JPS63118501A - Exhaust heat recovery device for gas turbine - Google Patents

Exhaust heat recovery device for gas turbine

Info

Publication number
JPS63118501A
JPS63118501A JP26391886A JP26391886A JPS63118501A JP S63118501 A JPS63118501 A JP S63118501A JP 26391886 A JP26391886 A JP 26391886A JP 26391886 A JP26391886 A JP 26391886A JP S63118501 A JPS63118501 A JP S63118501A
Authority
JP
Japan
Prior art keywords
heat recovery
exhaust heat
gas turbine
recovery equipment
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26391886A
Other languages
Japanese (ja)
Inventor
梧郎 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP26391886A priority Critical patent/JPS63118501A/en
Publication of JPS63118501A publication Critical patent/JPS63118501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はガスタービンの排熱回収設備に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to exhaust heat recovery equipment for gas turbines.

〔従来技術〕[Prior art]

従来のガスタービン排熱回収設備は第2図のように構成
されている。即ち、ガスタービン1は空気取入ダクト1
1を経て空気を取り入れ、所定の発電を行いながら排ガ
スを排気ダクト7を通して排出する。この排ガスは定常
運転状態では排ガス取入れダクト8を経て排熱回収設備
2へ導かれ、ここで熱回収が行なわれて最終排ガスは排
ガスダクト10及び煙突3を経て大気中に放出される。
A conventional gas turbine exhaust heat recovery facility is configured as shown in FIG. That is, the gas turbine 1 has an air intake duct 1
Air is taken in through duct 1, and exhaust gas is discharged through exhaust duct 7 while generating a predetermined amount of power. During steady operation, this exhaust gas is led to the exhaust heat recovery equipment 2 via the exhaust gas intake duct 8, where heat is recovered, and the final exhaust gas is released into the atmosphere via the exhaust gas duct 10 and the chimney 3.

ここで、排熱口収設@2がナフサ分解炉のごとく、排ガ
ス取入れ量に制約がある場合、ガスタービン1の排ガス
量とナフサ分解炉の必要とするガス量が一致する必要が
ある。
Here, if the exhaust heat port installation @ 2 is a naphtha cracking furnace and there is a restriction on the amount of exhaust gas taken in, the amount of exhaust gas of the gas turbine 1 and the amount of gas required by the naphtha cracking furnace need to match.

即ち、第3図において、ガスタービン発電効率の最大点
Cに相当する排ガス量aでナフサ分解炉が運転され得れ
ばよいが、応々にしてナフサ分解炉のガス要求量とガス
タービンの排ガス量は一致しない。
That is, in FIG. 3, it is sufficient that the naphtha cracking furnace can be operated with the exhaust gas amount a corresponding to the maximum point C of the gas turbine power generation efficiency, but the required gas amount of the naphtha cracking furnace and the exhaust gas of the gas turbine may be adjusted accordingly. The quantities do not match.

一方、ガスタービンは限定機種、多量生産によって、そ
の経済的生産を達成できる製品であるからナフサ分解炉
の要求する排ガス量に応じて最大効率を発生し得るガス
タービンを、その都度、設計製作していたのでは、その
経済性におとる所がある。
On the other hand, gas turbines are products that can be economically produced through limited edition models and mass production, so we design and manufacture gas turbines that can generate maximum efficiency according to the amount of exhaust gas required by the naphtha cracking furnace. However, there is something to be said for its economic efficiency.

従って、一般的には、ナフサ分解炉の要求排ガスiib
とガスタービン最高効率排出排ガス量aが一致しない場
合は、第3図のごとく、ガスタービン排ガス量がbにな
るようにダンパー6を絞り込み、ナフサ分解炉の排ガス
要求量に合わせる等の工夫をしている。しかし、この場
合、ガスタービン1は部分負荷運転となるため、最高効
率Cより低い部分負荷効率dで運転せざるを得ないとい
う欠点があった。
Therefore, in general, the required exhaust gas iib of the naphtha cracking furnace is
If the gas turbine maximum efficiency exhaust gas amount a does not match, as shown in Figure 3, take measures such as narrowing down the damper 6 so that the gas turbine exhaust gas amount becomes b to match the exhaust gas amount required by the naphtha cracking furnace. ing. However, in this case, the gas turbine 1 operates at a partial load, so there is a drawback that the gas turbine 1 must be operated at a partial load efficiency d lower than the maximum efficiency C.

一方、排熱回収設備2がナフサ分解炉の場合、第4図に
示す如く、ガスタービン排ガスをd〜fの時間をかけて
ナフサ分解炉への燃料供給量を調節しながら、徐々に切
りかえる必要がある。
On the other hand, when the exhaust heat recovery equipment 2 is a naphtha cracking furnace, as shown in FIG. There is.

このような場合には、第2図、に示すバイパス煙突4が
必要とされていた。しかも、このバイパス煙突4はガス
タービン排ガスが通常350℃〜600℃と高温のため
、これに耐えうる材質の選定、構造が必要とされ、従来
の低温排ガス用の煙突3 (耐熱温度200℃)と共用
することが困難なため、独立にバイパス煙突を設立せざ
るを得す、設備者にとって大きな経済負担となっていた
In such a case, a bypass chimney 4 as shown in FIG. 2 is required. Moreover, since the gas turbine exhaust gas in this bypass chimney 4 is usually at a high temperature of 350°C to 600°C, it is necessary to select a material and structure that can withstand this temperature. Because it is difficult to share the bypass chimney with the existing bypass chimney, the installer has no choice but to establish an independent bypass chimney, which places a heavy financial burden on the installer.

〔発明の目的〕[Purpose of the invention]

本発明は、上記欠点を解消すべく成されたものであり、
その目的はガスタービンの通常運転時、発電効率を最高
効率に維持して運転することを可能とすること、ガスタ
ービンの起動時、あるいは排熱回収設備への漸次排ガス
供給時に高温排ガス耐熱バイパス煙突を不要とすること
にある。
The present invention has been made to solve the above drawbacks,
The purpose of this is to enable the gas turbine to operate with maximum power generation efficiency during normal operation, and to enable high-temperature exhaust gas heat-resistant bypass chimneys to be used when starting up the gas turbine, or when gradually supplying exhaust gas to the exhaust heat recovery equipment. The goal is to make it unnecessary.

〔発明の構成〕[Structure of the invention]

上記目的を達成し得る本発明のガスタービン排熱回収設
備は、主排熱回収設備に、咳主排熱回収設備とガスの流
れが並行である副排熱回収設備及びバイパスラインを並
設し、かつその各々に供給されるガス流量を制御する制
御ダンパーを前記主排熱回収設備の制御器からの指令に
よって調節することを特徴とする。
The gas turbine exhaust heat recovery equipment of the present invention that can achieve the above object includes a main exhaust heat recovery equipment, a auxiliary exhaust heat recovery equipment whose gas flow is parallel to the cough main exhaust heat recovery equipment, and a bypass line. , and a control damper that controls the gas flow rate supplied to each of them is adjusted by a command from a controller of the main exhaust heat recovery equipment.

上記主排熱回収設備は、例えばナフサ分解炉の如く、排
ガス取入れ量に制約がある設備等が該当する。また、副
排熱回収設備は、例えば蒸気ボイラー等が該当する。
The above-mentioned main exhaust heat recovery equipment corresponds to equipment such as a naphtha cracking furnace, which has restrictions on the amount of exhaust gas intake. Further, the auxiliary exhaust heat recovery equipment includes, for example, a steam boiler.

〔実施例〕〔Example〕

以下、図面により本発明の実施例について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明にかかるガスタービンの排熱回収設備
の概略図であり、ガスタービン1は空気取入ダクト11
を経て新鮮な空気を取入れ所定の発電をしたあと、排ガ
スを排気ダクト7を通じて排出する。この排気ダクト7
に接続する排ガス取入ダクト8を通じて排ガスが主排熱
回収設備2に取りこまれるが、通常運転時は、前記主排
熱回収設備2の制御器22が指令する排ガス量を人口ダ
ンパー制御器21が受け、主排熱回収設備入ロダンパー
6の開度を調節して必要な排ガスが主排熱回収設備2に
取りこまれる。
FIG. 1 is a schematic diagram of the exhaust heat recovery equipment for a gas turbine according to the present invention, in which the gas turbine 1 has an air intake duct 11
After the fresh air is taken in through the duct 7 and a predetermined amount of power is generated, the exhaust gas is discharged through the exhaust duct 7. This exhaust duct 7
Exhaust gas is taken into the main exhaust heat recovery equipment 2 through an exhaust gas intake duct 8 connected to the The necessary exhaust gas is taken into the main exhaust heat recovery equipment 2 by adjusting the opening degree of the main exhaust heat recovery equipment introduction rod damper 6.

一方、余剰の排ガスは主排熱回収設備2と並列に設置さ
れた副排熱回収設備20に排気ダクト7に接続する副排
熱回収設備入ロダクト15を通じて導かれる。この入口
ダクト15の途中には副排熱回収設備人ロダンパー13
が設けられ、その開閉は前記入口ダンパー制御器21に
よって行われる。このように、余剰の排ガスを副排熱回
収設備20に導入することによって主排熱回収設備の必
要排ガスの変化にもかかわらずガスタービンlは、常に
、第3図における最高効率に適した排ガスaを排出しな
がら運転可能となる。
On the other hand, the excess exhaust gas is led to the auxiliary exhaust heat recovery equipment 20 installed in parallel with the main exhaust heat recovery equipment 2 through the auxiliary exhaust heat recovery equipment introduction duct 15 connected to the exhaust duct 7. In the middle of this inlet duct 15, there is a sub-exhaust heat recovery equipment rotor damper 13.
is provided, and its opening and closing are performed by the inlet damper controller 21. In this way, by introducing the surplus exhaust gas into the auxiliary exhaust heat recovery equipment 20, the gas turbine l always maintains the exhaust gas suitable for the highest efficiency in FIG. It becomes possible to operate while discharging a.

前記主排熱回収設備2から排出された排ガスは排ガス排
出ダクト10を通じて煙突3から大気中に放出される。
The exhaust gas discharged from the main exhaust heat recovery equipment 2 is discharged into the atmosphere from the chimney 3 through the exhaust gas discharge duct 10.

同様に、副排熱回収設備20から排出された排ガスは副
排熱回収設備出ロダクト17、混合ダクト18及び前記
排ガス排出ダクト10を通じて煙突3から放出される。
Similarly, the exhaust gas discharged from the auxiliary exhaust heat recovery equipment 20 is discharged from the chimney 3 through the auxiliary exhaust heat recovery equipment outlet duct 17, the mixing duct 18, and the exhaust gas exhaust duct 10.

前記副排熱回収設備20に並行にバイパスダクト23が
設けられている。このバイパスダクト23はバイパスダ
ンパー12を介して接続するバイパス入口ダクト14と
バイパス出口ダクト16から構成され、バイパス入口ダ
クト14は前記排気ダクト7に接続し、バイパス出口ダ
クト16は前記混合ダクト18に接続する。
A bypass duct 23 is provided in parallel to the auxiliary exhaust heat recovery equipment 20. This bypass duct 23 is composed of a bypass inlet duct 14 and a bypass outlet duct 16, which are connected via a bypass damper 12. The bypass inlet duct 14 is connected to the exhaust duct 7, and the bypass outlet duct 16 is connected to the mixing duct 18. do.

ガスタービン排ガスは、一般に、350℃〜600 ”
C程度の高温のため、ガスタービン1を起動する場合、
主排熱回収設備人ロダンパー6は全閉とし、バイパスダ
ンパー12と副排熱回収設備人ロダンパー13を入口ダ
ンパー制御器21によって操作して排ガスを副排熱回収
設備20とバイパスダクト23に導入する。バイパスダ
クト23を通過したガスタービン排ガスはほとんど温度
低下のないまま混合ダクト18内に排出されるが、副排
熱回収設備20によって熱回収されて温度低下した排ガ
スと混合ダクト18内で混合するため煙突3の耐熱温度
以下になる。したがって、混合ダクト18内の排ガスは
従来の通常の煙突3に導入することができ、ガスタービ
ン用の高温耐熱バイパス煙突4の必要性がなくなる。
Gas turbine exhaust gas generally has a temperature of 350°C to 600°C.
When starting the gas turbine 1 due to the high temperature of about C,
The main exhaust heat recovery equipment rotor damper 6 is fully closed, and the bypass damper 12 and the auxiliary exhaust heat recovery equipment rotor damper 13 are operated by the inlet damper controller 21 to introduce the exhaust gas into the auxiliary exhaust heat recovery equipment 20 and the bypass duct 23. . The gas turbine exhaust gas that has passed through the bypass duct 23 is discharged into the mixing duct 18 with almost no temperature drop, but the exhaust gas is mixed in the mixing duct 18 with heat recovered by the auxiliary exhaust heat recovery equipment 20 and the exhaust gas whose temperature has been reduced. The temperature becomes lower than the heat resistance temperature of the chimney 3. Therefore, the exhaust gas in the mixing duct 18 can be introduced into a conventional conventional chimney 3, eliminating the need for a high temperature resistant bypass chimney 4 for the gas turbine.

尚、副排熱回収設備として蒸気ボイラーを設置する場合
、蒸気管19を通じてガスタービンの燃焼器に発生蒸気
を導くことによりガスタービン1の排ガスを低NOx化
する副次的な効果も期待できる。
Note that when a steam boiler is installed as the secondary exhaust heat recovery equipment, a secondary effect of reducing NOx in the exhaust gas of the gas turbine 1 can also be expected by guiding the generated steam to the combustor of the gas turbine through the steam pipe 19.

〔発明の効果〕〔Effect of the invention〕

上記の如く、本発明によれば、ガスタービンの通常運転
時、その発電効率を最高効率に維持して運転することが
可能となる。
As described above, according to the present invention, during normal operation of a gas turbine, it is possible to operate the gas turbine while maintaining its power generation efficiency at the highest efficiency.

一方、ガスタービンの起動時、又は排熱回収設備への漸
次排ガス供給時に高温耐熱バイパス煙突が不要になる。
On the other hand, the high-temperature heat-resistant bypass chimney becomes unnecessary when starting up the gas turbine or when gradually supplying exhaust gas to the exhaust heat recovery equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかるガスタービン排熱回収設備の概
略図、第2図は従来のガスタービン排熱回収設備の概略
図、第3図はガスタービンの効率図、第4図は分解炉へ
のガスタービン排ガス取入れモード図である。 2・・・主排熱回収設備、6,12.13・・・ダンパ
ー、20・・・副排熱回収設備、22・・・主排熱回収
設備の制御器。 第3図 第4図
Figure 1 is a schematic diagram of the gas turbine exhaust heat recovery equipment according to the present invention, Figure 2 is a schematic diagram of the conventional gas turbine exhaust heat recovery equipment, Figure 3 is an efficiency diagram of the gas turbine, and Figure 4 is the cracking furnace. FIG. 3 is a mode diagram of gas turbine exhaust gas intake into the gas turbine. 2... Main exhaust heat recovery equipment, 6, 12. 13... Damper, 20... Sub-exhaust heat recovery equipment, 22... Controller of main exhaust heat recovery equipment. Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 主排熱回収設備に、該主排熱回収設備とガスの流れが並
行である副排熱回収設備及びバイパスラインを並設し、
その各々に供給されるガス流量を制御する制御ダンパー
を前記主排熱回収設備の制御器からの指令によって調節
することを特徴とするガスタービンの排熱回収装置。
A side exhaust heat recovery equipment and a bypass line are installed in parallel with the main exhaust heat recovery equipment, and the gas flow is parallel to the main exhaust heat recovery equipment,
An exhaust heat recovery device for a gas turbine, characterized in that a control damper that controls the flow rate of gas supplied to each of the devices is adjusted by a command from a controller of the main exhaust heat recovery facility.
JP26391886A 1986-11-07 1986-11-07 Exhaust heat recovery device for gas turbine Pending JPS63118501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26391886A JPS63118501A (en) 1986-11-07 1986-11-07 Exhaust heat recovery device for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26391886A JPS63118501A (en) 1986-11-07 1986-11-07 Exhaust heat recovery device for gas turbine

Publications (1)

Publication Number Publication Date
JPS63118501A true JPS63118501A (en) 1988-05-23

Family

ID=17396075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26391886A Pending JPS63118501A (en) 1986-11-07 1986-11-07 Exhaust heat recovery device for gas turbine

Country Status (1)

Country Link
JP (1) JPS63118501A (en)

Similar Documents

Publication Publication Date Title
JPH10205355A (en) Combustion gas turbine device and method for operating it
CN102538489A (en) Afterheat utilization flue after-burning device and after-burning method thereof
CN110094725B (en) Ultralow nitrogen combustion method for coal-fired power generating unit
JPS63118501A (en) Exhaust heat recovery device for gas turbine
US2379452A (en) Elastic fluid power plant
JPH0216040Y2 (en)
JP3137147B2 (en) Control method for turbine compressor device for fuel cell facility
CN202118875U (en) Layout structure of coke oven gas combustion device used in power station boiler
JP2000110508A (en) Gas turbine control device
JPH06212999A (en) Supply method of gas for oxygen-containing combustion to furnace of industrial facility with gas turbine system
CN212253141U (en) Energy-concerving and environment-protective vertical stoving milling system device
JPS60206909A (en) Exhaust heat recovery gas turbine power generating facility
JPH0216039Y2 (en)
JPH0583742B2 (en)
JPS61200838A (en) Boiler with denitration apparatus
JPH02136520A (en) Exhaust gas treatment method for gas turbine
JP2900283B2 (en) Control method of exhaust gas ventilator of flue gas desulfurization unit
JPH01195903A (en) Extraction controller for extraction steam turbine
CN116025922A (en) Full-load denitration bypass system and denitration method applied to multi-fuel gas boiler with flue gas recirculation
JPS63230911A (en) Control device for combined cycle power plant
JPH0643810B2 (en) Combined cycle air flow controller
JPH03206325A (en) Exhaust gas damper for gas turbine
CN116839014A (en) Quick response boiler for thermal power peak regulation
CN115930244A (en) Flue gas bypass control system and control method suitable for full-load process denitration
JPS58104993A (en) Pyrolysis plant for hydrocarbon