JPS58104993A - Pyrolysis plant for hydrocarbon - Google Patents

Pyrolysis plant for hydrocarbon

Info

Publication number
JPS58104993A
JPS58104993A JP20598281A JP20598281A JPS58104993A JP S58104993 A JPS58104993 A JP S58104993A JP 20598281 A JP20598281 A JP 20598281A JP 20598281 A JP20598281 A JP 20598281A JP S58104993 A JPS58104993 A JP S58104993A
Authority
JP
Japan
Prior art keywords
air
gas turbine
pyrolysis
furnace
air flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20598281A
Other languages
Japanese (ja)
Other versions
JPS5943514B2 (en
Inventor
Hideshi Maruyama
秀史 丸山
Yoshiyuki Hiramatsu
平松 由之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP20598281A priority Critical patent/JPS5943514B2/en
Publication of JPS58104993A publication Critical patent/JPS58104993A/en
Publication of JPS5943514B2 publication Critical patent/JPS5943514B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/18Apparatus
    • C10G9/20Tube furnaces
    • C10G9/206Tube furnaces controlling or regulating the tube furnaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To attempt marked improvement of the energy efficiency by the high-temperature exhaust gas, by connecting, to the burning air feed system of pyrolysis furnace(s), the discharge opening(s) of a variable air flow blower and the exhaust vent(s) of a gas turbine. CONSTITUTION:The discharge opening(s) of a variable air flow blower 51 and the exhaust vent(s) of a gas turbine 61 are connected to the burning air feed system of a pyrolysis furnace 10 for olefin production, an air flow from the blower 51 and/or a divergence of the input guide valve 62 (or the driving source) of the gas turbine 61 being controlled through an air flow controller 30 so that the air flow in the air duct 40 for the pyrolysis furnace 10 is equalized with that which is calculated from a fuel consumption in said furnace and also corrected with an excess oxygen content in the furnace.

Description

【発明の詳細な説明】 本発明は・、炭化水素の熱分解によりエチレン、プロピ
レン、その他の有用がメレフインを製造する炭化水素の
熱分解装置に係り、特にその熱分解炉への燃焼用空気供
給手段の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydrocarbon pyrolysis apparatus for producing ethylene, propylene, and other useful melefins by pyrolysis of hydrocarbons, and particularly relates to a pyrolysis apparatus for producing combustion air to the pyrolysis furnace. Concerning improvements in means.

一般に、オレフィン製造には、多数の熱分解管を内蔵し
た熱分解炉が用い、られて、おり、熱分解されたガスは
直□ちに急冷器に導入されるよう構成された装置が用い
られている。この熱分解炉においては、沖料のナフサや
灯油などを800C以上に加熱する・8畳があるので、
燃料消費量がきわめて多く、省エネルギーの立場から、
この燃料消費10節減をはかることが景請されている。
Generally, for olefin production, a pyrolysis furnace containing a large number of pyrolysis tubes is used, and a device configured to immediately introduce the pyrolyzed gas into a quencher is used. ing. In this pyrolysis furnace, naphtha and kerosene from Okinawa are heated to over 800C.
Fuel consumption is extremely high, so from the standpoint of energy conservation,
It is requested that this fuel consumption be reduced by 10%.

ところで、化学プラントのエネルギー総合利用という面
から、ガスタービンの効率向上のため、ガスタービンに
おける熱抄失の大部分を占めル高漉排気ガスを溶焼装置
の助燃ガスとして利用する試みがなされている。しかし
ながら、発電用ガスタービンの製柱から、負荷変動の大
きい燃焼装置に適用することが−かしく、このため適用
分野が制約されている。すなわち、熱分解炉とガスター
ビンのみとを結合する場合、熱分解炉のや荷に相応する
ようガスタービンの排気ガス、量を制御 Lないと熱分
解炉の熱効凍が低下するため、ガスタービンの入口側に
可変ガイドベーンを設けて吸入空槃量を制御1するか、
あるいはガスタービンの負荷を増減する必要がある。し
かし、このように制御すると、排気ガス量の変化に比べ
て発電出力の変化が大きく、発電効率の低下が著しく、
また排気ガスの温度および酸素含有量が変化するので、
こ第1らに対応するよう熱分解炉を運転操作することけ
容易ではない、このため、従来は、負荷変動の大きいオ
レフィン製造用の熱分解炉には、ガスタービンの排気ガ
スを助燃ガスとして利用することはなされていなかった
By the way, in order to improve the efficiency of gas turbines from the perspective of comprehensive energy utilization in chemical plants, attempts have been made to use high-purity exhaust gas, which accounts for most of the heat loss in gas turbines, as auxiliary gas for the sintering equipment. There is. However, it is difficult to apply it to combustion equipment with large load fluctuations, such as the production of pillars for gas turbines for power generation, and therefore the field of application is restricted. In other words, when only a pyrolysis furnace and a gas turbine are combined, the amount of exhaust gas from the gas turbine must be controlled to match the load of the pyrolysis furnace, otherwise the thermal freezing effect of the pyrolysis furnace will decrease. Either install a variable guide vane on the inlet side of the turbine to control the amount of air intake, or
Or it is necessary to increase or decrease the load on the gas turbine. However, when controlling in this way, the change in power generation output is large compared to the change in exhaust gas amount, and the power generation efficiency decreases significantly.
Also, as the temperature and oxygen content of the exhaust gas changes,
It is not easy to operate a pyrolysis furnace to meet the above requirements.For this reason, conventionally, pyrolysis furnaces used for producing olefins, which have large load fluctuations, use exhaust gas from a gas turbine as an auxiliary gas. It had not been used.

本発明の目的は、従来、勇荷肇動の大きいオレフィン製
造用熱分解炉への組込みが困難であったガスタービンを
組込んで、高温排気ガスによるエネルギー幼芽の大幅な
向上を行なえる炭化水素の熱分解装置を提供するにある
The purpose of the present invention is to incorporate a gas turbine, which has conventionally been difficult to incorporate into a pyrolysis furnace for producing olefins, which has a large energy load, to achieve carbonization that can significantly improve the energy production of high-temperature exhaust gas. To provide hydrogen pyrolysis equipment.

本発明は、熱分解炉の燃焼用空気供給系統に、風量可肇
送s轡の吐出口とガスタービンの排気口とを接続し、こ
れらの送風機の送風量及びガスタービンの入力ガイドベ
ーンの開度または駆1ll−沖の少ガくとも一つを、空
気流量制御装機により、熱分解炉への熔焼空女供給用の
空気ダクト内の空気  □流量が、熱分解炉の燃料消費
量から一出され熱分解炉の過剰酸素序で補正される空気
流量に一致するよう制御することによシ、ガスタービン
のみの接続に基づくホ都合を除去して前記目的を達成し
ようとするものである。
The present invention connects a combustion air supply system of a pyrolysis furnace to a discharge port for variable air flow and an exhaust port of a gas turbine, and controls the air flow of these blowers and the opening of the input guide vane of the gas turbine. The air flow rate in the air duct for supplying melting air to the pyrolysis furnace is controlled by an air flow control device to control the flow rate from the fuel consumption of the pyrolysis furnace. The purpose is to achieve the above objective by eliminating the drawbacks due to the connection of only a gas turbine by controlling the air flow rate to match the flow rate of air that is discharged and corrected by the excess oxygen flow in the pyrolysis furnace. .

以下、本発−の一実施例を図面に邦づいて説明する。An embodiment of the present invention will be described below with reference to the drawings.

熱分解炉10は、図中右上に示されるように、複数基遍
設され、これらの熱分解炉lOは、それぞれ多管式熱分
解I#11を内厳しておシ、これらの各多管式熱分解g
llの出口Kg図示しない急冷器が直結されている。f
た、各熱分解管1−.1内には熱分解原料として、ナフ
サ、灯油、軽油、天然ガス等の飽和炭化水素が供給され
、稀釈剤と−して木蓋りが炭化水素供給量に対し0.6
〜1.0の重量計で混合して供給される。各熱分解g1
1は、炉10内できわめて短時間内に750〜900C
まで昇温され、前P急冷器で直ちに350〜650C程
度に急冷される。    。
As shown in the upper right corner of the figure, a plurality of pyrolysis furnaces 10 are installed all over the place, and each of these pyrolysis furnaces 10 carries out multi-tube pyrolysis I#11 internally. formula pyrolysis g
A quench cooler (not shown) is directly connected to the outlet Kg of ll. f
In addition, each pyrolysis tube 1-. Saturated hydrocarbons such as naphtha, kerosene, light oil, and natural gas are supplied as pyrolysis raw materials into the chamber 1, and a wooden lid is used as a diluent at a rate of 0.6% of the amount of hydrocarbons supplied.
Supplied mixed with a scale of ~1.0. Each pyrolysis g1
1 is 750-900C within a very short time in the furnace 10.
The temperature is raised to 350 to 650C, and then immediately quenched to about 350 to 650C in a pre-P quencher. .

前記各熱分解炉10には、炉内酸素濃度を検出i、p節
する酸素濃度調節計12及び炉内圧力を検出し調節する
とともに酸素濃度調節計12からの信号によりカスケー
ド制御1される圧力訓節−計(PIC)13がそれぞれ
設けられ、さらに、各熱分解炉10の入口ダクト14に
はそれぞれ手動式ダンパ15が、出口ダクト16にはそ
れぞれモータ17により駆動される誘引ファン18及び
駆動渓付きの誘引ファン入口ダンパ19が設けられてい
る。また、酸素濃度調節計12の設定値は、制−(用計
31榛によシ、炉j1荷に応じたL適飴が与えられる。
Each of the pyrolysis furnaces 10 includes an oxygen concentration controller 12 that detects the oxygen concentration in the furnace (i, p), and a pressure that detects and adjusts the furnace pressure and is cascade-controlled 1 by a signal from the oxygen concentration controller 12. Each pyrolysis furnace 10 is provided with a manual damper 15 in its inlet duct 14 and an induction fan 18 driven by a motor 17 in its outlet duct 16. An induced fan inlet damper 19 with a valley is provided. In addition, the set value of the oxygen concentration controller 12 is controlled by the amount of L suitable candy according to the load in the furnace.

#IC@熱分解炉lOには図示しないガスバーナ及びオ
イルバーナが設けられ、これらの各バーナにはそれぞれ
ガス母管21及びオイル母管22から燃料ガス及び燃料
オイルが供給されるようにさね、かつ、ガス量921に
は燃料ガスの流量、密度、圧力、温度岬の状態鵞を検出
する検出器23が、オイル母管22には燃料オイルの流
量を検出する検出器24がそれぞれ設けられている。こ
れらの検出器23.24の出力信碧及び帥lr@酸素濃
度調節器12の出力信号はそれぞれ空気量補正調節計2
0を介して過剰空気原信号として空り流量制御装[30
に入力されている。
#IC@Pyrolysis furnace IO is provided with a gas burner and an oil burner (not shown), and these burners are supplied with fuel gas and fuel oil from a gas main pipe 21 and an oil main pipe 22, respectively. Further, the gas amount 921 is provided with a detector 23 for detecting the flow rate, density, pressure, and temperature of the fuel gas, and the oil main pipe 22 is provided with a detector 24 for detecting the flow rate of fuel oil. There is. The output signals of these detectors 23 and 24 and the output signal of the oxygen concentration regulator 12 are respectively output from the air amount correction controller 2.
0 as the excess air source signal [30
has been entered.

各熱分解炉10の入口ダクト14は、各炉lOに燃焼用
空気を供給するための?タダク)40に連結されている
。この空気ダクト40の途中から分岐された分岐ダクト
41には、風量可豫送風榛51及び補助送風@52の吐
出口が!#卜され、これらの送風機51.52の駆動源
53.54はw lia1mあるいは蓋受タービンなど
からなり、送風機51の駆−1#53は回転数制律・が
できるようにされている。この際、駆動源53を電動機
で構成するときは、周波数変換器を用いて回転数制御を
行なうのが有利である。すなわち、処送風機51の駆動
源・53KFi、周波数変換器などからなる回転数制摺
v#55が接続され、この開側装置55には前記空気流
量制御装置30からの信号が入力されてff1−・源5
3の回転[制御が行なわれている。また、補助送風機5
2の吐出口には駆動枦付きの吐出ロダンノや56が設け
られ、補助送風機52から分岐ダクト41への送風を制
御できるようにされている。
The inlet duct 14 of each pyrolysis furnace 10 is for supplying combustion air to each furnace lO. (tadak) 40. A branch duct 41 branched from the middle of this air duct 40 has a discharge port for an air volume variable blower 51 and an auxiliary air blower @52! The drive sources 53 and 54 of these blowers 51 and 52 are composed of a turbine or a lid holder turbine, and the drive source 53 of the blower 51 is configured to be able to control the rotational speed. At this time, when the drive source 53 is constituted by an electric motor, it is advantageous to control the rotation speed using a frequency converter. That is, a rotation speed control v#55 consisting of a drive source 53KFi, a frequency converter, etc. for the processing air blower 51 is connected, and a signal from the air flow rate control device 30 is inputted to this open side device 55, and the signal from the air flow rate control device 30 is inputted to ff1-.・Source 5
3 rotation [control is being performed. In addition, the auxiliary blower 5
A discharge port 56 with a drive lever is provided at the discharge port 2, so that air blowing from the auxiliary blower 52 to the branch duct 41 can be controlled.

前1i空勿ダクト40の分岐ダクト41よシも上流11
1jKけ、ガスタービン用排気:ガスダクト42を介E
7て発電用ガスタービン61の排気口が接続されている
。この排気ガスダクト′42と前記分岐ダクト41との
間において、空気ダクト40にはガスタービン61の排
気ガスの空気ダクト40内への導入及びl!断を切換え
る駆動酔付きの切換ダンパや43が設けられている。ま
た、排気ガスダクト42には大気放出用煙突44が接続
されるとともに、この煙突44内にはガスタービン61
の排気ガスを大気に開放するか否かを制御する駆動・源
付きの放出ダンパ45が設けられている。このダンパ4
5は、前記排気カスダクト42と空気ダクト40との合
流部において設けられた圧力調節計46からの検出信号
によシ、圧力制御装置47を介してその開度を制御され
るようにされている。
The branch duct 41 of the front 1i empty duct 40 is also upstream 11
1jK, gas turbine exhaust: via gas duct 42
7 is connected to an exhaust port of a gas turbine 61 for power generation. Between this exhaust gas duct '42 and the branch duct 41, the air duct 40 has an air duct 40 for introducing the exhaust gas of the gas turbine 61 into the air duct 40 and l! A switching damper 43 with a drive damper is provided to switch the power on and off. Further, a chimney 44 for releasing into the atmosphere is connected to the exhaust gas duct 42, and a gas turbine 61 is located inside the chimney 44.
A discharge damper 45 with a drive and source is provided to control whether or not the exhaust gas is released to the atmosphere. This damper 4
5 has its opening degree controlled via a pressure control device 47 based on a detection signal from a pressure regulator 46 provided at the confluence of the exhaust gas duct 42 and the air duct 40. .

この圧力制御装′M47からの出力は、前I!?#分解
炉lOの炉内圧制1系、すなわち、各分解炉10の誘引
ファン入ロダンノダ19の駆動源に6炉10を1択する
セレクタ(図示せず)を介し、て入力されるようになっ
ている。この際、各メンツク19の駆動源には図示しり
いローセレクタを介して名炉10の圧力調節計、−3の
出力信号も入力され、ローセレクタにより圧1力制御装
置t47および圧力調節計13の出力信号のうち低い方
の信号がメンツク19の駆動源に伝達され、これによシ
ダン/譬開度の制御がなされている。
The output from this pressure control device M47 is the previous I! ? #It is now input to the furnace pressure control system 1 of the cracking furnace 1O, that is, the drive source of the induction fan-incorporated rodannoda 19 of each cracking furnace 10, through a selector (not shown) that selects one of the 6 furnaces 10. ing. At this time, the output signal of the pressure regulator 13 of the famous furnace 10 is also input to the drive source of each mensku 19 through the low selector shown in the figure, and the low selector causes the pressure controller t47 and the pressure regulator 13 to be inputted. The lower one of the output signals is transmitted to the driving source of the maintenance valve 19, and the opening/opening degree is controlled thereby.

前rガスタービン61の空気吸入側には、吸入空襲貴を
制御する駆動源付きの入口ガイドベーン62が設けられ
るとともに、ガスタービン61によシ発W轡63が駆動
されるようになっている。
On the air intake side of the front r gas turbine 61, an inlet guide vane 62 with a driving source for controlling the intake air raid is provided, and the gas turbine 61 drives the air intake W 63. .

この際、ガスタービン61Fiその性能上、負荷100
96での運転が最も熱効率がよいため、入口ガイドベー
ン62は常時は全開とし、熱分解炉10@の94WT変
動に対応するた約には、基本的には風量可変送風$51
による空気供給量の増減でまかなうようにし、必要やむ
を得ないときだけミ入゛ロガイドベーン62の開度調整
を行なうよう罠なっている。なお、このガスタービンと
して二軸形式のものを用いる場合には、ガスター ビン
自体の負荷(出力)葡増ジすることによシ、9蝋供給量
の増減をはかる。
At this time, due to the performance of the gas turbine 61Fi, the load is 100.
Since the operation at 96 is the most thermally efficient, the inlet guide vane 62 is always fully open, and in order to accommodate the 94WT fluctuation of the pyrolysis furnace 10, basically the air volume variable blower is $51.
This is done by increasing or decreasing the amount of air supplied due to air flow, and the opening degree of the air flow guide vane 62 is adjusted only when it is unavoidable. If a two-shaft type gas turbine is used, the amount of wax supplied can be increased or decreased by increasing the load (output) of the gas turbine itself.

前記ガスタービン61のトリップ時、すなわち、伺らか
の原因でガスタービン61が停止する場合を考慮してガ
スタービン61のトリップ信号によシ作動されるトリッ
プ検出制御装置57が設けらオ]ている。−この検出制
御装置57の出力信号は、補助送風機52の駆動源54
に入力情れて送風機52を起動させるとともに、遅延1
路58を介して吐出ロダンノ456の駆動源に入力され
、吐出口ダンパ56を送風機520立上#)lIKa口
させるようになっている。また、検出制御装置57の出
力信号は、#配空、気ダクト40の切換ダン/#43及
び煙突44の放出メンツク45の駆動源に入力され、切
換ダンパぐ43を開から閉へ、放出ダンI#45を閉か
ら開べ駆動するよう罠なっている。さらに、同出力信号
は、熱分解炉10の燃料開側1系にも送られ、所定時間
分解炉10の熱分解管ll内の流量を矛小限にして炉や
荷を低減させるとともに、燃料流量を減少させて補助送
風@52が完全駆動されるまで間の炉内の酸素不足をカ
パニできる。ようにされている。また、補助送風機52
が作動したのちは、定常の流量での運転に@帰させるよ
うになっている。なお、万一補助送風$52が作1しな
いときけ、燃料をカットし、分解炉をシャットダウンす
る。
In consideration of the case where the gas turbine 61 trips, that is, the gas turbine 61 stops due to some unknown reason, a trip detection control device 57 is provided which is activated by a trip signal of the gas turbine 61. There is. - The output signal of this detection control device 57 is transmitted to the drive source 54 of the auxiliary blower 52.
input, the blower 52 is activated, and the delay 1 is activated.
It is input to the drive source of the discharge rod 456 through the path 58, and causes the discharge port damper 56 to start up the blower 520. In addition, the output signal of the detection control device 57 is input to the drive source of the # air distribution, switching damper/#43 of the air duct 40 and the discharge damper 45 of the chimney 44, and changes the switching damper 43 from open to closed. It is a trap to drive I#45 from closed to open. Furthermore, the same output signal is also sent to the fuel open side system 1 of the pyrolysis furnace 10, and the flow rate in the pyrolysis tube 11 of the pyrolysis furnace 10 is kept to a minimum for a predetermined period of time to reduce the furnace and load. By reducing the flow rate, it is possible to compensate for the lack of oxygen in the furnace until the auxiliary air blower @52 is fully activated. It is like that. In addition, the auxiliary blower 52
After activation, the system returns to operation at a steady flow rate. In addition, in the unlikely event that the auxiliary air blower does not work, the fuel will be cut and the cracking furnace will be shut down.

前配空襲ダクト40の分岐ダクト41よシも下流ケ寸な
わち分解炉10側には、図中左方から、空気ダクト10
内の温度を検出する温度検出器(T/C) 71 、圧
力を検出する圧力検出器(FT)72、燃焼用空気流量
を検出する流量検出器(FT)73及び炉焼用空気中の
酸素濃度を検出する酸素濃度検出器(02) 74が設
けられ、これらの各検出器71〜74の出力信号は前記
空気流量制御装置30に入力されている。この空気流量
制御装置30には、これらの検出器71〜74の出力信
号の件に、前述のように6炉10の酸素濃度調節計12
からの出力信号、並びに、ガス及びオイル母管21.2
2の検出器23.24からの出力信号が入力され、これ
らの信号に基づいて空気ダクト10内の空気流量が避圧
となるように%前記回転数制割装g55及びガスタービ
ン入口ガイドベーン62の駆動源に所定のスプ]1:□
)Jットレンジで制御信号を出力するようになつ+似る
。すなわち、空気流量制御装置30け、ガス母管21及
びオイル化’1221cおける分解炉燃料量から必要酸
素量を求心るとともに、この必要酸素量に、空気量補正
詩節計20からの過剰空気率を乗じて算出した値が、空
気ダクト40内の空気流量と酸素濃度とを乗じ温度およ
び圧力を基に補正して求めた供給酸素流量になるよう送
風機51の1転数及びガスタービン入口ガイドベーン6
2の開度を制御するようKなっている。なお、送風機5
1及びガスタービン入口ガイドベーン62の空気流量制
御装置30による制御は、空気ダクト40の空気流量勢
の信号及び燃料流量郷の信号だけでも熱分解炉10が必
要とする最適空気量(酸素量)を演−できるが、各検出
器71〜74 、23 、24II#の誤差時によりえ
適空気量が維持できカい場合を考慮して熱分解炉10の
過剰空気率信号を導入し、供給空気流量等による演算結
果を修正するようになっている。
The branch duct 41 of the front air raid duct 40 is also downstream, that is, on the cracking furnace 10 side, from the left in the figure, the air duct 10
A temperature sensor (T/C) 71 that detects the temperature inside the furnace, a pressure sensor (FT) 72 that detects the pressure, a flow rate sensor (FT) 73 that detects the combustion air flow rate, and oxygen in the firing air. An oxygen concentration detector (02) 74 for detecting concentration is provided, and output signals from each of these detectors 71 to 74 are input to the air flow rate control device 30. This air flow rate control device 30 includes oxygen concentration controllers 12 for the six furnaces 10, as described above, for the output signals of these detectors 71 to 74.
output signals from and gas and oil header 21.2
The output signals from the detectors 23 and 24 of 2 are input, and based on these signals, the rotation speed limiting device g55 and the gas turbine inlet guide vane 62 are adjusted so that the air flow rate in the air duct 10 becomes an escape pressure. 1: □
) It starts to output a control signal in the J range. That is, the air flow rate control device 30 calculates the required amount of oxygen from the amount of fuel in the cracking furnace in the gas main pipe 21 and the oil converter 1221c, and adds the excess air rate from the air amount correction meter 20 to this required amount of oxygen. The number of revolutions of the blower 51 and the gas turbine inlet guide vane are adjusted so that the value calculated by multiplying by 6
K is set to control the opening degree of 2. In addition, the blower 5
1 and the gas turbine inlet guide vane 62 by the air flow rate control device 30, the optimum air amount (oxygen amount) required by the pyrolysis furnace 10 can be controlled by the air flow rate signal of the air duct 40 and the fuel flow rate signal alone. However, considering the case where it is not possible to maintain the appropriate air amount due to errors in each of the detectors 71 to 74, 23, and 24 II#, an excess air rate signal of the pyrolysis furnace 10 is introduced, and the supplied air is Calculation results are corrected based on flow rate, etc.

次に1本実施例の動作につき、場合分けして説明する。Next, the operation of this embodiment will be explained by case.

   ・:1′。  ・:1′.

装置の運転開始にあたって熱分解炉10とガスタービン
61とを一時に始動する場合は、大気放出用煙突44の
放出ダンノ量45を開放するとともに、空気ダク)40
内の切挨ダンノ母43は全閉とし、かつ、各熱分解炉1
00入ロダク)−14内にある手動式ダンノ争15は全
開にしておく、この状於てガスタービン61を起動する
が、ガスタービン61は自動起動の為、起動から無負荷
定格回転数に達するまでは手動制御をできないから、そ
れまでは排便ガスは煙突44に抜い電おく。
When starting the pyrolysis furnace 10 and the gas turbine 61 at the same time when starting the operation of the device, the release amount 45 of the chimney 44 for atmospheric release is opened, and the air duct) 40 is opened.
The cut-off motherboard 43 inside is completely closed, and each pyrolysis furnace 1
The manual engine speed control 15 in the 00-in Rodak)-14 is left fully open.In this state, the gas turbine 61 is started, but since the gas turbine 61 is an automatic start-up, it reaches the no-load rated rotation speed from start-up. Manual control is not possible until then, so the exhaust gas is unplugged from the chimney 44 until then.

ついで、各熱分解炉10′o誘引フアン18を起動させ
るとともに、空気□ダクト40内の□切換ダン・母43
を少し開け、各熱分解炉10にガスタービン61の排便
ガスを少し流す、排気ガスが少し流れ始めた時点で6炉
lOの加熱用バーナ(図示せず)に点火して炉内温度を
餘々に高めていく。この際、空気流量制御装置30によ
る酸素濃度制御は行なわず、熱分解炉10の、炉内圧は
誘引ファン1−8で、空気ダクト40内の圧力は、排気
ガスダクト42の近傍に般社られた圧力調節計46を用
いて放出ダンノ445の開度でそれぞれ調節し、いわゆ
る圧力制御iiiを行なう。
Next, each pyrolysis furnace 10'o induction fan 18 is started, and the □ switching dan/main 43 in the air □ duct 40 is activated.
is slightly opened, and a small amount of waste gas from the gas turbine 61 is allowed to flow into each pyrolysis furnace 10. When the exhaust gas starts to flow a little, the heating burner (not shown) of the 6th furnace 10 is ignited to maintain the temperature inside the furnace. We will continue to improve our skills. At this time, the oxygen concentration was not controlled by the air flow rate control device 30, and the pressure inside the pyrolysis furnace 10 was controlled by the induction fan 1-8, and the pressure in the air duct 40 was controlled by the pressure in the vicinity of the exhaust gas duct 42. The so-called pressure control iii is performed by adjusting the opening degree of the discharge lever 445 using the pressure regulator 46.

炉内需1度が規定値になったら、熱分解管11の保−の
ため管内に蒸気を流す。熱分解管11を流れる水蒸気温
度が熱分解温度に到達した時点で、管内にナフサ等の原
料炭化水素を導入するが、遅くともとの炭化水素の導入
前に風量可蜜送風機51を起動しておく。熱分解管11
に炭化水素を入れるときは、炉10の負荷が急激に増加
するため、空気ダクト40内圧力に十分注意して負荷を
増していく。
When the internal demand of the furnace reaches a specified value, steam is allowed to flow into the pyrolysis tube 11 to preserve it. When the temperature of the steam flowing through the pyrolysis tube 11 reaches the pyrolysis temperature, raw material hydrocarbons such as naphtha are introduced into the tube, but the blower 51 with variable air volume is started at the latest before the introduction of the original hydrocarbons. . Pyrolysis tube 11
When hydrocarbons are introduced into the furnace 10, the load on the furnace 10 increases rapidly, so the load is increased while paying close attention to the internal pressure of the air duct 40.

各熱分解炉10に炭化水素を入れ終ったら、圧力制御か
ら酸素濃度制御に切換える。一方、炉負荷の増加に伴々
い供給空気量も増加させる必要があるため、放出メン/
譬45を完全に閉め、送風機51の負荷を増加していく
After charging hydrocarbons to each pyrolysis furnace 10, pressure control is switched to oxygen concentration control. On the other hand, as the furnace load increases, it is necessary to increase the amount of air supplied, so
The fan 45 is completely closed and the load on the blower 51 is increased.

熱分解炉10への炭化水素の送入を完了し、熱分解炉1
0が安定運転に入ったら、ガスタービン610発電負荷
を入れていく。この際、ガスタービン61の排気ガスは
、発電負荷を増加させるに従って温度上昇し、排気ガス
中の酸素濃度が減少していくので、炉10の変化に十分
注意しながら徐々に発電負荷を増加していく。
The feeding of hydrocarbons to the pyrolysis furnace 10 is completed, and the pyrolysis furnace 1
0 enters stable operation, the gas turbine 610 power generation load is applied. At this time, the temperature of the exhaust gas of the gas turbine 61 increases as the power generation load increases, and the oxygen concentration in the exhaust gas decreases, so the power generation load is gradually increased while paying close attention to changes in the furnace 10. To go.

また、装置の起動にあたり、熱分解炉10の起動昔、ガ
スタービン61を起動する場合は、各熱分解炉10の起
動時は、風量可変送風機51及び補助送風機52を駆動
して全て新鮮空気のみKて燃焼用空気の供給を行々う。
In addition, when starting up the device, when starting up the pyrolysis furnace 10, in the past, when starting up the gas turbine 61, when starting up each pyrolysis furnace 10, the variable air volume blower 51 and the auxiliary blower 52 were driven to provide only fresh air. K to supply combustion air.

ついで、空気ダン)40内の切換ダンノ443 カ閉で
あシ、煙突44の放出ダンノ々45が開であることを確
認してガスタービン61を起動させる。
Next, the gas turbine 61 is started after confirming that the switching door 443 in the air dumper 40 is closed and the discharge door 45 of the chimney 44 is open.

この起動後、ガスタービン61が定格回転数に達したあ
とでダン)40内の切換〆ンノダ43を徐々に開け、放
出メン/ダ45を徐々に閉じていく。この時、ダクト4
0内の圧力が上昇するようであれば、補助送風機52の
吐出ダンノ#56を徐々に閉めていく。吐出ダン/々5
6が全閉され、補助送風機52が停止されるとと4に、
この補助送風機52による供給空気量がガスタービン6
1の排気ガスに切換えられた後、ガスターセン61の発
電や荷を、炉10の状態を監視し芝如ら徐々に増加して
行く。
After this start-up, after the gas turbine 61 reaches the rated rotational speed, the switching stopper 43 in the cylinder 40 is gradually opened, and the discharge member 45 is gradually closed. At this time, duct 4
If the pressure inside 0 rises, gradually close the discharge valve #56 of the auxiliary blower 52. Discharge Dan / 5
6 is fully closed and the auxiliary blower 52 is stopped, and at 4,
The amount of air supplied by this auxiliary blower 52 is
After switching to the exhaust gas of No. 1, the power generation and load of the Gastersen 61 are gradually increased by monitoring the condition of the furnace 10.

このようにして炉1o及びガスタービン61がその起動
の前%IK拘わらず安定動作状態と表って定常運転状態
となったら、空気流量制御装置30による酸素流量制御
が行かわれる。熱分解炉10で必要と゛される燃焼用空
気流量は、炉10内に設けであるバーナへの燃料ガス及
び燃料オイルの総計に対する理論9気流量に、熱分解炉
10の排気中の過剰空気率に相当する空気流量を加えた
量となるため、この必要空気流量と空気ダクト40内の
空気流量とが一致するように制御される。この際、空気
ダン)40内の空気流量は、当該空気中の酸素濃度、温
度、圧力等による補正がなされる。
In this way, when the furnace 1o and the gas turbine 61 appear to be in a stable operating state regardless of the % IK before starting and enter a steady operating state, the air flow rate control device 30 controls the oxygen flow rate. The combustion air flow rate required in the pyrolysis furnace 10 is calculated by adding the theoretical air flow rate to the total amount of fuel gas and fuel oil to the burners provided in the furnace 10, and the excess air rate in the exhaust gas of the pyrolysis furnace 10. The required air flow rate is controlled to match the air flow rate in the air duct 40. At this time, the air flow rate in the air chamber 40 is corrected based on the oxygen concentration, temperature, pressure, etc. in the air.

ところで、熱分解炉10における炭化水素の熱分解反応
に伴って、熱分解管11内にコークスが析出し、時間の
経過とともに熱分解炉10の効率が低下する。従って、
熱分解炉10は、複数基並列に設けて一定期間′毎に切
換え運転することによ:: シ、オレフィン製轡1ik置全体を連続運転している。
By the way, coke is deposited in the pyrolysis tube 11 as a result of the pyrolysis reaction of hydrocarbons in the pyrolysis furnace 10, and the efficiency of the pyrolysis furnace 10 decreases over time. Therefore,
A plurality of pyrolysis furnaces 10 are installed in parallel, and the operation is switched at regular intervals, so that the entire olefin production plant is continuously operated.

このようにコークス−熱分解管ll内に析出した場合に
は原料である炭イヒ水素の供給を停止し、水蒸気と空気
とを熱分解管11に供給して管内の析出コークス除去を
行ない、最終的には加熱バーナを消火して炉内点検を行
なうため、このような工程では熱分解炉の必要空気流量
は大幅に変動することとなる。
When the coke is deposited in the coke-pyrolysis tube 11, the supply of the raw material hydrogen carbonate is stopped, and steam and air are supplied to the pyrolysis tube 11 to remove the coke precipitated in the tube. Typically, the heating burner is extinguished and the inside of the furnace is inspected, so the required air flow rate of the pyrolysis furnace will vary significantly in such a process.

前記必要空気流量が複数基の熱分解炉lOの一部停止等
に伴なって減少した場合は、空気流量制御装置30から
の指令によって、まず風量可変送風機51の駆動源53
を回転数制御装置55を介して穢達させ、必要空気流量
と空気ダクト40に設iられ九流量検出器73等の指示
値とを対比調整する。送風機51による調整だけでは足
シないときには、ガスターぜ761の入口ガイドベーン
62を絞っであるいは二軸ガスタービンの発電負荷を減
少して排気ガス量を減少させ、空気ダクト40内の空気
流量を減少させる。この入口ガイドベーン62の調整ま
たは発電負荷の減少でも足シないときは、煙突44内の
放出ダン/ぐ・45を圧力評節計46によ量制御しなが
ら開放して対応させる。
When the required air flow rate decreases due to partial stoppage of a plurality of pyrolysis furnaces 1O, first, the drive source 53 of the variable air volume blower 51 is
is achieved through the rotational speed control device 55, and the required air flow rate is compared with the indicated value of the flow rate detector 73 installed in the air duct 40 and adjusted. When adjustment by the blower 51 alone is not sufficient, the amount of exhaust gas is reduced by throttling the inlet guide vane 62 of the gas turbine 761 or by reducing the power generation load of the two-shaft gas turbine, thereby reducing the air flow rate in the air duct 40. let If adjusting the inlet guide vane 62 or reducing the power generation load is not enough, the discharge damper 45 in the chimney 44 is opened while the amount is controlled by the pressure regulator 46 to cope with the problem.

一方、コークス除去を完了した熱分解炉10を始動する
にあたっては、上述とは逆の操作により空気流量を増加
させ、それでも不足するときは、補助送風機52の作動
によりカバーする。
On the other hand, when starting the pyrolysis furnace 10 from which coke removal has been completed, the air flow rate is increased by the operation opposite to that described above, and if the air flow rate is still insufficient, the auxiliary blower 52 is operated to cover it.

次に、ガスタービン61または発電機63が故障等によ
り緊急停止(トリップ)した場合には、このガスタービ
ン61の停止がトリップ検出制御装置57によシ直ちに
検出され、空気ダクト40内の切換ダンノ譬43が閉止
されるとともに、煙突44内の放出ダンノダ45が開放
され、かつ、補助送風機52が始動されて供給空気流量
゛の減少がカバーされる。この際、補助送風機52が起
動しても、駆動源54の起動完了までには10数秒の時
間を要するため、熱分解炉10を一定負荷の11運転し
ていると一時的に空気不足となる。従って、補助送風機
52の完全作動までの間、熱分解炉10の負荷を減少さ
せることにより対処している。
Next, when the gas turbine 61 or the generator 63 comes to an emergency stop (trip) due to a failure or the like, the stop of the gas turbine 61 is immediately detected by the trip detection control device 57, and the switching dunner in the air duct 40 is immediately detected. While the pipe 43 is closed, the discharge dunner 45 in the chimney 44 is opened and the auxiliary blower 52 is started to compensate for the decrease in the supply air flow rate. At this time, even if the auxiliary blower 52 is started, it takes more than 10 seconds to complete the start of the drive source 54, so if the pyrolysis furnace 10 is operated at a constant load, there will be a temporary air shortage. . Therefore, the problem is dealt with by reducing the load on the pyrolysis furnace 10 until the auxiliary blower 52 is fully activated.

上述のよう力木実施例によれば、ガスタービン61から
排出される高温の排気ガスを利用できて熱分解装置のエ
ネルイー効率を大幅に向上させることができる。この際
、排気ガスの他に、風量可変送風機51を設け、常時の
空気流量制御はとの送風機51の風量で行なうようKし
たから、大幅な炉負荷変動がない限j5.100%負荷
運転が好ましいガスタービン61の効率低下を招くこと
もない。また、装置始動時にあっては、空気流量制御装
置30による制御は行なわず、訪引ファン人ロダンノj
19等からなる炉内圧制御系及び圧力制御装置47で制
御を行なうようにしたから、立上り時の風量不足時には
装置としてよシ適切な制御を行なうことができる。
As described above, according to the power tree embodiment, the high temperature exhaust gas discharged from the gas turbine 61 can be used, and the energy efficiency of the pyrolysis apparatus can be greatly improved. At this time, in addition to the exhaust gas, a variable air volume blower 51 was installed, and the air flow rate was always controlled using the air volume of the air blower 51. Therefore, unless there is a large change in the furnace load, 100% load operation is possible. This does not cause a decrease in the efficiency of the preferable gas turbine 61. Furthermore, when the device is started, the air flow rate control device 30 does not perform any control, and the air flow rate control device 30 does not perform any control.
Since the control is performed by the furnace internal pressure control system consisting of 19, etc. and the pressure control device 47, the system can be controlled more appropriately when the air volume is insufficient at startup.

なお、実施にあたり、ガスタービン61のトリップ時に
おける補助送風機52の立上シ時の空気不足対策として
は、補助送風機52を常時無負荷で運転し、ガスタービ
ン61のトリップ時に急速に負荷をかける方法、あるい
は、補助送風機52を急速起動できる小型の、もの多数
で構成する方法も考えられるが、運転経、1、設備費等
の問題が生□、′1・: しるため、実用上は炉負荷を制限する方法が有利である
。また、前記実施例のように、各熱分解炉lOが誘引フ
ァン18を備えていれば、図中鎖線で示すように、空気
ダクト40に緊急時吸引ダクト48を設け、このダクト
48に設けられたダン/#49を、ガスタービン61の
トリップ時に開放して空気を吸引してもよい。さらに、
熱分解炉10の数は、図示のように4基に限らず、4基
以下あるいは4基以上の複数基であってもよい。
In addition, in implementation, as a countermeasure against air shortage when starting up the auxiliary blower 52 when the gas turbine 61 trips, there is a method in which the auxiliary blower 52 is always operated with no load, and when the gas turbine 61 trips, the load is rapidly applied. Alternatively, a method of configuring the auxiliary blower 52 with a large number of small units that can be started quickly can be considered, but this poses problems such as operation costs, equipment costs, etc. □,'1. Load limiting methods are advantageous. In addition, if each pyrolysis furnace IO is equipped with an induction fan 18 as in the above embodiment, an emergency suction duct 48 is provided in the air duct 40, as shown by the chain line in the figure. The dan/#49 may be opened to suck air when the gas turbine 61 trips. moreover,
The number of pyrolysis furnaces 10 is not limited to four as shown in the figure, but may be four or less or four or more.

上述のように本発明によれば、装置のエネルギー効率を
著しく向上させることのできる炭化水素の熱分解装置を
提供できるという効果がある。
As described above, the present invention has the effect of providing a hydrocarbon pyrolysis apparatus that can significantly improve the energy efficiency of the apparatus.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例を示す概略構成図である。 10・・・熱分解炉、12・・・酸素濃度etc針、1
8・・・誘引ファン、20・・・空気量補正調節計、2
1・・・ガス母管、22・・・オイル母管、23.24
・・・検出器、30・・・空気流量制御装置、40・・
・空気ダクト、43・・・切換〆、ン/#、45・・・
放出ダン/々、46・・・圧力調節計、4′7・・・圧
力制御装置、51・・・風量可変・: 送風機、52−・・補助送風機、55・・・回転数制御
装置、57・・・トリップ検出制御装置、61・・・が
スタービン、62・・・入口ガイドベーン、73・・・
流l検出器、74・・・酸素濃度検出器。 手続補正書(自発) 昭和81年3月8日 昭和S6年轡許  願第sos*st号2・ 発tso
名称  炭化水素。熱分郷装置3、 補正をする者 事件との関係 特許出願人 4、代理人 6、 補正により増加する発明の数    な′ニジ7
、補正の対象       1・ 量比」を「0.3〜1.0の重量比」K改める。 (2) 明細書第5頁第9行の「350〜650℃程度
」を「350〜700℃程度」K改める。 以   上 11゜
The figure is a schematic configuration diagram showing one embodiment of the present invention. 10...Pyrolysis furnace, 12...Oxygen concentration etc. needle, 1
8... Induction fan, 20... Air amount correction controller, 2
1... Gas main pipe, 22... Oil main pipe, 23.24
...Detector, 30...Air flow rate control device, 40...
・Air duct, 43...Switching end, N/#, 45...
Discharge Dan/etc., 46... Pressure controller, 4'7... Pressure control device, 51... Variable air volume: Blower, 52-... Auxiliary blower, 55... Rotation speed control device, 57 . . . trip detection control device, 61 . . . is a turbine, 62 .
Flow l detector, 74...Oxygen concentration detector. Procedural Amendment (Voluntary) March 8, 1981, Showa S6 Year Permit Application No. SOS*ST No. 2, Issued TSO
Name Hydrocarbon. Heat distribution device 3, relationship with the case of the person making the amendment Patent applicant 4, agent 6, number of inventions increased by amendment 7
, Target of correction 1. Modify "quantity ratio" to "weight ratio of 0.3 to 1.0". (2) "About 350 to 650°C" on page 5, line 9 of the specification is changed to "about 350 to 700°C." Above 11゜

Claims (1)

【特許請求の範囲】[Claims] (1)炭化水素熱分解管を内蔵した熱分解炉を複V基湛
列に設置するとともに、゛これらの熱分解炉に?呻用空
りを供給する風量可変送風機及びガスタービンを連設し
、この送風機の吐出口及びガスタービンの排勿口を各熱
分解炉に到る空気ダクトにそれぞれ接糾し、*+ *’
ガスタービンの排気口と空佃ダフトとの間にはガスター
ビンの排気ガスの空気ダクト内への導入及び遮断を切換
える切換ダン・平を設け、かつ、前記空気Iクト内の空
気流量が、熱分解炉の燃料消費量から算出され熱分解炉
の過剰酸素案で補正される空気流量に二致す゛るよう#
引・送風機の駆動源及びガスタービンの入口ガイドベー
ンまたは駆動源の少なくとも一つを制訓千る空偲流量制
御装曾を設けたことを特徴とする炭化水素の熱分解装置
。 (2、特許請求の範囲第1頓において、前記風量可変送
風機の躯II汲の制伊・とガスタービンの入口ガイドベ
ーンまた駆動渉の制御とのうち、凧勤可質送風機の駆動
筒の1ill illを優先的に行なう空気流量制御装
置を儒えたことを特徴とする炭化水素の熱分解装置。
(1) In addition to installing pyrolysis furnaces with built-in hydrocarbon pyrolysis tubes in a row of multiple V groups, ``in these pyrolysis furnaces?'' A variable air volume blower and a gas turbine are installed in series to supply a blowing space, and the discharge port of the blower and the exhaust port of the gas turbine are respectively connected to the air ducts leading to each pyrolysis furnace.
Between the exhaust port of the gas turbine and the air duct, there is provided a switch for switching between introducing and blocking the exhaust gas of the gas turbine into the air duct, and the air flow rate in the air duct is controlled by the heat # to match the air flow rate calculated from the fuel consumption of the cracking furnace and corrected by the excess oxygen plan of the pyrolysis furnace.
1. A hydrocarbon pyrolysis apparatus characterized in that an air flow rate control device is provided to control at least one of a drive source for a blower and an inlet guide vane or a drive source for a gas turbine. (2. In the first claim, it is provided that among the control of the body II of the variable air volume blower and the control of the inlet guide vane or drive of the gas turbine, one ill of the drive tube of the kite-operated air blower is provided. A hydrocarbon thermal decomposition device characterized by being equipped with an air flow rate control device that preferentially performs ill.
JP20598281A 1981-12-18 1981-12-18 Hydrocarbon pyrolysis equipment Expired JPS5943514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20598281A JPS5943514B2 (en) 1981-12-18 1981-12-18 Hydrocarbon pyrolysis equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20598281A JPS5943514B2 (en) 1981-12-18 1981-12-18 Hydrocarbon pyrolysis equipment

Publications (2)

Publication Number Publication Date
JPS58104993A true JPS58104993A (en) 1983-06-22
JPS5943514B2 JPS5943514B2 (en) 1984-10-22

Family

ID=16515933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20598281A Expired JPS5943514B2 (en) 1981-12-18 1981-12-18 Hydrocarbon pyrolysis equipment

Country Status (1)

Country Link
JP (1) JPS5943514B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019529595A (en) * 2016-07-25 2019-10-17 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Method for cracking hydrocarbon streams using flue gas from a gas turbine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102608464B1 (en) * 2016-10-05 2023-12-01 삼성전자주식회사 Method and apparatus for managing battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019529595A (en) * 2016-07-25 2019-10-17 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Method for cracking hydrocarbon streams using flue gas from a gas turbine

Also Published As

Publication number Publication date
JPS5943514B2 (en) 1984-10-22

Similar Documents

Publication Publication Date Title
NO171124B (en) CONTROL SYSTEM AND PROCEDURE FOR INJECTING WATER AND STEAM IN A GENERATION SYSTEM
CN110669538A (en) Biomass charcoal-heat co-production process and device for continuously realizing heat self-circulation
CN106906004A (en) Pulverized coal gasification control method and pulverized coal gasification device
CN109737435A (en) Thermal accumulating incinerator overtemperature treatment process and device
CN111981489B (en) Smoke temperature self-adjusting system for secondary combustion chamber of incinerator
JPS58104993A (en) Pyrolysis plant for hydrocarbon
AU2007330307B2 (en) Batch waste gasification process
CN103299129B (en) The method for controlling of operation of oxygen combustion boiler and device
CN219083049U (en) Biomass boiler flue gas temperature control system
CN206918999U (en) A kind of secondary air system based on flue gas recirculation
JPS62146990A (en) Hydrocarbon pyrolysis device
JP4266879B2 (en) Gasification furnace and combined recycling equipment
JPH0378436B2 (en)
CN104845674A (en) Furnace steam volume decreasing semi-water gas production process
JP2001263625A (en) Method and system for heating thermal decomposition gas
CN110307552B (en) Organic fluorine three-waste combined incineration system and control method
CN110055115A (en) A kind of start and stop method of two-section type crude material gasifying electricity generation system
JPH06212999A (en) Supply method of gas for oxygen-containing combustion to furnace of industrial facility with gas turbine system
CN213577505U (en) Incinerator secondary combustion chamber smoke temperature self-adjusting system
NO850363L (en) DEVICE FOR USE OF ENERGY IN WASTE WASTE
RU2693350C1 (en) Automatic control system of combustion process of power plant with active boiler-utilizer of high-temperature fluidized bed with air heater
CN110846082B (en) System for preparing high-heating-value fuel gas by cracking and gasification
CN106439860A (en) Alcohol dehydration steam heating system
CN116518379A (en) Pyrolysis gas direct combustion system, control method thereof and readable storage medium
CN113587066A (en) Combustion control device and method for gas-fired boiler