JPS63120405A - Deflecting electromagnet - Google Patents

Deflecting electromagnet

Info

Publication number
JPS63120405A
JPS63120405A JP26544486A JP26544486A JPS63120405A JP S63120405 A JPS63120405 A JP S63120405A JP 26544486 A JP26544486 A JP 26544486A JP 26544486 A JP26544486 A JP 26544486A JP S63120405 A JPS63120405 A JP S63120405A
Authority
JP
Japan
Prior art keywords
section
iron core
conductor
magnetic
electromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26544486A
Other languages
Japanese (ja)
Inventor
Itsuko Hori
堀 伊都子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26544486A priority Critical patent/JPS63120405A/en
Publication of JPS63120405A publication Critical patent/JPS63120405A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)
  • Electromagnets (AREA)

Abstract

PURPOSE:To eliminate waste of magnetic flux, to control inductance and to obtain a charged particle beam deflecting electromagnet having improved rise characteristics, by providing, in an aperture of an iron core, two conductors having a U-shaped cross section such that they are opposed to each other. CONSTITUTION:A deflecting electromagnet of the present invention comprises an iron core 1 consisting of magnetic poles 2 and a yoke 3, a linear-section conductor 6 having a U-shaped cross section and opposed to said magnetic poles 2, and a winding conductor 7 and a leading conductor 8 connected to the ends of the linear-section conductor 6, respectively, outside of the iron core 1. For example, the cross section of the aperture 4 in the iron core 1 may be H-shaped and the width omegag of the aperture 4 is determined to be large enough to receive a vacuum duct inserted therein while the width omegap of the magnetic pole is determined such that magnetic field distribution as required can be ensured. Further, the cross section of the conductor 6 in the linear section of the coil 5 located within the iron core is U-shaped so that the two legs are opposed to each other and cover the inner surfaces of the yoke 3 except the magnetic poles 2. In this manner, a pulse electromagnet having a wide aperture and still having reduced inductance and improved magnetic field rising characteristics can be obtained.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、粒子加速器等に使用される、荷電粒子ビーム
偏向用の電磁石に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an electromagnet for deflecting a charged particle beam, which is used in a particle accelerator or the like.

(従来の技術) 粒子加速器の分野では、荷電粒子ビーム(以降ビームと
呼ぶ)の入射・出射または振り分けの際、特に応答の速
い偏向電磁石、つまりパルス電磁石、が用いられる。こ
れらのパルス電磁石は例えば、ビームがリングを一周す
る間に、素早く磁場を立ち上げるために使われ、その立
ち上がり(または立ち下がり)の時間でとして10−8
〜10−5秒程度が要求される。このようなパルス電磁
石をパルス発生電源に接続して励磁した時の電流の立ち
上がり時間τは、回路のインピーダンスを2、インダク
タンスをLとしたとき、 1〜T の関係によって与えられるので、τを小さくするために
は電磁石のインダクタンスLをできるだけ小さくしなけ
ればならない。
(Prior Art) In the field of particle accelerators, deflection electromagnets with particularly fast response, that is, pulsed electromagnets, are used for inputting, outputting, or distributing charged particle beams (hereinafter referred to as beams). These pulsed electromagnets are used, for example, to quickly build up a magnetic field while the beam goes around the ring, with a rise (or fall) time of about 10-8
~10-5 seconds is required. When such a pulse electromagnet is connected to a pulse generation power source and excited, the rise time τ of the current is given by the relationship 1 to T, where the circuit impedance is 2 and the inductance is L, so if τ is made small, In order to do this, the inductance L of the electromagnet must be made as small as possible.

第5図に従来のビーム偏向用パルス電磁石の1例を示す
。鉄心■は電磁■及びリターンヨーク部■より構成され
、この鉄心内の電極間(へ)に1ターンコイル■が組み
込まれる。このコイルは、鉄心内を通る直線部0.端部
引き回し部■、及び引き出し部■より構成される。
FIG. 5 shows an example of a conventional pulsed electromagnet for beam deflection. The iron core (2) is composed of an electromagnetic part (2) and a return yoke part (2), and a one-turn coil (2) is installed between the electrodes in this iron core. This coil has a straight section 0. Consists of an end routing portion (■) and a drawer portion (■).

第6図に第5図の断面図を示す。鉄心内部両側面に配置
されたコイル0を励磁することによって鉄心磁極間に)
に上・下方向の磁場を発生する。
FIG. 6 shows a sectional view of FIG. 5. (between the magnetic poles of the iron core by energizing coil 0 placed on both sides inside the iron core)
Generates upward and downward magnetic fields.

第7図に数値計算等による、断面の磁束線図を示す。FIG. 7 shows a cross-sectional magnetic flux line diagram based on numerical calculations.

(発明が解決しようとする問題点) インダクタンスLは電磁石を通る磁束の量Φによって決
まるので、この分布のよっに磁束密度Bが中心平面(1
1)で一定ならば、磁極断面積をSとして、 LocΦ=BS また磁極幅をω1、鉄心艮をQとすると、Φ=BS=B
QXω。
(Problem to be solved by the invention) Since the inductance L is determined by the amount of magnetic flux Φ passing through the electromagnet, depending on this distribution, the magnetic flux density B is
1) is constant, then the magnetic pole cross-sectional area is S, LocΦ=BS, and the magnetic pole width is ω1, and the iron core is Q, then Φ=BS=B
QXω.

である。このうち■3及びQは電磁石の性能仕様より決
まってくる値だが、磁極幅ω81、つまり鉄心開口部の
幅はむしろ、電磁石の開[1部に挿入される真空ダクト
(第6図の(12))の幅ωdによってその下限が制限
されるので磁場の性能上、実際必要な磁極幅よりもω1
は大きくなることが多い。
It is. Among these, ■3 and Q are values determined by the performance specifications of the electromagnet, but the magnetic pole width ω81, that is, the width of the iron core opening, is rather the value of the vacuum duct inserted into the electromagnet opening [(12 The lower limit is limited by the width ωd of )), so in terms of magnetic field performance, the width ω1
is often large.

そのためにインダクタンス■4も大きくなり、これは電
磁石の磁場立ち]−かり特性に対して非常に不都合であ
る。なぜなら、磁場Bを発生するために必要な電流を1
とすると充電電圧■は V=2XZI で与えられる。よって、前述の式より、τoCL/V である。つまり同一充電電圧Vに対して、インダクタン
スLが大きいと、磁場の立ち十がりが遅くなってしまい
、逆に同一の磁場立ち上がり特性を得るためにはより高
い充電電圧が必要である。充電電圧が高くなると、電磁
石本体のみならず、電源等をも含めたシステム全体の絶
縁が複雑になる。
As a result, the inductance 4 also increases, which is very inconvenient for the magnetic field characteristics of the electromagnet. This is because the current required to generate magnetic field B is 1
Then, the charging voltage ■ is given by V=2XZI. Therefore, from the above equation, τoCL/V. That is, for the same charging voltage V, if the inductance L is large, the rise of the magnetic field will be delayed, and conversely, a higher charging voltage is required to obtain the same magnetic field rise characteristics. As the charging voltage increases, the insulation of the entire system, including not only the electromagnet itself but also the power supply, becomes complicated.

そこで本発明の目的は、磁束の無駄を省き、インダクタ
ンスを抑えることによって立ち上がり特性の優れた荷電
粒子ビーム偏向用電磁石を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a charged particle beam deflection electromagnet that has excellent start-up characteristics by eliminating wasted magnetic flux and suppressing inductance.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明の偏向電磁石は、鉄心開口部において、実際、磁
場の性能上、必要な磁場幅ω1のみを残し、残りを覆う
形で向かい合う2つのコの字型断面の導体を配置する。
(Means for Solving the Problems) The bending electromagnet of the present invention has two U-shaped U-shapes facing each other in the core opening, leaving only the magnetic field width ω1 necessary for magnetic field performance and covering the rest. Place the cross-sectional conductor.

(作用) このように構成するとコイル導体に鎖交する磁束が低減
されインダクタンスが小さくなる。
(Function) With this configuration, the magnetic flux interlinking with the coil conductor is reduced and the inductance is reduced.

(実施例) 以下本発明の一実施例を図面によって説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

第]−図は本発明による電磁石の構成例を示すものであ
る。鉄心0)は第5図の従来例と同様、磁極■及びリタ
ーンヨーク部(5)より構成されるが、鉄心内の開口部
■の形状はI(型とし、そのyF4o部幅ωgは従来例
同様、中に真空ダクトを挿入し得るに充分な大きさであ
るが、磁極幅ω、は必要磁場分布を保証できる大きさで
あればよい。コイル■は鉄心内直線部の導体断面(0は
、第2図の断面にに示すように、a極部■を除いたヨー
ク部G3)の内面を覆うような、互いに向かい合うコの
字型形状になっている。
Figure 1]-- shows an example of the structure of an electromagnet according to the present invention. The iron core 0) is composed of a magnetic pole ■ and a return yoke part (5) as in the conventional example shown in FIG. Similarly, it is large enough to insert a vacuum duct inside, but the magnetic pole width ω may be large enough to guarantee the necessary magnetic field distribution.The coil , as shown in the cross section of FIG. 2, have a U-shaped configuration facing each other so as to cover the inner surface of the yoke portion G3) except for the a-pole portion (3).

第3図に、第2図に示した断面での磁束線図(1部4図
)を示す。磁極幅ω1を適当な値とし、しかもその両側
にコの字型導体0を配置することによって磁束を絞るこ
とができ、その結果磁場使用範囲り内での磁束密度はB
Ol一方その外ではB(x)<Boという分布が形成さ
れる。このように、不要な磁束を制限することによって
総磁束址Φを減らすことができろ。しかも、導体(0の
十・下部分■によって余分な磁束をなくすと同時に、側
面部分(io)によって磁束を整える作用が施されるの
で、磁極幅が従来のものよりも小さくなったにもががわ
らが、必要範囲内では方向のそろった。はぼ均一な磁束
密度分布が得られる。
FIG. 3 shows a magnetic flux line diagram (Fig. 1, Part 4) in the cross section shown in FIG. 2. By setting the magnetic pole width ω1 to an appropriate value and arranging U-shaped conductors 0 on both sides, the magnetic flux can be narrowed down, and as a result, the magnetic flux density within the magnetic field usage range is B.
On the other hand, outside of this, a distribution of B(x)<Bo is formed. In this way, by limiting unnecessary magnetic flux, the total magnetic flux Φ can be reduced. Moreover, the conductor (0's 10, lower part ■) eliminates excess magnetic flux, and the side part (io) acts to adjust the magnetic flux, so the magnetic pole width is smaller than the conventional one. The magnetic flux density is aligned within the required range, and a nearly uniform magnetic flux density distribution can be obtained.

従って、本実施例の電磁石においては、真空ダクトを挿
入するための開口部の大きさを変えることなく、また、
必要範囲内での磁場の分布特性を損わずにインダクタン
スが小さく、よって速い磁場の立ち上がり特性を得るこ
とができる。
Therefore, in the electromagnet of this example, without changing the size of the opening for inserting the vacuum duct,
The inductance is small without impairing the magnetic field distribution characteristics within the required range, and therefore fast magnetic field rise characteristics can be obtained.

(他の実施例) なお、上記実施例では鉄心開口(イ)の形状をH型とし
たが、二わは長方形(つまり、鉄心形状としてはWF−
ウィンドウ・フレーム型−になる。)としても同じ効果
が得られる。第4図に本実施例の断面図を示す。前記実
施例と同様、コの字型導体■の上・下部■によって実効
的な磁極幅ω2が定まり、側面部分(10)によって磁
束の方向がそろえられる。しかも、鉄心形状がH型に比
べて単純なので、製作性の点で優れている。
(Other Examples) In the above example, the shape of the core opening (A) is H-shaped, but the second side is rectangular (that is, the core shape is WF-
It becomes a window frame type. ), the same effect can be obtained. FIG. 4 shows a sectional view of this embodiment. As in the previous embodiment, the effective magnetic pole width ω2 is determined by the upper and lower portions of the U-shaped conductor (1), and the direction of the magnetic flux is aligned by the side portion (10). Moreover, since the iron core shape is simpler than the H-type, it is superior in terms of manufacturability.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明の構成によれば、コの字型導体を用
いるようにしたので、電磁石を通る磁束量を抑えること
になり、大きな開口幅をもった。
As described above, according to the configuration of the present invention, since the U-shaped conductor is used, the amount of magnetic flux passing through the electromagnet is suppressed, and a large opening width is obtained.

しかもインダクタンスは小さく磁場の立ち上がり特性の
優れた荷電粒子ビーム偏向用パルス電磁石が得られる。
Moreover, a pulsed electromagnet for deflecting a charged particle beam with small inductance and excellent magnetic field rise characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の偏向電磁石を示す斜視図、
第2図は第1図■−■線に沿う断面図、第3図は同実施
例の断面磁束分布図、第4図は他の実施例の構成図、第
5図、第6図、及び第7図はそれぞれ、従来の偏向電磁
石の斜視図、断面図、及び磁束線図である。 1・・・鉄心        2・・・磁極3・・・リ
ターンヨーク   4・・・開[1部5・・・コイル 
      6・・・コイル直線部9・・・コイル直線
部上・下部 10・・・コイル直線部側面部 11・・・中心平面第
2図
FIG. 1 is a perspective view showing a bending electromagnet according to an embodiment of the present invention;
Figure 2 is a sectional view taken along the line ■-■ in Figure 1, Figure 3 is a cross-sectional magnetic flux distribution diagram of the same embodiment, Figure 4 is a configuration diagram of another embodiment, Figures 5, 6, and FIG. 7 is a perspective view, a sectional view, and a magnetic flux line diagram of a conventional bending electromagnet, respectively. 1... Iron core 2... Magnetic pole 3... Return yoke 4... Open [1 part 5... Coil
6...Coil straight part 9...Coil straight part upper/lower part 10...Coil straight part side part 11...Central plane 2nd figure

Claims (1)

【特許請求の範囲】[Claims] 磁極部とヨーク部とからなる鉄心と、断面コの字状をな
し前記磁極部に相対向して配設された直線部導体と、鉄
心の外部においてこの直線部導体の端に接続された引き
回し導体および引き出し導体とを具えたことを特徴とす
る偏向電磁石。
An iron core consisting of a magnetic pole part and a yoke part, a straight part conductor having a U-shaped cross section and arranged opposite to the magnetic pole part, and a routing connected to the end of this straight part conductor outside the iron core. A bending electromagnet characterized by comprising a conductor and a lead-out conductor.
JP26544486A 1986-11-10 1986-11-10 Deflecting electromagnet Pending JPS63120405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26544486A JPS63120405A (en) 1986-11-10 1986-11-10 Deflecting electromagnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26544486A JPS63120405A (en) 1986-11-10 1986-11-10 Deflecting electromagnet

Publications (1)

Publication Number Publication Date
JPS63120405A true JPS63120405A (en) 1988-05-24

Family

ID=17417235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26544486A Pending JPS63120405A (en) 1986-11-10 1986-11-10 Deflecting electromagnet

Country Status (1)

Country Link
JP (1) JPS63120405A (en)

Similar Documents

Publication Publication Date Title
JP2908220B2 (en) Normal conduction type bending electromagnet
US4047138A (en) Power inductor and transformer with low acoustic noise air gap
EP1239709A2 (en) Septum electromagnet for deflecting and splitting a beam, electromagnet for deflecting and splitting a beam, and method for deflecting a beam
US4153889A (en) Method and device for generating a magnetic field of a potential with electric current components distributed according to a derivative of the potential
US5099175A (en) Tunability enhanced electromagnetic wiggler
JPS63120405A (en) Deflecting electromagnet
US4739294A (en) Device comprising a core consisting of parts of amorphous ferromagnetic metal and parts of non-amorphous ferromagnetic material
JPH08107021A (en) Transformer
USRE30466E (en) Method and device for generating a magnetic field of a potential with electric current components distributed according to a derivative of the potential
JPH01115040A (en) Focusing deflection device of charged particle beam
JPH04345738A (en) Deflecting electromagnet
JP2521549Y2 (en) Magnetic field generator
JP2980226B2 (en) Electromagnet for charged particle storage ring
JP3065988B2 (en) Normal conduction type bending electromagnet
JPH0745920Y2 (en) Septum electromagnet
WO2019137183A1 (en) Deflection scanning device for multi-phase winding and deflection scanning system
JP3063625B2 (en) choke coil
JPH034500A (en) Wiggler for electron beam
JPS6223061Y2 (en)
JPH0738906A (en) Saturable reactor
JPH0645151A (en) U-shaped ferrite core
JPH02270308A (en) Superconducting deflection electromagnet and excitation method thereof
JPH0720832Y2 (en) Focus magnet
JPH0613226A (en) Electromagnet device
JPH0410404A (en) Lead wire leading-out structure of sheet winding transformer