JPS6256111B2 - - Google Patents

Info

Publication number
JPS6256111B2
JPS6256111B2 JP54122897A JP12289779A JPS6256111B2 JP S6256111 B2 JPS6256111 B2 JP S6256111B2 JP 54122897 A JP54122897 A JP 54122897A JP 12289779 A JP12289779 A JP 12289779A JP S6256111 B2 JPS6256111 B2 JP S6256111B2
Authority
JP
Japan
Prior art keywords
turbine
silicon nitride
root
blade
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54122897A
Other languages
Japanese (ja)
Other versions
JPS5645871A (en
Inventor
Yoshinori Hatsutori
Mikio Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP12289779A priority Critical patent/JPS5645871A/en
Publication of JPS5645871A publication Critical patent/JPS5645871A/en
Publication of JPS6256111B2 publication Critical patent/JPS6256111B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Ceramic Products (AREA)
  • Producing Shaped Articles From Materials (AREA)

Description

【発明の詳細な説明】 本発明はブレード部とデイスク部を一体に接合
したセラミツク軸流タービンローターの製造法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a ceramic axial flow turbine rotor in which a blade portion and a disk portion are integrally joined.

軸流タービンローターは、形状が非常に複雑で
ある為、これをセラミツクで製作する場合、流し
込み成形法、射出成形法等が考えられるが、ブレ
ードとデイスク部を一体化した成形体を得ようと
すると、型が複雑となるばかりでなく、非常に高
度な技術が要求されるので、工業的には適してい
なかつた。
The axial flow turbine rotor has a very complex shape, so when manufacturing it from ceramic, cast molding, injection molding, etc. can be considered, but in order to obtain a molded product that integrates the blade and disk part, This not only made the mold complicated, but also required extremely advanced technology, making it unsuitable for industrial use.

また複雑形状の成形に適する反応焼結法によつ
て得られたセラミツクは、強度的に弱く、応力の
大きくかかるデイスク部には適さない。
Furthermore, ceramics obtained by the reaction sintering method, which are suitable for forming complex shapes, have low strength and are not suitable for disk parts that are subject to large stresses.

そこでブレード部とデイスク部を接合する方法
が種々工夫され、そのうちの1つとして特公昭53
−38721〜38724の方法がある。この方法は反応焼
結の材料を射出成形することによりブレード部を
作り、それをカーボン型中にセツトし、デイスク
部をホツトプレス法により成形すると共にブレー
ド部との接合を行う方法である。しかしこの方法
はホツトプレスのモールドのセツト条件、加圧条
件が非常に厳密であるため、生産性良くタービン
ローターを作ることは困難であつた。
Therefore, various methods were devised to join the blade part and the disc part, and one of them was
There are methods from −38721 to 38724. In this method, a blade part is made by injection molding a reaction sintered material, which is set in a carbon mold, and a disk part is molded by hot pressing and joined to the blade part. However, this method requires very strict hot press mold setting conditions and pressurizing conditions, making it difficult to manufacture turbine rotors with good productivity.

そこで本発明者らはブレード部とデイスク部を
強固にしかも確実で容易に接続する方法につき鋭
意検討の結果、複雑形状のブレード部をあらかじ
め焼成しておき、デイスク部との接合にデイスク
部の焼成収縮を利用すれば良いことを見出し本発
明を完成した。
Therefore, the inventors of the present invention have conducted extensive studies on a method for strongly, reliably, and easily connecting the blade section and the disk section, and found that the blade section, which has a complex shape, is fired in advance, and the disk section is fired before joining the blade section to the disk section. The inventors discovered that contraction could be used and completed the present invention.

すなわち本発明の要旨は、次の(a)〜(c)工程を含
むことを特徴とするセラミツク軸流タービンロー
ターの製造法にある。
That is, the gist of the present invention is a method for manufacturing a ceramic axial flow turbine rotor, which is characterized by including the following steps (a) to (c).

(a) 末端方向外方に突出した根部を有する窒化珪
素磁器又は炭化珪素磁器製タービンブレードを
製造する。
(a) manufacturing a silicon nitride porcelain or silicon carbide porcelain turbine blade having a distally outwardly projecting root;

(b) 窒化珪素粉末又は炭化珪素粉末を主成分とす
る原料により、上記根部が挿入される多数の挿
入孔を設けたタービンデイスクを成形(未焼結
状態)する。
(b) Molding (in an unsintered state) a turbine disk having a large number of insertion holes into which the roots are inserted, using a raw material whose main component is silicon nitride powder or silicon carbide powder.

なおその挿入孔は、焼結後の収縮した状態で
挿入された根部と密着する大きさとする。
Note that the insertion hole is sized to be in close contact with the inserted root in a contracted state after sintering.

(c) 上記(a)工程で得られたタービンブレードの根
部を、上記(b)工程で得られたタービンデイスク
の挿入孔に挿入し、両者を常圧焼結法又は高温
静水圧加圧法で焼結して一体化する。
(c) Insert the root of the turbine blade obtained in step (a) above into the insertion hole of the turbine disk obtained in step (b) above, and sinter both by pressureless sintering or high-temperature isostatic pressing. Sinter and integrate.

以下に本発明を詳細に説明するに、本発明では
まず(a)工程として、ブレード本体1より末端方向
外方に突出した根部2を有するタービンブレード
3を製造する。タービンブレード3の形状は図面
に示した1実施例のように基台4より垂直にブレ
ード本体1を設け、本体1の反対側に根部2を設
け、根部2は先端部分2tを根本部分2nよりも
太く形成し、先端部分2tはタービンデイスク5
の収縮時応力が均一に働くよう球状に形成してお
くのが好ましい。このようなタービンブレード3
を製造するには金属Si粉末、窒化珪素粉末と焼結
助剤、炭化珪素と焼結助剤等とを周知の射出成形
法、流し込み成形法等により一体に成形し、反応
焼結法、常圧焼結法又は高温静水圧加圧法により
焼結する。
The present invention will be described in detail below. In the present invention, first, in step (a), a turbine blade 3 having a root portion 2 protruding outward from the blade body 1 in the distal direction is manufactured. As in the first embodiment shown in the drawings, the shape of the turbine blade 3 is such that the blade main body 1 is provided perpendicularly to the base 4, and the root portion 2 is provided on the opposite side of the main body 1. The tip part 2t is made thicker and the tip part 2t is the turbine disk 5.
It is preferable to form it into a spherical shape so that the stress at the time of contraction acts uniformly. Such a turbine blade 3
To manufacture the metal Si powder, silicon nitride powder and sintering aid, silicon carbide and sintering aid, etc. are integrally molded by well-known injection molding method, pour molding method, etc., and reaction sintering method, conventional Sintering is performed by pressure sintering method or high temperature isostatic pressing method.

この際金属Si粉末を用いて反応焼結法により焼
結する場合には第4図に示すように根部2表面を
タービンデイスク5の材質と同一組成のフラツク
スを含有する窒化珪素質層6で覆つておくと、焼
結過程においてタービンデイスクとブレードの接
合部が界面反応を起こし接合強度が大となり好ま
しい。このような窒化珪素質層6で覆うには、タ
ービンブレードを射出成型する際にまずブレード
本体を射出成型により形成し、さらに該成型物の
根部2上に射出成型によりフラツクスを含有する
窒化珪素質層6を形成し、一体となつたタービン
ブレードを得る方法が使用される。
At this time, when sintering is performed by the reaction sintering method using metal Si powder, the surface of the root 2 is covered with a silicon nitride layer 6 containing a flux having the same composition as the material of the turbine disk 5, as shown in FIG. If this is done, an interfacial reaction will occur at the joint between the turbine disk and the blade during the sintering process, increasing the joint strength, which is preferable. In order to cover the silicon nitride layer 6 with such a silicon nitride layer 6, when injection molding the turbine blade, first the blade body is formed by injection molding, and then a silicon nitride layer containing flux is formed on the root part 2 of the molded product by injection molding. A method is used to form the layer 6 and obtain an integral turbine blade.

次に上記の(a)工程とは別に、窒化珪素粉末又は
炭化珪素粉末を主成分とし、他に焼結助剤等を添
加して未焼結のタービンデイスク5を成形する。
タービンデイスク5には根部2が挿入される多数
の挿入孔7を設け、この挿入孔7の大きさは、挿
入された根部2と焼結後の収縮した状態で丁度密
着する深さ、口径とする。例えば前述のように根
部2を、先端部分2tを球状にし根本部分2nよ
りも太く形成した場合には、それに合わせ第3図
のように、入口部分7aよりも内方部分7bの口
径を大きくし、しかも根部2外径よりも、焼結時
の収縮代(第3図に於て長さl)だけ大きい内径
とする。収縮代は使用する原料粉末、添加剤量、
或いは(c)工程での焼結方法、焼結圧力、焼結温度
でも異なるが、概ね窒化珪素又は炭化珪素を主成
分とする成形体を焼結する場合には10〜20%程度
である。
Next, separate from the above step (a), an unsintered turbine disk 5 is formed using silicon nitride powder or silicon carbide powder as a main component, with addition of a sintering aid and the like.
The turbine disk 5 is provided with a large number of insertion holes 7 into which the roots 2 are inserted, and the size of the insertion holes 7 is determined according to the depth and diameter of the insertion holes 7 so that the inserted roots 2 will come into close contact with the inserted roots 2 in the contracted state after sintering. do. For example, when the root portion 2 is formed so that the tip portion 2t is spherical and thicker than the root portion 2n as described above, the diameter of the inner portion 7b is made larger than the entrance portion 7a as shown in FIG. , and the inner diameter is larger than the outer diameter of the root portion 2 by the shrinkage margin during sintering (length l in FIG. 3). The shrinkage allowance depends on the raw material powder used, the amount of additives,
Alternatively, although the sintering method, sintering pressure, and sintering temperature in step (c) vary, it is approximately 10 to 20% when sintering a molded body whose main component is silicon nitride or silicon carbide.

次に(c)工程でタービンブレードとタービンデイ
スクとを焼結して一体化する。それにはまずター
ビンブレード3の根部2を、タービンデイスク5
の挿入孔7に挿入し、その後タービンデイスク5
と同一収縮率の栃の上で、常圧焼結法により1700
〜2200℃、又は高温静水圧加圧焼結法により1700
〜2200℃、圧力1〜2000atmで焼結する。
Next, in step (c), the turbine blade and turbine disk are sintered and integrated. First, the root part 2 of the turbine blade 3 is attached to the turbine disk 5.
into the insertion hole 7 of the turbine disk 5.
1700 by pressureless sintering method on a chestnut with the same shrinkage rate as
~2200℃, or 1700℃ by high temperature isostatic pressure sintering method
Sinter at ~2200℃ and pressure 1~2000atm.

上記のようにして焼結すると、タービンデイス
ク5の収縮と共に、挿入孔7も収縮し小さくな
り、根部2を均一に包み込み、タービンブレード
3とタービンデイスク5とを強固に完全に接合す
る。
When sintered as described above, as the turbine disk 5 contracts, the insertion hole 7 also contracts and becomes smaller, uniformly surrounding the root portion 2 and firmly and completely joining the turbine blade 3 and the turbine disk 5.

以上詳述したように本発明は、あらかじめ作成
しておいたタービンブレードを、タービンデイス
クが焼結する際の収縮を利用して接合するもので
あるので、工業的に簡単にセラミツク軸流タービ
ンローターが製造できる。更に、収縮を利用して
接合するのであるから、セラミツクの成分中に、
接着のためのガラス成分等を別途含ませる必要が
ない。従つて、タービンデイスクの材料として好
ましい成分を用いることができるので、熱に強く
高応力にも耐えられる、強度のあるタービンロー
ターを製造することができる。また本発明はター
ビンローターのみならず、熱間で高応力のかかる
セラミツク高温部材において、セラミツク同志の
接合を必要とする個所に応用できる。
As described in detail above, the present invention connects pre-fabricated turbine blades by utilizing the shrinkage of the turbine disk when it is sintered, so it is industrially easy to manufacture ceramic axial flow turbine rotors. can be manufactured. Furthermore, since the bonding is done using shrinkage, there are some components in the ceramic.
There is no need to separately include a glass component for adhesion. Therefore, since preferred components can be used as the material for the turbine disk, it is possible to manufacture a strong turbine rotor that is resistant to heat and can withstand high stress. Further, the present invention can be applied not only to turbine rotors, but also to high-temperature ceramic members that are subjected to high stress during hot operation, and where ceramics need to be bonded together.

以下に本発明を実施例により更に詳細に説明す
るが、本発明はその要旨を越えない限り以下の実
施例により限定されるものではない。
EXAMPLES The present invention will be explained in more detail with reference to examples below, but the present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例 金属Si粉末を射出成形により、図面に示すよう
なブレード本体1、根部2、基台4を有するター
ビンブレード3の形状に成形し、窒素ガス雰囲気
で反応焼結し窒化珪素焼結製タービンブレード3
を作成した。それとは別に窒化珪素粉末95重量%
とMgO粉末5重量%とより成る混合粉末を射出
成形により、多数の挿入孔7を設けたタービンデ
イスク5を成形した。なお挿入孔7の内径は根部
2の外径の20%増しとしておいた。次に挿入孔7
に根部2を嵌め、タービンデイスク5と同材質の
栃の上にセツトし、窒素ガス雰囲気中にて400
℃/時間の速度で昇温し、1750℃、30分間焼結し
たところ、タービンデイスク5は20%収縮し、そ
れに伴ない挿入孔7も収縮し、完全にブレード3
とデイスク5とが一体化したタービンローターが
得られた。
Example Metallic Si powder is molded by injection molding into the shape of a turbine blade 3 having a blade body 1, a root portion 2, and a base 4 as shown in the drawings, and is reacted and sintered in a nitrogen gas atmosphere to produce a silicon nitride sintered turbine. blade 3
It was created. Apart from that, silicon nitride powder 95% by weight
A turbine disk 5 having a large number of insertion holes 7 was formed by injection molding a mixed powder consisting of 5% by weight of MgO powder and 5% by weight of MgO powder. Note that the inner diameter of the insertion hole 7 was set to be 20% larger than the outer diameter of the root portion 2. Next, insert hole 7
Fit the root part 2 into the hole, set it on a chestnut made of the same material as the turbine disk 5, and heat it for 400 minutes in a nitrogen gas atmosphere.
When the temperature was raised at a rate of °C/hour and sintered at 1750 °C for 30 minutes, the turbine disk 5 contracted by 20%, the insertion hole 7 also contracted, and the blade 3 completely closed.
A turbine rotor in which the disk 5 and the disk 5 were integrated was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で用いるタービンブレードとタ
ービンデイスクを示す1部破断分解斜視図、第2
図はタービンブレードを示す正面図、第3図はタ
ービンブレードをタービンデイスクの挿入孔に挿
入した状態を示す断面図、第4図はタービンブレ
ードの別の例を示す縦断面図である。 1……ブレード本体、2……根部、3……ター
ビンブレード、5……タービンデイスク、7……
挿入孔。
Fig. 1 is a partially cutaway exploded perspective view showing the turbine blade and turbine disk used in the present invention;
3 is a front view showing the turbine blade, FIG. 3 is a sectional view showing the turbine blade inserted into the insertion hole of the turbine disk, and FIG. 4 is a longitudinal sectional view showing another example of the turbine blade. 1... Blade body, 2... Root, 3... Turbine blade, 5... Turbine disk, 7...
Insertion hole.

Claims (1)

【特許請求の範囲】 1 次の(a)〜(c)工程を含むことを特徴とするセラ
ミツク軸流タービンローターの製造法。 (a) 末端方向外方に突出した根部を有する窒化珪
素磁器又は炭化珪素磁器製タービンブレードを
製造する。 (b) 窒化珪素粉末又は炭化珪素粉末を主成分とす
る原料により、上記根部が挿入される多数の挿
入孔を設けたタービンデイスクを成形する。な
おその挿入孔は、焼結後の収縮した状態で挿入
された根部と密着する大きさとする。 (c) 上記(a)工程で得られたタービンブレードの根
部を、上記(b)工程で得られたタービンデイスク
の挿入孔に挿入し、両者を常圧焼結法又は高温
静水圧加圧法で焼結して一体化する。 2 タービンブレードが、反応焼結法によつて得
られた窒化珪素磁器であり、しかも根部表面が、
タービンデイスクの材質と同一組成のフラツクス
を含有する窒化珪素質層で覆われている特許請求
の範囲第1項記載のセラミツク軸流タービンロー
ターの製造法。
[Scope of Claims] 1. A method for manufacturing a ceramic axial flow turbine rotor, comprising the following steps (a) to (c). (a) manufacturing a silicon nitride porcelain or silicon carbide porcelain turbine blade having a distally outwardly projecting root; (b) Molding a turbine disk with a large number of insertion holes into which the roots are inserted using a raw material whose main component is silicon nitride powder or silicon carbide powder. Note that the insertion hole is sized to be in close contact with the inserted root in a contracted state after sintering. (c) Insert the root of the turbine blade obtained in step (a) above into the insertion hole of the turbine disk obtained in step (b) above, and sinter both by pressureless sintering or high-temperature isostatic pressing. Sinter and integrate. 2. The turbine blade is made of silicon nitride porcelain obtained by a reaction sintering method, and the root surface is
A method for manufacturing a ceramic axial flow turbine rotor according to claim 1, wherein the ceramic axial flow turbine rotor is covered with a silicon nitride layer containing flux having the same composition as the material of the turbine disk.
JP12289779A 1979-09-25 1979-09-25 Manufacture of ceramic axial flow turbine rotor Granted JPS5645871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12289779A JPS5645871A (en) 1979-09-25 1979-09-25 Manufacture of ceramic axial flow turbine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12289779A JPS5645871A (en) 1979-09-25 1979-09-25 Manufacture of ceramic axial flow turbine rotor

Publications (2)

Publication Number Publication Date
JPS5645871A JPS5645871A (en) 1981-04-25
JPS6256111B2 true JPS6256111B2 (en) 1987-11-24

Family

ID=14847321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12289779A Granted JPS5645871A (en) 1979-09-25 1979-09-25 Manufacture of ceramic axial flow turbine rotor

Country Status (1)

Country Link
JP (1) JPS5645871A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106466A (en) * 1984-10-31 1986-05-24 株式会社トーキン Method of bonding polycrystal ferrite mutually

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278207A (en) * 1975-11-10 1977-07-01 Tokyo Shibaura Electric Co Joined ceramic products in complicated form and manufacture
JPS55116681A (en) * 1979-02-28 1980-09-08 Ngk Insulators Ltd Ceramic part bonding method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278207A (en) * 1975-11-10 1977-07-01 Tokyo Shibaura Electric Co Joined ceramic products in complicated form and manufacture
JPS55116681A (en) * 1979-02-28 1980-09-08 Ngk Insulators Ltd Ceramic part bonding method

Also Published As

Publication number Publication date
JPS5645871A (en) 1981-04-25

Similar Documents

Publication Publication Date Title
JPS55161902A (en) Ceramic turbine rotor
JPS59113203A (en) Connection part of ceramic rotary member and metal rotary part for jet engine and fabrication thereof
CA1147538A (en) Process for joining silicon nitride based ceramic bodies
JP2500138B2 (en) Method of manufacturing ceramics with pores
JPS6256111B2 (en)
US4701106A (en) Radial-type ceramic turbine rotor and a method for producing the same
US3876742A (en) Method for manufacturing bladed members from powder material
JPS6259077B2 (en)
EP0112146A2 (en) Radial blade type ceramic rotor and method of producing the same
DE2362469A1 (en) Joining sintered ceramic components - esp in the mfr of silicon nitride gas turbine impeller wheels
JPS58126401A (en) Manufacturing method for ceramic turbine rotor
JPS5913675A (en) Manufacture of ceramic turbine rotor
JPS632863A (en) Manufacture of complicated shape ceramic sintered body
JP2739343B2 (en) Hybrid turbine rotor
JPS5927746B2 (en) Manufacturing method of ceramic sintered body
JPH057353B2 (en)
JPH0233670B2 (en) SERAMITSUKUTAABINROOTANOSEIZOHO
JPS58124003A (en) Manufacture of ceramic turbine rotor
JPH05156319A (en) Cylindrical or columnar ceramic-metal composite with functionally gradient layer radially formed and its production
JPS5879878A (en) Ceramic member bonding method
EP0158472A2 (en) Method for production of sintered ceramic article
JPS60169601A (en) Manufacture of radial ceramic turbine rotor
JPS61111975A (en) Manufacture of ceramic structural material
JPS5879877A (en) Ceramic member bonding method
JPS6297804A (en) Manufacture of complicate shaped product such as ceramics