JPH034500A - Wiggler for electron beam - Google Patents

Wiggler for electron beam

Info

Publication number
JPH034500A
JPH034500A JP13854189A JP13854189A JPH034500A JP H034500 A JPH034500 A JP H034500A JP 13854189 A JP13854189 A JP 13854189A JP 13854189 A JP13854189 A JP 13854189A JP H034500 A JPH034500 A JP H034500A
Authority
JP
Japan
Prior art keywords
electron beam
magnetic pole
magnetic
pole
poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13854189A
Other languages
Japanese (ja)
Inventor
Yoshihiro Hosoda
細田 義門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP13854189A priority Critical patent/JPH034500A/en
Publication of JPH034500A publication Critical patent/JPH034500A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To obtain a periodic magnetic field without dispersion, between the magnetic pole of a magnetomotive force element and that of a magnetic pole arrangement element by alternately disposing protruding magnetic poles which are magnetized to south and north poles by the magnetic poles of the magnetomotive force element. CONSTITUTION:A wiggler for electron beams consists of a magnetomotive force element 1 and a magnetic pole arrangement element 4, and the magnetomotive force element 1 is an electromagnet and consists of an iron core 2 of predetermined length extending in the direction Q of an electron beam orbit, and a coil 3 wound around the channel of the iron core 2, and both protruding portions of the iron core 2 are magnetized as magnetic poles 2b, 2c into respective north and south poles. The magnetic pole arrangement element 4 is a magnetic pole arrangement portion, and plural protruding magnetic poles 6, 7 are formed spaced apart from each other by a space L so that they are opposite to the magnetic poles 2b, 2c of the electromagnet 1, and also one of the magnetic poles is alternately provided by L/2 pinch from the other magnetic pole. Then the electromagnet 1 is uniformly magnetized, and this magnetization also causes uniform magnetization of the magnetic pole arrangement portion 4. Thereby the generating magnetic field is periodically varied without dispersion.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、シンクロトロンやライナック装置内の電子
ビームを蛇行させて放射光を発生させる電子ビーム用ウ
ィグラに関する。
The present invention relates to an electron beam wiggler that generates synchrotron radiation by meandering an electron beam in a synchrotron or linac device.

【従来の技術】[Conventional technology]

シンクロトロン等のダクト内を周回する電子ビームに対
し偏向電磁石の発生磁場でもって偏向させたとき、ある
いはウィグラで発生させた周期的に変化する磁場により
、電子ビームを蛇行させたとき、電子ビームよりビーム
軌道接線方向に、赤外線からX線の領域にわたる放射光
が放出される。 この放射光は、極めて強力でかつ指向性が良〈産業用途
での利用価値が高いことからシンクロトロン放射光発生
装置として用いられる。 前記ウィグラとしては、例えば、 Proceedigs or 7th Interna
tional Conrerenceon Free 
Electron La5ers (Sep、8−13
1985)に述べられており、第5図及び第6図にその
該略構成を示す。 第5図において、電子ビーム軌道Qを挟むように軌道Q
の上下にそれぞれ、S極の磁石51とN極の磁石52と
を交互にかつ磁石間にサマリウム・コバルト系の強磁性
体53を介在させて配列し、上下でそれぞれ対向する磁
石を互いに反対の磁極となるように構成することにより
、電子ビーム軌道Qに対して周期磁場を発生させ、この
周期磁場でもって電子ビームを蛇行させている。 第6図は、磁石の代わりに電磁石を用いたものであり、
首記強磁性体53を挟んでフェロマグネチックによる磁
極61を配列し、そしてこれらの磁極61に対してコイ
ル62を装荷し、隣接する磁極の交互の極性となり、か
つ、上下で相対向する磁極で反対の極性となるよう、前
記コイル62に通電する。
When an electron beam orbiting in a duct such as a synchrotron is deflected by the magnetic field generated by a deflecting electromagnet, or when the electron beam is caused to meander by a periodically changing magnetic field generated by a wiggler, In a direction tangential to the beam trajectory, radiation is emitted ranging from the infrared to the X-ray range. This synchrotron radiation is extremely powerful and has good directivity (and has high utility value in industrial applications), so it is used as a synchrotron radiation generator. As the wiggler, for example, Proceedigs or 7th International
tional Conrerenceon Free
Electron La5ers (Sep, 8-13
1985), and its schematic structure is shown in FIGS. 5 and 6. In Fig. 5, the orbit Q is placed on both sides of the electron beam orbit Q.
S-pole magnets 51 and N-pole magnets 52 are arranged alternately on the upper and lower sides of the By configuring it to be a magnetic pole, a periodic magnetic field is generated with respect to the electron beam trajectory Q, and the electron beam is meandered by this periodic magnetic field. Figure 6 shows an example in which an electromagnet is used instead of a magnet.
Ferromagnetic magnetic poles 61 are arranged with the ferromagnetic material 53 in between, and coils 62 are loaded onto these magnetic poles 61, so that the adjacent magnetic poles have alternate polarity and the upper and lower opposite magnetic poles. The coil 62 is energized so that it has the opposite polarity.

【発明が解決しようとする課題】[Problem to be solved by the invention]

ところで、電子ビーム用ウィグラにおいては、発生させ
る周期磁場における磁場強度のバラツキ(第7図に示す
ΔB)を0.3%以下にする必要がある。ところが上述
した従来のウィグラでは、各磁極片が独立しているため
、磁石あるいは電磁石の磁化特性のバラツキ等が原因で
前述の磁場特性を得るのが困難であった。 この発明は、上述した問題点をなくすためになされたも
のであり、バラツキを低減した周期磁場を発生でき電子
ビーム用ウィグラを提供することを目的とする。
Incidentally, in the wiggler for electron beams, it is necessary to reduce the variation in magnetic field strength (ΔB shown in FIG. 7) in the periodic magnetic field to be generated to 0.3% or less. However, in the above-mentioned conventional wiggler, each magnetic pole piece is independent, so it is difficult to obtain the above-mentioned magnetic field characteristics due to variations in the magnetization characteristics of the magnets or electromagnets. The present invention has been made to eliminate the above-mentioned problems, and an object of the present invention is to provide a wiggler for electron beams that can generate a periodic magnetic field with reduced variation.

【課題を解決するための手段】[Means to solve the problem]

この発明の電子ビーム用ウィグラは、電子ビーム軌道を
挟むようにして位置する起磁力要素及び磁極配置要素か
らなる電子ビーム用ウィグラであって、 起磁力要素は、電子ビームの軌道方向の左右で該電子ビ
ーム軌道方向に所定長延在する、N極及びS極の磁極を
有し、 一方、磁極配置要素においては、前記N極の磁極により
S極に磁化される突起状磁極と、前記S極の磁極により
N極に磁化される突起状磁極とを所定のピッチでもって
交互に設けたことを特徴とする。
The wiggler for an electron beam of the present invention is an electron beam wiggler comprising a magnetomotive force element and a magnetic pole arrangement element positioned to sandwich the electron beam trajectory, and the magnetomotive force element is arranged on the left and right sides of the electron beam trajectory. It has N-pole and S-pole magnetic poles extending a predetermined length in the orbital direction, and on the other hand, the magnetic pole arrangement element includes a protruding magnetic pole that is magnetized to the S-pole by the N-pole, and a protruding magnetic pole that is magnetized to the S-pole by the N-pole; It is characterized in that protruding magnetic poles magnetized to N poles are alternately provided at a predetermined pitch.

【作用】[Effect]

上記構成によれば、起磁力要素における磁極によってS
極及びN極に磁化される突起状磁極を交互に配したこと
により、起磁力要素及び磁極配置要素の対向する両磁極
によって、交互に磁化方向が反転する磁場が形成される
が、起磁力要素における磁極は一様に磁化され、この磁
極によって磁化される、磁極配置要素側の磁極もそれ故
、−様に磁化されるので、発生磁場はバラツキなく周期
的に変化する。
According to the above configuration, the magnetic pole in the magnetomotive force element causes S
By alternately arranging protruding magnetic poles that are magnetized as poles and north poles, a magnetic field in which the direction of magnetization is alternately reversed is formed by the opposing magnetic poles of the magnetomotive force element and the magnetic pole arrangement element, but the magnetomotive force element The magnetic poles on the magnetic poles are uniformly magnetized, and the magnetic poles on the magnetic pole arrangement element side that are magnetized by these magnetic poles are therefore also magnetized in a −-like manner, so that the generated magnetic field changes periodically without variation.

【実施例】【Example】

以下、この発明の電子ビーム用ウィグラの一実施例を図
面に従い説明する。 第1図は分解斜視図を示し、第2図及び第3図に、正面
図及び側面図を示している。 lは、起磁力要素としての電磁石であり、断面がコの字
形状をなし、電子ビーム軌道Q方向に延在する所定長の
鉄心2及び、この鉄心2の溝2aに巻回されたコイル3
(第2図及び第3図図示)とからなり、このコイル3に
通電することにより、鉄心2の真実山部は、磁極2a、
2bとしてそれぞれN極及びS極に磁化される。 4は、磁極配置要素としての磁極配置部であり、電磁石
lと同じ幅Wを有する平板状の鉄心5上に、前記電磁石
1の各磁極2b、2cと対向するように、それぞれ間隔
りを隔てて複数の突起状磁極6.7が形成されるととも
に、第2図に示しtこように、一方の磁極は、他方の磁
極よりそれぞれL/2づつずれて設けられており、側方
から見た場合、突起状磁極6と7とはし/2のピッチで
並んでいる。 このピッチは、電子ビームが蛇行する際のピッチと一致
するように、前記各突起状磁極6.7が配される。これ
らの電磁石lと磁極配置部4とは、第3図に示すように
、電子ビーム軌道Qを上下から挟むようにして対向して
おり、電磁石lの磁極2b、2cの端面と磁極配置部4
の突起状磁極6,7の端面とは、所定の間隔Gで隔てら
れる。尚、第2図中の8.9は、電磁石!及び磁極配置
部4で構成されるウィグラ10に対する偏向電磁石であ
第4図は、上記ウィグラ10の平面図を示しており、こ
の第4図を用いて上記構成のウィグラIOの動作を説明
する。 電磁石1のコイル2に直流を流し、磁極2 b、 2 
cをそれぞれN極とS極とに磁化すると、これらの磁極
2b、2cに対向する突起状磁極6と7とは、それぞれ
S極とN極とに一定の強度に磁化され、第2図に示した
ように、電子ビーム軌道QにおいてN極からS極に向か
う磁力線(矢印で示す)が交互に生じるので、バラツキ
の少ない周期磁場が得られる。 この状態で、真空ダクト(不図示)内を中心軌道に沿っ
て進行する電子ビームは、偏向電磁石8によって偏向さ
れ、ウィグラIOの人口側の一番目のS極の突起状磁極
6に向かう。この突起状磁極6においては、この突起状
磁極6に生じている上下方向の磁場によって電子ビーム
の軌道は、進行方向よりほぼ90°左方向(図中では斜
め上方向)に偏向されるが、電子ビームの蛇行ピッチと
一致して他方の突起状磁極7が設けられているので、電
子ビームはN極の突起状磁極7に向かう。この突起状磁
極7では前記突起状磁極6と逆向きの磁場が生じ−てい
るので、電子ビーム軌道Qは、はぼ90°右方向(図中
斜め下方向)に向かう。このように、突起状磁極6.7
での一定強度の磁場によって電子ビームは、偏向され、
この偏向時に放射光が放射される。このようにウィグラ
IO内を蛇行した電子ビームは、偏向電磁石9によって
真空ダクトの中心軌道に偏向される。
An embodiment of the electron beam wiggler of the present invention will be described below with reference to the drawings. FIG. 1 shows an exploded perspective view, and FIGS. 2 and 3 show a front view and a side view. 1 is an electromagnet as a magnetomotive force element, which has a U-shaped cross section and has an iron core 2 of a predetermined length extending in the direction of the electron beam trajectory Q, and a coil 3 wound around a groove 2a of this iron core 2.
(shown in FIGS. 2 and 3), and by energizing this coil 3, the true peak portion of the iron core 2 becomes the magnetic pole 2a,
2b, which are respectively magnetized to N and S poles. Reference numeral 4 denotes a magnetic pole arrangement part as a magnetic pole arrangement element, which is arranged at intervals on a flat iron core 5 having the same width W as the electromagnet 1 so as to face each of the magnetic poles 2b and 2c of the electromagnet 1. A plurality of protruding magnetic poles 6.7 are formed, and as shown in FIG. In this case, the protruding magnetic poles 6 and 7 are arranged at a pitch of 1/2. The protruding magnetic poles 6.7 are arranged so that this pitch matches the pitch at which the electron beam meanders. As shown in FIG. 3, these electromagnets 1 and the magnetic pole arrangement section 4 are opposed to each other so as to sandwich the electron beam trajectory Q from above and below.
are separated from the end surfaces of the protruding magnetic poles 6 and 7 by a predetermined distance G. In addition, 8.9 in Figure 2 is an electromagnet! FIG. 4 shows a plan view of the wiggler 10, and the operation of the wiggler IO having the above structure will be explained using FIG. 4. Direct current is applied to the coil 2 of the electromagnet 1, and the magnetic poles 2 b, 2
When c is magnetized to N pole and S pole, respectively, the protruding magnetic poles 6 and 7 facing these magnetic poles 2b and 2c are magnetized to a certain strength as S pole and N pole, respectively, as shown in FIG. As shown, lines of magnetic force (indicated by arrows) from the north pole to the south pole occur alternately in the electron beam trajectory Q, so that a periodic magnetic field with little variation can be obtained. In this state, the electron beam traveling along the central orbit within the vacuum duct (not shown) is deflected by the deflection electromagnet 8 and heads toward the protruding magnetic pole 6 of the first S pole on the population side of the wiggler IO. In this protruding magnetic pole 6, the trajectory of the electron beam is deflected approximately 90° to the left of the traveling direction (diagonally upward in the figure) due to the vertical magnetic field generated in the protruding magnetic pole 6. Since the other protruding magnetic pole 7 is provided to match the meandering pitch of the electron beam, the electron beam heads toward the N-pole protruding magnetic pole 7. Since a magnetic field is generated in this protruding magnetic pole 7 in the opposite direction to that of the protruding magnetic pole 6, the electron beam trajectory Q is directed approximately 90 degrees to the right (diagonally downward in the figure). In this way, the protruding magnetic pole 6.7
The electron beam is deflected by a magnetic field of constant strength at
During this deflection, synchrotron radiation is emitted. The electron beam that meandered inside the wiggler IO in this way is deflected to the center orbit of the vacuum duct by the deflection electromagnet 9.

【発明の効果】【Effect of the invention】

以上説明したように、この発明は、起磁力要素における
磁極によってS極及びN極に磁化される突起状磁極を交
互に配したことにより、起磁力要。 素の磁極と磁極配置要素の磁極との間にバラツキのない
周期磁場が得られる。
As explained above, the present invention reduces the magnetomotive force by alternately arranging protruding magnetic poles that are magnetized to S and N poles by the magnetic poles in the magnetomotive force element. A periodic magnetic field without variation can be obtained between the bare magnetic pole and the magnetic pole of the magnetic pole arrangement element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の電子ビーム用ウィグラの一実施例を
示す斜視図、第2図及び第3図は、第1図図示の電子ビ
ーム用ウィグラの正面図及び側面図、第4図は、電子ビ
ームの進行経路を示す平面図、第5図及び第6図は、従
来の電子ビーム用ウィグラの構成を示す断面図、第7図
は、第5図及び第6図の電子ビーム用ウィグラで得られ
る周期磁場を示す図である。 ■・・・電磁石、2・・・鉄心、 2a、2b・・磁極、3・・・コイル、4・・磁極配置
部、5・鉄心、 6.7・・・突起途上磁極。 111図 1【虜h (
FIG. 1 is a perspective view showing an embodiment of the electron beam wiggler of the present invention, FIGS. 2 and 3 are front and side views of the electron beam wiggler shown in FIG. 1, and FIG. 5 and 6 are cross-sectional views showing the configuration of a conventional electron beam wiggler, and FIG. 7 is a plan view showing the electron beam traveling path, and FIG. 7 is a cross-sectional view showing the configuration of a conventional electron beam wiggler. It is a figure showing the periodic magnetic field obtained. ■...Electromagnet, 2...Iron core, 2a, 2b...Magnetic poles, 3...Coil, 4...Magnetic pole placement part, 5...Iron core, 6.7...Protruding magnetic pole. 111Figure 1 [Captive h (

Claims (3)

【特許請求の範囲】[Claims] (1)電子ビーム軌道を挟むようにして位置する起磁力
要素及び磁極配置要素からなる電子ビーム用ウィグラで
あって、 起磁力要素は、電子ビームの軌道方向の左右で該電子ビ
ーム軌道方向に所定長延在する、N極及びS極の磁極を
有し、 一方、磁極配置要素においては、前記N極の磁極により
S極に磁化される突起状磁極と、前記S極の磁極により
N極に磁化される突起状磁極とを所定のピッチでもって
交互に設けたことを特徴とする電子ビーム用ウィグラ。
(1) An electron beam wiggler consisting of a magnetomotive force element and a magnetic pole arrangement element positioned so as to sandwich the electron beam trajectory, the magnetomotive force element extending a predetermined length in the electron beam trajectory direction on the left and right sides of the electron beam trajectory direction. The magnetic pole arrangement element has a protruding magnetic pole that is magnetized to the S pole by the N pole, and a protruding magnetic pole that is magnetized to the N pole by the S pole. A wiggler for an electron beam characterized in that protruding magnetic poles are alternately provided at a predetermined pitch.
(2)N極側突起状磁極とS極側突起状磁極とのピッチ
を、電子ビームの蛇行ピッチと一致させた請求項1記載
の電子ビーム用ウィグラ。
(2) The wiggler for an electron beam according to claim 1, wherein the pitch of the N-pole side protruding magnetic pole and the S-pole side protruding magnetic pole is made to match the meandering pitch of the electron beam.
(3)起磁力要素は、鉄心及び該鉄心に巻回したコイル
よりなる請求項1あるいは2に記載の電子ビーム用ウィ
グラ。
(3) The wiggler for an electron beam according to claim 1 or 2, wherein the magnetomotive force element comprises an iron core and a coil wound around the iron core.
JP13854189A 1989-05-31 1989-05-31 Wiggler for electron beam Pending JPH034500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13854189A JPH034500A (en) 1989-05-31 1989-05-31 Wiggler for electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13854189A JPH034500A (en) 1989-05-31 1989-05-31 Wiggler for electron beam

Publications (1)

Publication Number Publication Date
JPH034500A true JPH034500A (en) 1991-01-10

Family

ID=15224566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13854189A Pending JPH034500A (en) 1989-05-31 1989-05-31 Wiggler for electron beam

Country Status (1)

Country Link
JP (1) JPH034500A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4956789A (en) * 1987-05-13 1990-09-11 Hitachi, Ltd. Method and apparatus for driving a servo system while suppressing residual vibration generated during position control
JPH0547494A (en) * 1991-08-12 1993-02-26 Sumitomo Electric Ind Ltd Multipolar wiggler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4956789A (en) * 1987-05-13 1990-09-11 Hitachi, Ltd. Method and apparatus for driving a servo system while suppressing residual vibration generated during position control
JPH0547494A (en) * 1991-08-12 1993-02-26 Sumitomo Electric Ind Ltd Multipolar wiggler

Similar Documents

Publication Publication Date Title
JP2908220B2 (en) Normal conduction type bending electromagnet
JP2978873B2 (en) Electromagnet and accelerator, and accelerator system
EP0306966B1 (en) Bending magnet
JP3249930B2 (en) Insert light source
JPS63226899A (en) Superconductive wigller
US4761584A (en) Strong permanent magnet-assisted electromagnetic undulator
JPH034500A (en) Wiggler for electron beam
GB1461521A (en) Focusing magnet
JP3102784B2 (en) Magnetic field variable magnet
JPH0992498A (en) Magnetic circuit for inserted light source device
JP2700687B2 (en) Wiggler equipment
JP3204920B2 (en) Permanent magnet type bending magnet device and electron storage ring
JPS6288246A (en) Electromagnet for deflection of charged particle beam
JP3090654B2 (en) Electromagnet and accelerator, and accelerator system
JP3090655B2 (en) Accelerator system
JP2993185B2 (en) Charged particle beam transport device
JPH0753280Y2 (en) Bending electromagnet for SOR device
JP3065988B2 (en) Normal conduction type bending electromagnet
JPH04269700A (en) Magnetic field intensity controlling method for magnetism circuit for insertion light source
JPH06275428A (en) Undulator
JPH08124700A (en) Circularly polarized undulator
JPH03205600A (en) Undulator for electron beam
KR0147040B1 (en) 6pole electromagnet of accelerator
JPH02270308A (en) Superconducting deflection electromagnet and excitation method thereof
JPH0660998A (en) Convergent type multipolar undulator