JPS6329001A - Ceramic turbo wheel - Google Patents

Ceramic turbo wheel

Info

Publication number
JPS6329001A
JPS6329001A JP17170686A JP17170686A JPS6329001A JP S6329001 A JPS6329001 A JP S6329001A JP 17170686 A JP17170686 A JP 17170686A JP 17170686 A JP17170686 A JP 17170686A JP S6329001 A JPS6329001 A JP S6329001A
Authority
JP
Japan
Prior art keywords
porous layer
metal
blade
wheel
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17170686A
Other languages
Japanese (ja)
Inventor
Seiji Hashimoto
誠司 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP17170686A priority Critical patent/JPS6329001A/en
Publication of JPS6329001A publication Critical patent/JPS6329001A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To improve the toughness and thereby reduce the breakage probability of a blade surface by forming a porous layer on the periphery of a blade made of ceramic in the turbin wheel of a turbo charger and impregnating the porous layer with metal. CONSTITUTION:In a turbin wheel of a turbo charger, the base metal 13 of a turbin wheel blade 11 is made of ceramic e.g. silicon nitride of 95-100% TD. In this case, a metal impregnated layer 12 is formed over the surface of the base metal 13. The metal impregnated layer 12 is composed of a porous layer 14 whose base material is silicon nitride and a metal layer 15 impregnated into the aperture of the porous layer 14. The porosity of the porous layer 14 is set at 50% or less. This enables the improved toughness and the reduced breakage probability of the blade 11 surface, and thereby the improved durability of the turbo charger.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、内燃機関に設けられて吸入空気を過給するタ
ーボチャージャのセラミック製ターボホイールに関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ceramic turbo wheel for a turbocharger installed in an internal combustion engine for supercharging intake air.

〔従来の技術〕[Conventional technology]

内燃機関において、出力性能を向上させるためにターボ
チャージャが設けられることがあり、このターボチャー
ジャは、内燃機関の排気ガスによってターボホイールを
駆動することによりコンプレッサを作動させ、内燃機関
に空気を過給する。
In an internal combustion engine, a turbocharger is sometimes installed to improve output performance.The turbocharger uses exhaust gas from the internal combustion engine to drive a turbo wheel to operate a compressor, supercharging air to the internal combustion engine. do.

ターボホイールは排気ガス中にさらされるため、従来、
耐熱性に優れた金属から成形されていたが、近年、耐熱
性に優れるとともに軽量であるセラミックにより成形さ
れることが提案されている。     ゛さて、排気ガ
ス内にはエンジン内で発生した鉄粉、異物、サビ、酸化
スケール等が混入することがある。この場合、ターボホ
イールはタービンハウジング内で高速で回転しているた
め、この鉄粉等がターボホイールの翼に衝突すると、こ
の翼に欠けや割れが生じ、最終的に破損に到るおそれが
ある。このような翼の欠けや割れの発生を防止すること
を目的として本出願人は既に特願昭60−140878
号および特願昭60−210808号において、翼に金
属被覆膜を設けた構成および翼外周部に高破壊靭性を有
する材料からなる翼外周部材を接合した構成をそれぞれ
提案した。
Because turbo wheels are exposed to exhaust gases, conventionally,
Previously, they were molded from metal with excellent heat resistance, but in recent years it has been proposed that they be molded from ceramic, which has excellent heat resistance and is lightweight. Now, iron powder, foreign matter, rust, oxide scale, etc. generated in the engine may be mixed into the exhaust gas. In this case, since the turbo wheel is rotating at high speed inside the turbine housing, if this iron powder collides with the blades of the turbo wheel, the blades may chip or crack, which may eventually lead to damage. . In order to prevent the occurrence of such chipping and cracking of blades, the present applicant has already filed patent application No. 60-140878.
No. 60-210808 and Japanese Patent Application No. 60-210808 proposed a configuration in which a metal coating is provided on the blade and a configuration in which a blade outer peripheral member made of a material having high fracture toughness is bonded to the outer peripheral portion of the blade.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような金属被覆膜あるいは翼外周部材を有する構成
により、鉄粉等の衝突による翼の欠けが防止されてター
ボホイールの耐久性が向上するが、長期の使用において
金属被覆膜あるいは翼外周部材の接合部が剥離するおそ
れがあり、ターボホイールの耐久性がまだ不充分である
ことが判明した。
The structure with such a metal coating film or blade outer circumferential member prevents the blade from chipping due to collision with iron powder, etc., and improves the durability of the turbo wheel. It was found that the durability of the turbo wheel was still insufficient, as there was a risk that the joints of the members would peel off.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係るターボホイールは、翼がセラミックを含み
、この翼の外周部に多孔質層を形成するとともにこの多
孔質層に金属を含浸させて成ることを特徴としている。
The turbo wheel according to the present invention is characterized in that the blades include ceramic, a porous layer is formed on the outer periphery of the blade, and the porous layer is impregnated with metal.

。 〔実施例〕 以下図示実施例により本発明を説明する。. 〔Example〕 The present invention will be explained below with reference to illustrated embodiments.

第2図はターボホイール10の概観を示す。このターボ
ホイール10は95〜100%TDの窒化珪素(Si3
N4)により成形され、翼11の表面には、後述するよ
うに第1図(a)、(b)に示すような金属含浸層12
が形成される。
FIG. 2 shows an overview of the turbo wheel 10. This turbo wheel 10 is made of silicon nitride (Si3
N4), and the surface of the blade 11 is coated with a metal impregnated layer 12 as shown in FIGS. 1(a) and 1(b), as described later.
is formed.

ターボホイール10の成形工程について説明する。The molding process of the turbo wheel 10 will be explained.

平均粒径約1μmの窒化珪素粉末を主成分とし、この窒
化珪素粉末に焼結助剤として酸化イツトリウム4重量%
とスピネル4重量%を添加してこれを均一に分散させ、
その後有機バインダとして熱可塑性樹脂等を17重量%
添加したものを混合して混練物をつくる。この混練物を
所定の金型に射出成形することにより、ターボホイール
形状の射出成形体を得る。そしてこの射出成形体を脱脂
装置に入れて脱脂処理を行なう。すなわち、脱脂装置内
に不活性ガスを導入し、この装置内を不活性ガスで置換
した後、この装置内を5℃/hの割合で450℃まで加
熱して脱脂を行なう。その後、このターボホイール形状
の脱脂体を焼成炉に入れ、1750℃で4時間焼成して
焼結体を得る。
The main component is silicon nitride powder with an average particle size of approximately 1 μm, and 4% by weight of yttrium oxide is added to this silicon nitride powder as a sintering aid.
and 4% by weight of spinel were added and dispersed uniformly,
After that, 17% by weight of thermoplastic resin etc. was added as an organic binder.
Mix the added ingredients to make a kneaded product. By injection molding this kneaded material into a predetermined mold, an injection molded article in the shape of a turbo wheel is obtained. This injection molded article is then placed in a degreasing device and subjected to degreasing treatment. That is, after introducing an inert gas into the degreasing device and replacing the inside of the device with the inert gas, the inside of the device is heated to 450° C. at a rate of 5° C./h to perform degreasing. Thereafter, this turbo wheel-shaped degreased body is placed in a firing furnace and fired at 1750° C. for 4 hours to obtain a sintered body.

次に上記混練物をスラリー状にして焼結体の表面上にコ
ーティングし、1500℃で4時間かけて再焼結し、そ
の表面に厚さ約40μm、気孔率約30%の多孔質層を
形成する。そしてこのターボホイールを溶解したクロム
槽に浸漬して圧力を加え、多孔質層に金属を含浸させる
。この金属は、例えばニッケル、コバルト、あるいはニ
ッケル合金等、高い靭性を有しているものであれば何で
もよい。
Next, the above kneaded material was made into a slurry and coated on the surface of the sintered body, and re-sintered at 1500°C for 4 hours to form a porous layer with a thickness of about 40 μm and a porosity of about 30% on the surface. Form. The turbowheel is then immersed in a bath of molten chromium and pressure is applied to impregnate the porous layer with metal. This metal may be any metal having high toughness, such as nickel, cobalt, or a nickel alloy.

第1図(a)、(b)は翼11の拡大断面を示す。翼1
1は95〜100%TDの窒化珪素から成る母材13と
これの表面に形成された金属含浸層12とから構成され
る。金属含浸層12は窒化珪素を主成分とする多孔質層
14と、この多孔質層14の空間内に含浸される金属層
15とから成る。
FIGS. 1(a) and 1(b) show enlarged cross sections of the blade 11. FIG. wing 1
1 is composed of a base material 13 made of silicon nitride with a TD of 95 to 100% and a metal impregnated layer 12 formed on the surface of the base material 13. The metal impregnated layer 12 consists of a porous layer 14 whose main component is silicon nitride, and a metal layer 15 impregnated into the space of the porous layer 14.

本発明の他の実施例として、次のものがある。Other embodiments of the invention include the following.

すなわち、上記実施例における製造工程の途中で得られ
る脱脂体に、これよりも焼結性の悪いスラリー状の混粉
品(酸化アルミニウム2重量%、酸化インドリウム2重
量%)をコーティングし、1700℃で4時間かけて焼
結して表面に厚さ約60μm1気孔率20%の多孔質層
を形成し、そして上記実施例と同様に金属を含浸させた
ものである。
That is, the degreased body obtained in the middle of the manufacturing process in the above example was coated with a slurry-like mixed powder product (2% by weight of aluminum oxide, 2% by weight of indium oxide) having worse sinterability than the degreased body, and A porous layer having a thickness of about 60 .mu.m and a porosity of 20% was formed on the surface by sintering at .degree. C. for 4 hours, and then impregnated with metal in the same manner as in the above embodiment.

このように多孔質層の厚さを種々変えてターボホイール
を複数製作し、多孔質層厚さと慣性モーメントおよび加
速性能の関係を実験により調べた。
In this way, multiple turbo wheels were manufactured with various porous layer thicknesses, and the relationship between the porous layer thickness, moment of inertia, and acceleration performance was investigated through experiments.

この結果を第3図および第4図に示す。これらの図から
明らかなように、多孔質層厚さが60μmを越えると、
慣性モーメントが大きくなり、これに伴って加速性能が
悪化していくのが判る。従って、全面に多孔質層を施す
場合には、層厚さは60μm以下とすることが望ましい
The results are shown in FIGS. 3 and 4. As is clear from these figures, when the porous layer thickness exceeds 60 μm,
It can be seen that the moment of inertia increases and the acceleration performance deteriorates accordingly. Therefore, when applying a porous layer to the entire surface, it is desirable that the layer thickness be 60 μm or less.

また゛、上記のように多孔質層厚さを変えたものを複数
製作し、耐久試験を行った。この試験は次のようにして
行った。すなわち、多孔質層厚さを変えて施したものお
よび多孔質層を設けなかったものを準備し、それぞれエ
ンジンに取付け、その排気ガスを利用して18万rpm
まで回転を上げて試験を行った。このとき、縦、横各2
龍、厚さ0、2 *璽の金属片を1分間に6枚の割合で
10分間供給しながら、18万rpI11で20分間実
施した。
In addition, as described above, a plurality of products with different porous layer thicknesses were manufactured and a durability test was conducted. This test was conducted as follows. In other words, one with a porous layer of different thickness and one without a porous layer were prepared, each was attached to an engine, and the exhaust gas was used to speed it up to 180,000 rpm.
I ran the test with the revs up to . At this time, 2 vertically and 2 horizontally
The test was carried out for 20 minutes at 180,000 rpI11 while supplying metal pieces of dragon, thickness 0, 2* for 10 minutes at a rate of 6 pieces per minute.

この結果を第5図に示す。第5図より明らかなように、
多孔質層を設けない場合には全数破損したものが、多孔
質層厚さを5μm以上とすれば破損率が大幅に低下し、
10μm以上の場合には全く破損がなくなっていること
が判る。
The results are shown in FIG. As is clear from Figure 5,
If no porous layer was provided, all of the products would be damaged, but if the porous layer thickness was 5 μm or more, the damage rate would be significantly reduced.
It can be seen that when the thickness is 10 μm or more, there is no damage at all.

以上のように各実施例はターボホイール表面に多孔質層
を形成するとともにこの層に金属を含浸させたものであ
るので、この金属の母材13に対する結合強度が大きく
、金属層が母材13から剥離するおそれがない。
As described above, in each of the embodiments, a porous layer is formed on the surface of the turbo wheel and this layer is impregnated with metal, so the bonding strength of this metal to the base material 13 is large, and the metal layer is formed on the base material 13. There is no risk of it peeling off.

なお、多孔質層の気孔率が50%よりも大きくなると、
多孔質層と母材13との結合力が弱くなるため好ましく
ない。
Note that when the porosity of the porous layer is greater than 50%,
This is not preferable because the bonding force between the porous layer and the base material 13 becomes weak.

また多孔質層の材質は母材と熱膨張率が近いものが好ま
しく、例えば酸化アルミニウム等の酸化物であってもよ
い。
Further, the material of the porous layer is preferably one having a coefficient of thermal expansion close to that of the base material, and may be, for example, an oxide such as aluminum oxide.

さらに多孔質層は、ターボホイール全体、翼の表面全体
、あるいは翼の一部のみに設けてもよい。
Furthermore, the porous layer may be provided over the entire turbowheel, the entire surface of the blade, or only a portion of the blade.

(発明の効果〕 以上のように本発明によれば、ターボホイールの翼表面
の靭性が向上して破損確率が小さくなり、ターボチャー
ジャの耐久性を向上させることができる。また本発明は
、金属被覆膜あるいは型外周部材等を設ける場合に比べ
て金属層が母材から剥離する可能性が低いので、金属被
覆膜等を設ける場合に比較し、金属の量が少なくてすみ
、ターボホイールをさらに軽量化することができ、した
がって、ターボチャージャの応答性を高めて車両の加速
性能を向上させることができる。
(Effects of the Invention) As described above, according to the present invention, the toughness of the blade surface of the turbo wheel is improved, the probability of breakage is reduced, and the durability of the turbocharger can be improved. The metal layer is less likely to peel off from the base material than when a coating film or mold outer peripheral member is provided, so the amount of metal required is smaller than when a metal coating film is provided. It is possible to further reduce the weight of the turbocharger, thereby increasing the responsiveness of the turbocharger and improving the acceleration performance of the vehicle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)はターボホイールの翼の表面付近を示す拡
大断面図、 第1図(b)は第1図(a)をさらに拡大して示す断面
図、 第2図はターボホイールを示す正面図、第3図は多孔質
層厚さと慣性モーメントの関係を示すグラフ、 第4図は多孔質層厚さとθ〜400 m加速の関係を示
すグラフ、 第5図は多孔質層厚さとセラミック製ターボホイールの
破損確率の関係を示すグラフである。 11・・・翼、      14・・・多孔質層、15
・・・金属。
Figure 1 (a) is an enlarged sectional view showing the vicinity of the surface of the blade of the turbo wheel, Figure 1 (b) is a further enlarged sectional view of Figure 1 (a), and Figure 2 shows the turbo wheel. Front view, Figure 3 is a graph showing the relationship between porous layer thickness and moment of inertia, Figure 4 is a graph showing the relationship between porous layer thickness and θ ~ 400 m acceleration, Figure 5 is a graph showing the relationship between porous layer thickness and ceramic It is a graph showing the relationship between the failure probability of manufactured turbo wheels. 11... Wing, 14... Porous layer, 15
···metal.

Claims (1)

【特許請求の範囲】 1、内燃機関の排気ガスによってタービンを駆動するこ
とによりコンプレッサを作動させ、内燃機関に空気を過
給するターボチャージャのターボホィールであって、翼
がセラミックを含み、この翼の外周部に多孔質層を形成
するとともにこの多孔質層に金属を含浸させて成ること
を特徴とするセラミック製ターボホィール。 2、上記多孔質層の気孔率が50%以下であることを特
徴とする特許請求の範囲第1項記載のセラミック製ター
ボホィール。
[Claims] 1. A turbo wheel for a turbocharger that supercharges air to the internal combustion engine by driving a turbine with the exhaust gas of the internal combustion engine, the turbo wheel comprising: A ceramic turbo wheel characterized by forming a porous layer on the outer periphery of the wheel and impregnating the porous layer with metal. 2. The ceramic turbo wheel according to claim 1, wherein the porous layer has a porosity of 50% or less.
JP17170686A 1986-07-23 1986-07-23 Ceramic turbo wheel Pending JPS6329001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17170686A JPS6329001A (en) 1986-07-23 1986-07-23 Ceramic turbo wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17170686A JPS6329001A (en) 1986-07-23 1986-07-23 Ceramic turbo wheel

Publications (1)

Publication Number Publication Date
JPS6329001A true JPS6329001A (en) 1988-02-06

Family

ID=15928167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17170686A Pending JPS6329001A (en) 1986-07-23 1986-07-23 Ceramic turbo wheel

Country Status (1)

Country Link
JP (1) JPS6329001A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306203A (en) * 1987-06-05 1988-12-14 Ngk Spark Plug Co Ltd Turbine rotor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306203A (en) * 1987-06-05 1988-12-14 Ngk Spark Plug Co Ltd Turbine rotor

Similar Documents

Publication Publication Date Title
EP3054096B1 (en) Ceramic matrix composite gas turbine engine blade and fabrication method
US10711638B2 (en) Turbine engine component with vibration damping
EP2009141B1 (en) Thermal barrier system and bonding method
JPH0891951A (en) Aluminum-silicon nitride conjugate and its production
US4866829A (en) Method of producing a ceramic rotor
JPS59155501A (en) Radial flow type ceramic turbine rotor and manufacture thereof
US10414694B2 (en) Toughened bond layer and method of production
JPH0446205B2 (en)
JPS59109304A (en) Manufacture of radial type ceramic turbine rotor
JPS6329001A (en) Ceramic turbo wheel
EP0107268A2 (en) Method of providing a reinforced shaped ceramic body
JPS62603A (en) Turbowheel made of ceramics
WO2022157331A1 (en) Transplanted thermal barrier coating system
JPS59180007A (en) Turbosupercharger and manufacture thereof
EP0112146A2 (en) Radial blade type ceramic rotor and method of producing the same
JPS63306203A (en) Turbine rotor
JPS6265990A (en) Production of ceramics turbo wheel
JPS6283378A (en) Manufacture of enhanced silicon nitride sintered body
JPH05200525A (en) Production of heat insulating member
JPS621502A (en) Manufacture fo turbo-wheel made of ceramic
JPS6111908B2 (en)
JPS6270601A (en) Turbo-wheel made of ceramic
JPS6261770A (en) Metallic member having heat insulating layer consisting of long fibers and its production
JPS63120602A (en) Manufacture of ceramic turbine rotor
JPH06257401A (en) Manufacture of ceramic disc wheel