly joining the turbine blade 3 and the turbine disk 5.

以上詳述したように本発明は、あらかじめ作成
しておいたタービンブレードを、タービンデイス
クが焼成する際の収縮を利用して接合するもので
あるので、工業的に簡単にセラミツク軸流タービ
ンローターが製造できる。更に、収緒を利用して
接合するのであるから、セラミツクの成分中に、
接着のためのガラス成分等を別途含ませる必要が
ない。従つて、タービンデイスクの材料として好
ましい成分を用いることができるので、熱に強く
高応力にも耐えられる、強度のあるタービンロー
ターを製造することができる。また本発明はター
ビンローターのみならず、熱間で高応力のかかる
セラミツク高温部材において、セラミツク同志の
接合を必要とする個所に応用できる。
As described in detail above, the present invention connects pre-fabricated turbine blades by utilizing the contraction of the turbine disk when it is fired, so it is industrially easy to manufacture ceramic axial flow turbine rotors. Can be manufactured. Furthermore, since the bonding is done by using the cord, there are some components in the ceramic.
There is no need to separately include a glass component for adhesion. Therefore, since preferred components can be used as the material for the turbine disk, it is possible to manufacture a strong turbine rotor that is resistant to heat and can withstand high stress. Further, the present invention can be applied not only to turbine rotors, but also to high-temperature ceramic members that are subjected to high stress during hot operation, and where ceramics need to be bonded together.

以下に本発明を実施例により更に詳細に説明す
るが、本発明はその要旨を越えない限り以下の実
施例により固定されるものではない。
EXAMPLES The present invention will be explained in more detail with reference to examples below, but the present invention is not limited to the following examples unless the gist of the invention is exceeded.

実施例 平均粒度2μの金属Si粉末にアタクチツクポリ
プロピレン樹脂20重量%を充分混練し、タービン
ブレード3を射出成形し、その根部2表面に更に
MgO5重量%を含む金属Si粉末を厚さ1mmに射出
成形し、それにラテツクスゴムを被覆し、圧力
10000Kg/cm2にて静水圧プレスして一体化した
後、1400℃で20時間反応焼結することによつてタ
ービンブレード3の焼結体を得た。得られた焼結
体の根部2にタービンデイスク5の収縮代(収縮
率20%)に見合う厚みのポリビニルブチラール樹
脂を射出成形法によりコーテイングし、乾燥後そ
れらを第5図のように配置した金型7に窒化珪素
素地(Si3N495重量%、MgO5重量%、平均粒径
2μ)を射出成形し、600℃に2時間加熱するこ
とによつて樹脂抜きし、同質の栃上にて窒素雰囲
気1750℃で1時間焼結したところタービンブレー
ド3とタービンデイスク5とが完全に一体化され
た軸流タービンローターが得られた。
Example A turbine blade 3 is injection molded by thoroughly kneading 20% by weight of an atactic polypropylene resin into a metal Si powder with an average particle size of 2 μm, and the surface of the root 2 is further coated with
Metallic Si powder containing 5% by weight of MgO was injection molded to a thickness of 1 mm, covered with latex rubber, and then
After integrating by isostatic pressing at 10,000 Kg/cm 2 , a sintered body of the turbine blade 3 was obtained by reaction sintering at 1,400° C. for 20 hours. The root part 2 of the obtained sintered body was coated with polyvinyl butyral resin of a thickness corresponding to the shrinkage margin (shrinkage rate 20%) of the turbine disk 5 by injection molding method, and after drying, they were arranged as shown in Figure 5. A silicon nitride base material (Si 3 N 4 95% by weight, MgO 5% by weight, average particle size 2μ) was injection molded into mold 7, the resin was removed by heating it to 600°C for 2 hours, and the mold was molded on a same-quality chestnut. After sintering in a nitrogen atmosphere at 1750° C. for 1 hour, an axial flow turbine rotor in which the turbine blades 3 and the turbine disk 5 were completely integrated was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で用いるタービンブレードの1
例を示す斜視図、第2図は同正面図、第3図は根
部に樹脂層を形成したタービンブレードの1例を
示す縦断面図、第4図は(c)工程終了後の根部付近
を示す拡大断面図、第5図はタービンブレードを
型にセツトした場合を示す断面図である。 1……ブレード本体、2……根部、3……ター
ビンブレード、5……タービンデイスク、6……
樹脂層、7……型。
Figure 1 shows one of the turbine blades used in the present invention.
FIG. 2 is a front view of the same; FIG. 3 is a vertical cross-sectional view of an example of a turbine blade with a resin layer formed on the root; and FIG. The enlarged sectional view shown in FIG. 5 is a sectional view showing the turbine blade set in a mold. 1... Blade body, 2... Root, 3... Turbine blade, 5... Turbine disk, 6...
Resin layer, 7... mold.

Claims (1)

【特許請求の範囲】 1 次の(a)〜(d)工程を含むことを特徴とするセラ
ミツク軸流タービンローターの製造法。 (a) 末端方向外方に突出した根部を有する窒化珪
素磁器又は炭化珪素磁器製タービンブレードを
製造する。 (b) 上記根部表面に、燃焼除去し得る樹脂層を形
成する。なお樹脂層の厚みは焼結時にタービン
デイスクの収縮する寸法分とする。 (c) タービンブレードを型の外周に上記根部のみ
を内側に残してセツトし、窒化珪素粉末又は炭
化珪素粉末を主成分とする原料により、タービ
ンデイスク部分を射出成形又は流し込み成形す
る。 (d) 加熱して上記樹脂層を除去後タービンブレー
ドとタービンデイスクの両者を焼結して一体化
する。 2 根部を、根本部分よりも先端部分を太く形成
した特許請求の範囲第1項記載のセラミツク軸流
タービンローターの製造法。
[Scope of Claims] 1. A method for manufacturing a ceramic axial flow turbine rotor, comprising the following steps (a) to (d). (a) manufacturing a silicon nitride porcelain or silicon carbide porcelain turbine blade having a distally outwardly projecting root; (b) Forming a resin layer on the root surface that can be removed by combustion. The thickness of the resin layer is determined by the size of the shrinkage of the turbine disk during sintering. (c) The turbine blade is set on the outer periphery of the mold leaving only the root portion inside, and the turbine disk portion is injection molded or cast using a raw material whose main component is silicon nitride powder or silicon carbide powder. (d) After removing the resin layer by heating, both the turbine blade and the turbine disk are sintered and integrated. 2. The method for manufacturing a ceramic axial flow turbine rotor according to claim 1, wherein the root portion is formed so that the tip portion is thicker than the root portion.
JP12440479A 1979-09-26 1979-09-26 Manufacture of ceramic axial flow turbine rotor Granted JPS5650175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12440479A JPS5650175A (en) 1979-09-26 1979-09-26 Manufacture of ceramic axial flow turbine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12440479A JPS5650175A (en) 1979-09-26 1979-09-26 Manufacture of ceramic axial flow turbine rotor

Publications (2)

Publication Number Publication Date
JPS5650175A JPS5650175A (en) 1981-05-07
JPS6259077B2 true JPS6259077B2 (en) 1987-12-09

Family

ID=14884605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12440479A Granted JPS5650175A (en) 1979-09-26 1979-09-26 Manufacture of ceramic axial flow turbine rotor

Country Status (1)

Country Link
JP (1) JPS5650175A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749977Y2 (en) * 1989-12-27 1995-11-15 株式会社平和 Sorting device for pachinko machines

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184773A (en) * 1983-04-04 1984-10-20 日立化成工業株式会社 Manufacture of silicon carbide sintered body
JPS6186211A (en) * 1984-10-04 1986-05-01 日本碍子株式会社 Ceramics composite structure and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749977Y2 (en) * 1989-12-27 1995-11-15 株式会社平和 Sorting device for pachinko machines

Also Published As

Publication number Publication date
JPS5650175A (en) 1981-05-07

Similar Documents

Publication Publication Date Title
JPS595550B2 (en) Ceramic rotor and its manufacturing method
JPS55161902A (en) Ceramic turbine rotor
US4647414A (en) Method of manufacturing ceramics
JPS5925083B2 (en) radial turbine rotor
EP0177355B1 (en) Method for manufacturing a composite ceramic structure
JPS59155501A (en) Radial flow type ceramic turbine rotor and manufacture thereof
EP0545685B1 (en) Method of manufacturing ceramics having fine holes
US4096120A (en) Method of making a ceramic turbine wheel and turbine wheel made thereby
JPS6259077B2 (en)
US4087500A (en) Method of making a duo density silicon nitride article
JPS59109304A (en) Manufacture of radial type ceramic turbine rotor
JPH0627482B2 (en) Manufacturing method of radial type ceramic turbine rotor
EP0112146B1 (en) Radial blade type ceramic rotor and method of producing the same
EP0397481B1 (en) Production of articles from curable compositions
JPS6256111B2 (en)
JPS58126401A (en) Manufacturing method for ceramic turbine rotor
JPS58124003A (en) Manufacture of ceramic turbine rotor
JPS5913675A (en) Manufacture of ceramic turbine rotor
JP2739343B2 (en) Hybrid turbine rotor
JPS61111975A (en) Manufacture of ceramic structural material
JPS5927746B2 (en) Manufacturing method of ceramic sintered body
JPS60169601A (en) Manufacture of radial ceramic turbine rotor
JPS5879878A (en) Ceramic member bonding method
JPH0233670B2 (en) SERAMITSUKUTAABINROOTANOSEIZOHO
JPS62202874A (en) Manufacture of ceramic sintered body