JPS63118083A - Electrolytic method using double-layer diaphragm - Google Patents

Electrolytic method using double-layer diaphragm

Info

Publication number
JPS63118083A
JPS63118083A JP61263939A JP26393986A JPS63118083A JP S63118083 A JPS63118083 A JP S63118083A JP 61263939 A JP61263939 A JP 61263939A JP 26393986 A JP26393986 A JP 26393986A JP S63118083 A JPS63118083 A JP S63118083A
Authority
JP
Japan
Prior art keywords
diaphragm
layer
electrolytic
membrane
porous layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61263939A
Other languages
Japanese (ja)
Inventor
Yoshio Sugaya
良雄 菅家
Tetsuji Shimodaira
哲司 下平
Yoshiaki Higuchi
義明 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP61263939A priority Critical patent/JPS63118083A/en
Publication of JPS63118083A publication Critical patent/JPS63118083A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To obtain the high current efficiency, low resistance, and high mechanical strength of a diaphragm by using a double-layer diaphragm obtained by laminating a hydrophilic cellular body layer and ion-exchange resin layer and closing the cells in the low-current density region as the electrolytic diaphragm. CONSTITUTION:In the electrolytic cell for an aq. soln. wherein an anode chamber and cathode chamber are formed, the double-layer diaphragm obtained by laminating a hydrophilic cellular body layer having 1-1,000 Garley number and an ion-exchange resin layer is used as the electrolytic diaphragm. In this case, the cells in the region of the hydrophilic cellular body layer having the <=1/2 times current density for the mean current density of the diaphragm are closed in the double-layer membrane. The clamped part on the peripheral part of the diaphragm, the part which is not brought into contact with an electrolyte, the curved corner part not opposed to the effective electrolytic surface of the anode of a finger-type electrolytic cell, etc., are appropriately exemplified as the closed-cell region. The Garley number of the cellular body layer is increased to >=10<4> by the cell closing treatment. As a result, a diaphragm having excellent characteristics is obtained, and a high-purity product can be obtained by electrolysis.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は複層隔膜を使用する電解方法、詳しくは、高電
流効率、低膜抵抗で、且つ高い機械的強度が要求される
。水、塩化アルカリ、水酸化アルカリ、又は酸水溶液等
の水性溶液を電解するための新規な電解方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an electrolytic method using a multilayer diaphragm, and more specifically, high current efficiency, low membrane resistance, and high mechanical strength are required. The present invention relates to a novel electrolysis method for electrolyzing aqueous solutions such as water, alkali chloride, alkali hydroxide, or acid aqueous solutions.

[従来の技術] 水、塩化アルカリ、水酸化アルカリ又は酸水溶液の電解
には、近年イオン交換膜法が提案されているが、これら
で使用されるイオン交換膜としては、高い電流効率と低
い膜抵抗を有しながら、且つ取扱い上、大きな機械的強
度を有することが必須である。
[Prior art] Ion exchange membrane methods have been proposed in recent years for the electrolysis of water, alkali chloride, alkali hydroxide, or acid aqueous solutions, but the ion exchange membranes used in these methods have high current efficiency and low membrane It is essential to have high mechanical strength in terms of handling while having resistance.

イオン交換基を有する重合体からなるフィルムは、引裂
強度が小さいので、縄布などの補強材により、引裂強度
を改善することが知られているが、補強材の使用は膜を
厚膜化し、又電気の流れを遮蔽する為、抵抗が高くなる
欠点を有している。
Films made of polymers with ion exchange groups have low tear strength, so it is known that reinforcing materials such as rope can be used to improve tear strength. Also, since it blocks the flow of electricity, it has the disadvantage of high resistance.

この欠点を改善する目的の為に、電流効率は高くないが
、電気抵抗の小さい含水率の大きいイオン交換体層を、
ポリ四弗化エチレン製織布やポリ四弗化エチレンのミク
ロフィブリルで補強した大きい厚みのフィルムと、高電
流効率を示す電気抵抗の大きい含水率の小さいイオン交
換体層の厚みの小さいフィルムとを、加熱圧着などして
一体的に積層せしめた複層型イオン交換膜が提案されて
おり(特開昭57−3658f1号公報、特開昭53−
132089号公報、特開昭57−84910号公報な
ど参照)、かなりの高性能が達成されている。
In order to improve this drawback, an ion exchanger layer with a high water content and low electrical resistance was used, although the current efficiency was not high.
A thick film reinforced with polytetrafluoroethylene woven fabric or polytetrafluoroethylene microfibrils, and a thin film with a low water content and ion exchange layer that exhibits high current efficiency and high electrical resistance. , multilayer ion exchange membranes that are integrally laminated by heating and pressure bonding have been proposed (Japanese Patent Application Laid-Open Nos. 57-3658f1 and 1983-1999).
132089, Japanese Unexamined Patent Publication No. 57-84910, etc.), considerable high performance has been achieved.

しかしながら、このような複層型イオン交換膜では、膜
抵抗を下げ、更に省エネルギー化を図ろうとした場合に
は、含水率を更に大きくするか又は、膜厚を小さくせざ
るを得ないが、これは膜強度の急激な低下を招き限界が
ある。
However, in such a multilayer ion exchange membrane, if you want to lower the membrane resistance and further save energy, you will have to increase the water content or reduce the membrane thickness. However, there is a limit as it causes a rapid decrease in film strength.

これらの克服する方法として、特開昭61−13347
号公報に示されるような、親水性多孔体に支持された、
可及的に薄いイオン交換体層からなる新規な隔膜が提供
されている。しかしこの様な、親水性多孔体層を有し、
抵抗の低い薄いイオン交換体層からなる隔膜を種々の形
式・構造の電解槽において使用し塩化アルカリ水溶液の
電解を行うと、特定の電解槽において製造される苛性ア
ルカリ中の塩化アルカリ金属含有量が高く、また経時的
に増加する場合のあることが判明した。更に工業゛電解
槽に広く使用されているEPDM製ゴムガスケットをバ
ッキング材に用い膜を締め付け電解した場合、ゴムガス
ケットが著しく侵食を受けるという用例も見い出された
。また、膜を工業電解槽に装着する際に、締め付け圧が
電解槽の構造」二低い電解槽では、電解液の電解槽外へ
の漏れが膜の支持体である親水性多孔体層を通じ生じる
場合があることも認められた。
As a method to overcome these problems, Japanese Patent Application Laid-Open No. 61-13347
Supported by a hydrophilic porous material as shown in the publication,
A novel diaphragm is provided which consists of an ion exchanger layer that is as thin as possible. However, with such a hydrophilic porous layer,
When a diaphragm consisting of a thin ion exchanger layer with low resistance is used in electrolytic cells of various types and structures to electrolyze an aqueous alkali chloride solution, the content of alkali metal chloride in the caustic alkali produced in a particular electrolytic cell can be reduced. It was found that this value is high and may increase over time. Furthermore, it has been found that when an EPDM rubber gasket, which is widely used in industrial electrolytic cells, is used as a backing material and the membrane is tightened for electrolysis, the rubber gasket is severely eroded. In addition, when attaching a membrane to an industrial electrolytic cell, in an electrolytic cell where the clamping pressure is low due to the structure of the electrolytic cell, leakage of electrolyte to the outside of the electrolytic cell may occur through the hydrophilic porous layer that is the support of the membrane. It was also acknowledged that there are cases.

フィンガー型電解槽ではフィルタープレス型電解槽に比
べ同じ膜を用い電解した場合、苛性アルカリの純度が低
いことは知られているが、親水性多孔体に支持されたイ
オン交換膜を低膜抵抗の隔膜としてフィンガー型電解槽
において電解した場合、製造される苛性アルカリ中のア
ルカリ金属塩化物含有量がさらに高いものとなることも
判明した。
It is known that the purity of caustic alkali is lower in finger-type electrolyzers than in filter press-type electrolyzers when the same membrane is used for electrolysis. It has also been found that when electrolysis is carried out in a finger-type electrolytic cell as a diaphragm, the alkali metal chloride content in the produced caustic alkali becomes even higher.

[発明の解決しようとする問題点コ 本発明は、親水性多孔体層を支持体とする新規な陽イオ
ン交換膜を隔膜として電解に用いる際に、親水性多孔体
層の液流通性の良さ及び膜抵抗の低さから生じる、上記
のごとき問題点を解消するものであり、消費エネルギー
の小さい高性能な膜を工業的に使用できる技術を提供し
、特に苛性アルカリ中のアルカリ金属塩化物の少ない純
度の高い苛性アルカリを製造するために必要な、電解隔
膜の使用方法を提供することを目的とする。
[Problems to be Solved by the Invention] The present invention solves problems when using a novel cation exchange membrane having a hydrophilic porous layer as a support for electrolysis as a diaphragm. This technology solves the above-mentioned problems caused by low membrane resistance and low membrane resistance, and provides a technology that enables industrial use of high-performance membranes with low energy consumption. The purpose of the present invention is to provide a method for using an electrolytic diaphragm necessary for producing a small amount of highly pure caustic alkali.

[問題点を解決するための手段] 本発明は、−上記目的を達成すべく成されたもノテアリ
、ガーレナンバー1−1000の親水性多孔体層とイオ
ン交換樹脂層とが積層された複層隔膜を、陽極室と陰極
室を形成した水性溶液の電解槽において電解用隔膜とし
て使用するにあたり、電流密度が膜の平均電流密度の局
以下である領域の複層隔膜の親水性多孔体層の孔を閉塞
処理して用いることを特徴とする電解用隔膜を使用した
電解方法を提供するものである。
[Means for Solving the Problems] The present invention has been made to achieve the above object, and provides a multi-layered structure in which a hydrophilic porous layer of Gurley Number 1-1000 and an ion exchange resin layer are laminated. When using a diaphragm as an electrolytic diaphragm in an aqueous solution electrolytic cell with an anode chamber and a cathode chamber, the hydrophilic porous layer of the multilayer diaphragm in the area where the current density is less than the average current density of the membrane. The present invention provides an electrolysis method using an electrolytic diaphragm characterized in that the pores are closed.

本発明において多孔体層の孔の閉塞処理された多孔体層
のガーレナンバーは104以上、特ニは105以りであ
ることが望ましい、多孔体層のガーレナンバーを大きく
することで多孔体層の液流通性を低くし更に孔を閉塞さ
れた領域の膜抵抗は高いものとなり、陽極液や陰極液の
相互の拡散を小さくすることができ、高い電流効率と、
高い製品純度を得る電解が提供できる。
In the present invention, it is preferable that the Gurley number of the porous layer whose pores have been blocked is 104 or more, particularly 105 or more. The liquid flow rate is lowered, and the membrane resistance in the area where the pores are blocked becomes high, which makes it possible to reduce the mutual diffusion of the anolyte and catholyte, resulting in high current efficiency and
We can provide electrolysis that provides high product purity.

本発明は塩化アルカリ、アルカリ、水、および酸水溶液
などのいずれの水性溶液の電解にも適応できるが、特に
陽極液や陰極液の相互拡散による影響が最も大きい塩化
アルカリ水溶液の電解について説明するが、これによっ
て限定されるものではないことは勿論である。
Although the present invention is applicable to the electrolysis of any aqueous solution such as alkali chloride, alkali, water, and acid aqueous solution, the electrolysis of aqueous alkali chloride solution will be described in particular, where the influence of interdiffusion of anolyte and catholyte is greatest. , it goes without saying that the invention is not limited to this.

問題点として指摘した苛性アルカリ中へのアルカリ金属
塩化物の漏洩、電解槽外への電解液の漏れ及びガスケッ
トの侵食が抑えられる機構は、およそ次のように推定さ
れる。苛性アルカ。
The mechanism for suppressing the leakage of alkali metal chloride into the caustic alkali, the leakage of the electrolyte to the outside of the electrolytic cell, and the erosion of the gasket, which have been pointed out as problems, is estimated to be approximately as follows. Caustic Alka.

り中へのアルカリ金属塩化物の漏洩は、実質的に電解が
行われている有効電解面以外の領域から生じていると思
われる。
It is believed that leakage of alkali metal chloride into the reactor occurs from areas other than the effective electrolytic surface where electrolysis is substantially occurring.

膜の周辺部の締め付け部領域の電解面側端部は膜取り付
け時のガスケット位置のほんのわずかなずれにより膜に
非通電部を生じさせ、また電解槽上部の電解液と接して
いない膜の部分は実質的に電解が生じていない領域であ
る。フィンガー型電解槽では、陽極と陰極が対向し且つ
陽極、陰極間の直線距離が短く実質的に電解のおこる陽
極の有効電解面と対向しない膜のコーナー曲面部分や、
電解槽上部の電解液と接しない膜の部分などは微少通電
部又は非通電部である。
At the electrolytic side end of the tightening area around the membrane, a slight shift in the gasket position during membrane installation may cause a non-current-conducting part of the membrane, and a portion of the membrane that is not in contact with the electrolyte at the top of the electrolytic cell. is a region where substantially no electrolysis occurs. In a finger type electrolytic cell, the anode and cathode face each other, and the straight line distance between the anode and cathode is short, and the corner curved part of the membrane that does not face the effective electrolytic surface of the anode where electrolysis actually occurs,
The part of the membrane that is not in contact with the electrolyte at the top of the electrolytic cell is a slightly energized part or a non-energized part.

このような膜の部分を通し、苛性アルカリ中へアルカリ
金属塩化物が拡散、漏洩してゆくが、その量は膜の抵抗
が低いものほど大きい。
Alkali metal chloride diffuses and leaks into the caustic alkali through such a membrane portion, and the amount of the alkali metal chloride is greater as the resistance of the membrane is lower.

更にアルカリ金属塩化物側に拡散する苛性アルカリは塩
素と反応することで次亜塩素酸を生成し、ガスケットを
侵食する。この現象も苛性アルカリの拡散に起因してお
り膜の抵抗が低くなればより徴しいものとなる。このよ
うな現象は、電解エネルギーを低減しようと膜抵抗を低
減すると必然的に起こる現象であり、低膜抵抗の隔膜を
使用する七で、新たな課題であることが本発明者の研究
によって明らかになった。尚電解槽外への゛電解液の漏
れは、陽イオン交換体が液流通性の良い親木化多孔体に
支持されているため、この多孔体層の孔を通じて電解液
が槽外に漏れると考えられる。
Furthermore, the caustic alkali that diffuses to the alkali metal chloride side reacts with chlorine to produce hypochlorous acid, which corrodes the gasket. This phenomenon is also caused by the diffusion of caustic alkali, and becomes more pronounced as the resistance of the membrane decreases. This phenomenon is a phenomenon that inevitably occurs when membrane resistance is reduced in an attempt to reduce electrolytic energy, and research by the present inventors has revealed that it is a new problem when using a diaphragm with low membrane resistance. Became. In addition, leakage of the electrolyte to the outside of the electrolytic cell will occur because the cation exchanger is supported by a wood-based porous material with good liquid flow, so if the electrolyte leaks out of the cell through the pores of this porous material layer, it will occur. Conceivable.

一力、本発明によると、親水性多孔体層に支持された陽
イオン交換膜の上記のごとき電流密度の低い領域におけ
る多孔体層の孔を閉塞処理することにより、親水性多孔
体層の孔の閉塞された部分の膜の抵抗を高くすることが
できる。
According to the present invention, the pores of the hydrophilic porous layer are blocked by blocking the pores of the porous layer in the above-mentioned low current density region of the cation exchange membrane supported by the hydrophilic porous layer. The resistance of the membrane in the occluded part can be increased.

従ってその領域における膜を介しての?、?性アシアル
カリルカリ金属塩化物の拡散を低く押えることが可イ七
となり、苛性アルカリ中のアルカリ金属塩化物含有量の
低い高純度の苛性アルカリが製造できる。また膜の締め
付け端部におけるガスケットの侵食が防止できる。更に
膜の周辺部の締め付け領域の親水性多孔体層の孔を閉塞
することにより、多孔体層の液流通性をなくし、構造り
締め付け圧の低い電解槽において′1ニ解液の槽外への
漏れを防ぐことができる。なお、E記考察は苛性アルカ
リ中へのアルカリ金属塩化物の混入、ガスケットの侵食
、槽外への液漏れ機構を説明するためのものであって、
これによって本発明を限定するものではない。
So through the membrane in that area? ,? This makes it possible to suppress the diffusion of alkali metal chlorides, making it possible to produce high-purity caustic alkali with a low content of alkali metal chlorides in the caustic alkali. Also, erosion of the gasket at the tightened end of the membrane can be prevented. Furthermore, by blocking the pores in the hydrophilic porous layer in the tightening area around the membrane, the liquid flow through the porous layer is eliminated, and in an electrolytic cell with a low structural tightening pressure, the '1 solution is prevented from flowing out of the tank. leakage can be prevented. Note that the discussion in Section E is intended to explain the mixing of alkali metal chlorides into caustic alkali, gasket erosion, and the mechanism of liquid leakage to the outside of the tank.
This is not intended to limit the invention.

本発明で、親木化多孔体層の孔を閉塞させる処理は、多
孔体層とイオン交換樹脂層の積層時又は積層後、イオン
交換体層の加水分解前又は加水分解後のいずれの段階に
でも行うことができる0手段としては、多孔体層の圧密
化を利用する場合には、閉塞せしめる領域に50kg/
cm2以北の圧力、特には100kg/c12以上の圧
力をプレスなどにより加えることで為される。又必要に
応じて、加熱を併用することもでき、例えば50〜35
0℃、好ましくは100〜250℃の条件下で加熱圧密
化させることもできる。
In the present invention, the treatment for clogging the pores of the lignified porous material layer can be carried out at any stage during or after the lamination of the porous material layer and the ion exchange resin layer, before or after the hydrolysis of the ion exchange layer. However, when using compaction of the porous material layer, 50 kg/kg of the area to be occluded is used.
This is done by applying a pressure north of cm2, particularly a pressure of 100 kg/c12 or more, using a press or the like. If necessary, heating can also be used, for example, 50 to 35
Heat consolidation can also be carried out under conditions of 0°C, preferably 100 to 250°C.

グリース又は分散液を塗布し孔を閉塞させる場合には、
耐塩素性でかつ好ましくは耐アルカリ性を有するグリー
ス又は弗素系重合体の分散液が望ましい、これらの例と
してはシリコングリースやポリテトラフルオロエチレン
、ポリクロロトリフルオロエチレン、ポリヘキサフルオ
ロプロピレンオキサイドを含有するグリースやディスパ
ージョン、カルボン酸又はスルホン醸基を含有するテト
ラフルオロエチレン共重合体の分散液、溶液が使用され
る。
When applying grease or dispersion to block the holes,
Greases or dispersions of fluorine-based polymers that are resistant to chlorine and preferably resistant to alkali are desirable; examples of these include silicone greases, polytetrafluoroethylene, polychlorotrifluoroethylene, and polyhexafluoropropylene oxide. Greases and dispersions, dispersions and solutions of tetrafluoroethylene copolymers containing carboxylic acid or sulfonic groups are used.

上記したいずれかの手段により為される親水性多孔体層
の孔の閉塞処理は電流密度が膜の平均電流密度の繕以下
、更に効率的には局以下である可及的多くの領域につい
て行うのが好ましいが、必ずしも電流密度の上記の領域
だけでなく、場合によっては通常の電解面に一部拡張さ
れてもよい。
The pore blocking treatment of the hydrophilic porous layer performed by any of the above methods is carried out in as many areas as possible where the current density is less than or equal to the average current density of the membrane, and more efficiently, less than or equal to the average current density of the membrane. However, it is not necessarily limited to the above-mentioned region of current density, but may partially extend to the normal electrolytic surface depending on the case.

本発明で使用される親水性多孔体層を支持体とする陽イ
オン交換膜の陽イオン交換体層は、電気化学的性能上、
好ましくは、イオン交換基がスルホン酸基若しくはカル
ボン酸基又は酸アミド、エステル、酸ハロゲン化物など
の誘導体基からなり、且つ耐食性の点から好ましくは含
フツ素重合体から形成される。イオン交換体層の厚みは
1〜450 、好ましくは10〜150蒔、イオン交換
容量は好ましくは0.5〜2.Omeq/g乾燥樹脂、
特には0.8〜1.8+seq/g乾燥樹脂が選ばれる
。多孔体層はガーレナンバーが1−1000、孔径0.
01〜30鋳、気孔率が30〜95%をもっことが好ま
しく、又厚みは30〜450痔であることが低膜抵抗及
び機械的強度の点から好ましく、#食性の点から含フツ
素ポリマーからなるものが好ましい、なかでもガーレナ
ンバーが3〜300、孔径は0.1〜8ル、気孔率は5
0〜80%、厚みは60〜300 gの延伸処理された
PTFE多孔体であることが好適である。
The cation exchange layer of the cation exchange membrane having a hydrophilic porous layer as a support used in the present invention has the following characteristics in terms of electrochemical performance:
Preferably, the ion exchange group consists of a sulfonic acid group, a carboxylic acid group, or a derivative group such as an acid amide, ester, or acid halide, and is preferably formed from a fluorine-containing polymer from the viewpoint of corrosion resistance. The thickness of the ion exchanger layer is 1 to 450 mm, preferably 10 to 150 mm, and the ion exchange capacity is preferably 0.5 to 2.0 mm. Omeq/g dry resin,
In particular, a dry resin of 0.8 to 1.8+seq/g is selected. The porous layer has a Gurley number of 1-1000 and a pore diameter of 0.
It is preferable that the porosity is 30 to 95%, and the thickness is preferably 30 to 450 from the viewpoint of low membrane resistance and mechanical strength. It is preferable that the Gurley number is 3 to 300, the pore size is 0.1 to 8, and the porosity is 5.
A stretched porous PTFE body having a thickness of 0 to 80% and a thickness of 60 to 300 g is preferable.

陽イオン交換体層を多孔体層により積層支持する方法に
ついて、特に制限はないが、好ましくはイオン交換体の
膜状物と多孔体層を重ね合せ、これをイオン交換体の転
化温度以上、好ましくは溶融温度以上の100〜250
℃にて加熱融着せしめる方法や、イオン交換体を形成す
る重合体を必要に応じて他の樹脂又は可塑剤を加えた溶
液、懸濁物又はペースト状物を多孔体層に塗布し、溶媒
を蒸せしめるか又は重合体の転化温度以上に加熱して皮
膜化する方法などが使用できる。
There are no particular restrictions on the method of laminating and supporting the cation exchanger layer with the porous layer, but it is preferable to stack the ion exchanger membrane and the porous layer, and to heat the layer at a temperature higher than the conversion temperature of the ion exchanger, preferably. is 100 to 250 above the melting temperature
There is a method of heating and fusing the polymer forming the ion exchanger at a temperature of Methods such as steaming or heating above the conversion temperature of the polymer to form a film can be used.

イオン交換体層の多孔体層による積層支持は、イオン交
換体層の陰極側の而又は陽極側の面、更には陽極、陰極
両膜面を支持することが可能である。また、膜の強度を
さらに向上させるために、必要があれば、例えばポリテ
トラフルオロエチレンなどの含弗素重合体からなる織布
などを膜中に補強材として挿入することもできる。この
場合繊布はイオン交換体層と多孔体層の間又は多孔体層
の中に挿入される。
The layered support of the ion exchanger layer by the porous layer can support the surface of the ion exchanger layer on the cathode side or the anode side, or furthermore, on both the anode and cathode membrane surfaces. Furthermore, in order to further improve the strength of the membrane, if necessary, a woven fabric made of a fluorine-containing polymer such as polytetrafluoroethylene can be inserted into the membrane as a reinforcing material. In this case, the fabric is inserted between the ion exchanger layer and the porous layer or into the porous layer.

多孔体層への親水性の付与は、多孔体層とイオン交換体
層とをa層せしめる前或いは積層せしめた後行うことが
できる。多孔体層に親水性をもたらしめる手段としては
種々の方法が採用できる。例えば多孔体層を形成する際
に、無機の親木化剤を配合して、多孔体を形成する材料
を親水化することができる。無機の親木化剤としては、
チタン、ジルコニウム、ニオブ、タンタル、バナジウム
、マンガン、モリブデン、スズなどの酸化物、水酸化物
、窒化物、炭化物のほか炭化ケイ素、チタン酸バリウム
、硫酸バリウムなど、モ均粒径5壓以下の粒子を、含フ
ツ素重合体に対して50〜1000重量%を添加し、造
孔剤を加え混合し、膜状に成形した後、造孔剤を抽出す
ることによって得られる。別の手段としては、多孔体層
の気孔率を過度に低下させない程度に親水性単量体を含
浸して重合する方法、親水性重合体を溶液の状態で充填
又は塗布して乾燥乃至焼成する方法、更には含フツ素多
孔体自体を、親木基を有する1ffi体の重合体から形
成する方法などが例示される。親水性を有する単量体及
び重合体としては、カルボン酸基、スルホン酸基及び又
はリン酸基を有する含フツ素重合体が使用される。かく
して、これら親水性を有する単量体が多孔体に含浸重合
され、或いはその重合体の0.5〜50重量%の溶液(
例えば特公昭48−13333号、及び特開昭55−1
49338号公報等)が多孔体に塗布される。これら親
水性を有する含フツ素重合体は、好ましくは多孔体に対
して1〜300重量%、特には2〜100重量%付着せ
しめられる。
Hydrophilicity can be imparted to the porous layer before or after laminating the porous layer and the ion exchanger layer into the a-layer. Various methods can be employed to impart hydrophilicity to the porous layer. For example, when forming a porous body layer, an inorganic lignophilizing agent can be blended to make the material forming the porous body hydrophilic. As an inorganic wood-loving agent,
Oxides, hydroxides, nitrides, carbides such as titanium, zirconium, niobium, tantalum, vanadium, manganese, molybdenum, tin, as well as silicon carbide, barium titanate, barium sulfate, etc., particles with an average particle size of 5 μm or less is added in an amount of 50 to 1000% by weight based on the fluorine-containing polymer, a pore-forming agent is added thereto, mixed, formed into a membrane, and then the pore-forming agent is extracted. Another method is to impregnate and polymerize a hydrophilic monomer to an extent that does not excessively reduce the porosity of the porous layer, or to fill or apply a hydrophilic polymer in the form of a solution and dry or bake it. Examples include a method in which the fluorine-containing porous body itself is formed from a 1ffi polymer having a parent wood group. As the hydrophilic monomer and polymer, a fluorine-containing polymer having a carboxylic acid group, a sulfonic acid group, and/or a phosphoric acid group is used. In this way, these monomers having hydrophilic properties are impregnated into a porous body and polymerized, or a solution of 0.5 to 50% by weight of the polymer (
For example, Japanese Patent Publication No. 48-13333 and Japanese Patent Publication No. 55-1
49338, etc.) is applied to the porous body. These hydrophilic fluorine-containing polymers are preferably attached to the porous body in an amount of 1 to 300% by weight, particularly 2 to 100% by weight.

次に本発明を実施例により説明するが1本発明はその範
囲内で種々の態様が含まれる0例えば本発明に使用され
るイオン交換膜には、その陽極側または陰極側の表面あ
るいは両面に必要に応じて、ガスおよび液透過性の電極
活性奢有しない粒子を含む多孔質(特開昭58−755
83号公報及び特開昭57−39185号公報)あるい
はガス及び液透過性の電極活性を有する粒子を含む多孔
質層(特開昭54−112398号公報)を設けて電解
下に於ける摺電圧を大幅に改良することができる。
Next, the present invention will be explained with reference to examples.1 The present invention includes various embodiments within its scope.0 For example, the ion exchange membrane used in the present invention may have a If necessary, a porous material containing gas- and liquid-permeable electrode active particles (Japanese Patent Laid-Open No. 58-755
83 and JP-A No. 57-39185) or a porous layer containing gas- and liquid-permeable electrode active particles (JP-A-54-112398) to reduce the sliding voltage under electrolysis. can be significantly improved.

[発明の効果] 以上のように、本発明は、電流密度が膜の平均電流密度
より低い領域において、親水性多孔体層とイオン交換樹
脂層とが積層された複層隔膜の多孔体層の孔を閉塞する
ことにより、高強度でありかつ低抵抗な新規複層隔膜を
電解に使用し長期にわたり高純度の生成物を得、さらに
槽外への液漏れも防止できる特徴を有する。併せて低抵
抗膜を用いた場合生じる、EPDM製等のガスケットの
侵食を軽減する効果も認められる。
[Effects of the Invention] As described above, the present invention improves the efficiency of the porous layer of a multilayer diaphragm in which a hydrophilic porous layer and an ion exchange resin layer are laminated in a region where the current density is lower than the average current density of the membrane. By blocking the pores, the new high-strength, low-resistance multi-layer diaphragm can be used for electrolysis, producing high-purity products over a long period of time, and also preventing liquid leakage to the outside of the tank. In addition, the effect of reducing erosion of gaskets made of EPDM or the like, which occurs when a low resistance film is used, is also recognized.

[実施例] 実施例1 ポリテトラフルオロエチレン(以下PTFEと呼ぶ)の
ファインパウダーと液状潤滑材として白灯油との混合物
を膜状とした。白灯油を除去し、一方に延伸させた後、
加熱処理によって安定した多孔構造を持つガーレナンバ
ーが7、孔径5gm 、気孔率80%、膜厚110 p
−rmのPTFE多孔体を得た。
[Examples] Example 1 A mixture of fine powder of polytetrafluoroethylene (hereinafter referred to as PTFE) and white kerosene as a liquid lubricant was formed into a film. After removing the white kerosene and stretching it to one side,
Gurley number 7 with porous structure stabilized by heat treatment, pore diameter 5gm, porosity 80%, film thickness 110p
-rm PTFE porous body was obtained.

イオン交換体層として、C2F4と CF2 =CFO
(CF2 )3 COOCH3との共重合体からなるイ
オン交換容量1.25meq/g乾燥樹脂からなる40
AL厚の膜(第一のフィルム)とイオン交換容量1.4
4maq/g乾燥樹脂の上記の共重合体20用厚の膜(
第二のフィルム)との積層物を得た。
As an ion exchanger layer, C2F4 and CF2 = CFO
(CF2)3 Composed of copolymer with COOCH3 Ion exchange capacity 1.25 meq/g dry resin 40
AL thickness membrane (first film) and ion exchange capacity 1.4
4 maq/g dry resin of the above copolymer 20 thick film (
A laminate with a second film) was obtained.

次に、上記イオン交換体の第二のフィルム面にPTFE
多孔体を重ね加熱圧縮により積層せしめ、厚さ 170
Ii、の複層隔膜を得た。
Next, apply PTFE to the second film surface of the ion exchanger.
Porous materials are layered and laminated by heating and compression to a thickness of 170 mm.
A multilayer diaphragm of Ii was obtained.

一方C2FAとCF2=GFO(CF2−CF)0(C
F2hSO2FとのCF3 イオン交換容量1 、 Lseq/g乾燥樹脂の共重合
体を酸型に変換せしめた後、次の2種の溶液を調合した
On the other hand, C2FA and CF2=GFO(CF2-CF)0(C
After converting the copolymer of CF3 ion exchange capacity 1 Lseq/g dry resin with F2hSO2F to the acid form, the following two solutions were prepared.

・溶液1.15重量%5ルZ r02粒子を分散させた
3重量%酸型共重合体のエタノー ル溶液 ・溶液2.15重量%塩化ジルコニル、2重量%酸型共
重合体の水・エタノール・ イソプロピルアルコール溶液 かくして得られた溶液1を、上記複層隔膜の。
・Solution 1.15% by weight Ethanol solution of 3% acid type copolymer with 5ruZ r02 particles dispersed ・Solution 2.15% by weight zirconyl chloride, 2% by weight acid type copolymer in water ・Ethanol・Isopropyl alcohol solution The solution 1 thus obtained was added to the above multilayer diaphragm.

両面にスプレー塗布し、乾燥・加熱し、Z r02微粒
子を1mg/cm2付着せしめた0次に溶液2を多孔体
層に含浸せしめた後、乾燥することにより、多孔体層内
部を塩化ジルコニルと酸型共重合体との混合物で被覆し
た複層隔膜を得た。
The porous layer is impregnated with solution 2, which is spray-coated on both sides, dried and heated to adhere 1 mg/cm2 of Z r02 fine particles, and then dried to coat the inside of the porous layer with zirconyl chloride and acid. A multilayer diaphragm coated with a mixture with type copolymer was obtained.

かくして得られた複層隔膜は25玉量%の苛性ソーダ水
溶液で加水分解せしめた後、厚さ2■のEPDM製ゴム
ガスケットをバッキング材とし、チタンのパンチトメタ
ル(短径2■、艮径5+am)に酸化ルテニウムと酸化
イリジウムと酸化チタンを被覆した陽極と、5US30
4製パンチトメタル(短径2IIII、長径5mm)に
ルテニウム入すラネーニッケル(ルテニウム5%、ニッ
ケル50%、アルミニウム45%)を電着した陰極を備
えた電解面、t&10cmX 15c厘のフィルタープ
レス(1j電解槽において、複層隔膜のガスケット締め
りけ部分及び締め付け部分から陰極ガスゲット−1電解
面側端部より 5■電解面側までの領域の←孔体層を圧
力200kg/cm2 、温度50°Cでプレスにより
孔を閉塞処理した複層隔膜の第一のフィルム面が陰極面
となるよう陰極室の塩化ナトリウム濃度を 200g/
fL、に、また陰極室の苛性ソーダ濃度を35重量%に
保ちつつ電流密度30A/ds2.90℃の条件下で電
解を行った。尚、締め付けはlokg/cm2とした。
The thus obtained multilayer diaphragm was hydrolyzed with a 25% caustic soda aqueous solution, and then a 2-inch thick EPDM rubber gasket was used as the backing material, and a titanium punched metal (minor diameter 2 mm, diameter 5+ am) was used. ) coated with ruthenium oxide, iridium oxide, and titanium oxide, and 5US30
An electrolytic surface equipped with a cathode made by electrodepositing Raney nickel (5% ruthenium, 50% nickel, 45% aluminum) containing ruthenium on punched metal made of No. 4 (minor axis 2III, major axis 5 mm), T & 10 cm x 15 cm filter press (1 j In the electrolytic cell, the pore layer in the area from the gasket tightening part and the tightening part of the multilayer diaphragm to the electrolytic surface side end of cathode gas get-1 to the electrolytic surface side is heated at a pressure of 200 kg/cm2 and a temperature of 50°. The sodium chloride concentration in the cathode chamber was adjusted to 200 g /
fL, and electrolysis was carried out under conditions of a current density of 30 A/ds and 2.90° C. while maintaining the caustic soda concentration in the cathode chamber at 35% by weight. In addition, the tightening was set to 10 kg/cm2.

200日間の運転中苛性ソーダ中の塩化ナトリウム含有
量は低く、経時的り昇は認められなかった。更に槽外へ
の液漏れも認められず、また電解槽を解μ、観察した結
果、ガスケットの侵食も認められなかった。
During the 200 days of operation, the sodium chloride content in the caustic soda was low and no increase over time was observed. Furthermore, no liquid leakage outside the tank was observed, and when the electrolytic cell was opened and observed, no erosion of the gasket was observed.

上記の孔を閉塞処理した多孔体層のガーレナンバーは、
同等の複層隔膜に同等な処理を行った複層隔膜から多孔
体層を剥し測定したところ2X 105であった。電解
初期の性能と 200日電解後の性能を表1に示す。
The Gurley number of the porous layer with the above pores blocked is
When the porous layer was peeled off from a multilayer diaphragm that had been subjected to the same treatment as an equivalent multilayer diaphragm and measured, it was found to be 2X105. Table 1 shows the performance at the initial stage of electrolysis and the performance after 200 days of electrolysis.

表  1 比較例1−1 実施例1において、複層隔膜のガスケット締め付け部分
及び締め付け部分から陰極ガスケットの電解面側端部よ
り 5II!l電解面側までの領域の多孔体層の孔を閉
塞処理しない他は、実施例1と同等な膜、電槽、運転条
件にて60日間電解を行った。苛性ソーダ中の塩化ナト
リウム含有情は高く、経時的に著しく増加した。さらに
、液漏れ及び激しいガスケットの侵食が認められた。電
解初期の性能と、60日電解後の性能を表2に示す。
Table 1 Comparative Example 1-1 In Example 1, from the gasket tightening part of the multilayer diaphragm and from the tightening part to the electrolytic surface side end of the cathode gasket 5II! Electrolysis was carried out for 60 days using the same membrane, container, and operating conditions as in Example 1, except that the pores in the porous layer in the region up to the electrolysis surface were not blocked. The sodium chloride content in caustic soda was high and increased significantly over time. Furthermore, liquid leakage and severe gasket erosion were observed. Table 2 shows the performance at the initial stage of electrolysis and the performance after 60 days of electrolysis.

表  2 比較例1−’2 C2FaとCF2=CFO(CF2 )3 COOCH
3との共重合体からなるイオン交換容i1.25meq
/g乾煙樹脂からなる40鉢厚の膜(第一のフィルム)
とイオン交換容μm、44meQ/g乾燥樹脂の上記の
共重合体20用厚の膜(第二のフィルム)との積層膜を
得た。この積層膜の両面に実施例1で用いた溶液1を両
面にスプレー塗布し、乾燥や加熱し、ZrO2’$IL
粒子を ll1g/C112付着せしめた。かくシテ得
られた積層膜は25重量%苛性ソーダ水溶液で加水分解
せしめた後、実施例1と同等な電槽、運転条件で200
 日間電解を行った。
Table 2 Comparative Example 1-'2 C2Fa and CF2=CFO(CF2)3 COOCH
Ion exchange capacity i1.25meq consisting of a copolymer with 3
40 pot thick film made of /g dry smoke resin (first film)
A laminated film of the above copolymer 20 thickness film (second film) having an ion exchange capacity μm and 44 meQ/g dry resin was obtained. Solution 1 used in Example 1 was spray-coated on both sides of this laminated film, dried and heated, and ZrO2'$IL
Particles were deposited at 11g/C112. The thus obtained laminated film was hydrolyzed with a 25% by weight aqueous solution of caustic soda, and then heated at 200 °C under the same battery container and operating conditions as in Example 1.
Electrolysis was performed for days.

電解槽を解μ、観察した結果、ガスケットの激しい侵食
が認められた。電解性能を表3に示す。
After disassembling the electrolytic cell and observing it, severe erosion of the gasket was observed. The electrolytic performance is shown in Table 3.

表  3 実施例2 実施例1において、電解槽の塩素ガス−陽極法界面を1
漠のバッキング上辺端部から幅約4C11の領域に気相
部を設けたこと以外は、実施例1と同等な電槽、運転条
件にて、実施例1において複層隔膜のガスケット締め付
け部及び締め付け部分から陰極ガスゲットの電解面側端
部より 5層1電解面側までの領域と、電解槽陽極室に
設けた気相部分に相当する複層隔膜の多孔体層の孔にヘ
キサフルオロプロピレンオキサイドのオリゴマーからな
る一般式F(C(CF3)−C:Fz−0−)n−CF
(CF3)−0F:+ (平均n=100)で表わされ
るグリースを塗布し、多孔層の孔を閉塞処理した他は実
施例1と同等な膜を用い200日間電解した。苛性ソー
ダ中の塩化ナトリウムは低く、槽外への液漏れやガスケ
ットの侵食は認められなかった。
Table 3 Example 2 In Example 1, the chlorine gas-anodic interface of the electrolytic cell was
The gasket tightening part and tightening of the multilayer diaphragm in Example 1 were performed using the same battery case and operating conditions as in Example 1, except that the gas phase part was provided in an area with a width of approximately 4C11 from the upper edge of the backing. Hexafluoropropylene oxide is applied to the area from the electrolytic surface side end of the cathode gas get to the electrolytic surface side of layer 5 and the pores of the porous layer of the multilayer diaphragm corresponding to the gas phase section provided in the anode chamber of the electrolytic cell. General formula F(C(CF3)-C:Fz-0-)n-CF consisting of an oligomer of
(CF3)-0F:+ (average n=100) was applied, and the same membrane as in Example 1 was used, except that the pores of the porous layer were blocked, and electrolysis was carried out for 200 days. The sodium chloride content in the caustic soda was low, and no liquid leakage outside the tank or erosion of the gasket was observed.

上記の孔を閉塞処理した多孔体層のガーレナンバーは、
同等の複層隔膜に同等な閉塞処理した複層隔膜から、多
孔体を剥し測定したところ 106以上であった。電解
性能を表4に示す。
The Gurley number of the porous layer with the above pores blocked is
When the porous body was peeled off and measured from a multilayer diaphragm that had been subjected to a similar occluding treatment to an equivalent multilayer diaphragm, it was 106 or more. Table 4 shows the electrolytic performance.

比較例2 実施例2において、複層隔膜に多孔体層の孔の閉塞処理
を行わないことの他は実施例2と同等な膜、′電解槽、
運転条件にて60日間電解を行った。
Comparative Example 2 In Example 2, the membrane was the same as Example 2 except that the multilayer diaphragm was not subjected to the treatment to block the pores of the porous layer;
Electrolysis was carried out for 60 days under operating conditions.

縫部ンーダ中の塩化ナトリウム含有量は高く、液漏れも
生じていた。更に、電解槽を解μ、観察した結果、ガス
ケットの激しい侵食が認められた。電解性能を表4に示
す。
The sodium chloride content in the seams was high, and leakage occurred. Furthermore, as a result of disassembling and observing the electrolytic cell, severe erosion of the gasket was observed. Table 4 shows the electrolytic performance.

表  4 実施例3 実施例1において、電解槽の電解部にあたる陽極、陰極
を膜のバッキング上辺端部から5cm取り除き、非通電
部を設けたこと以外は実施例1と同等な電解槽を用い、
実施例1において、複層隔膜のガスケット締め付け部及
び締め付け部分から陰極ガスケットの電解面側端部より
 5II11電解面側までの領域と、電解槽に設けた非
通電部に相当する複層隔膜の多孔体層の孔に7フングリ
ースにチアス(株)社製9401)を塗布し、孔を閉塞
処理した他は、実施例1と同等な膜を隔膜とし、実施例
1において電流密度を20ASD/di2.温度を80
℃とした他は実施例1と同等な運転条件で200日間電
解した。
Table 4 Example 3 An electrolytic cell similar to Example 1 was used, except that the anode and cathode corresponding to the electrolytic part of the electrolytic cell were removed by 5 cm from the upper edge of the membrane backing, and a non-current-carrying part was provided.
In Example 1, the gasket tightening part of the multilayer diaphragm and the area from the fastening part to the electrolytic surface side end of the cathode gasket to the 5II11 electrolytic surface side and the porous pores of the multilayer diaphragm corresponding to the non-current-carrying part provided in the electrolytic cell The same membrane as in Example 1 was used as the diaphragm, except that the pores in the body layer were coated with 7Fung grease (9401) manufactured by Chias Co., Ltd. and the pores were closed, and the current density was set to 20 ASD/di2. temperature to 80
Electrolysis was carried out for 200 days under the same operating conditions as in Example 1 except that the temperature was changed to .degree.

苛性ソーダ中の塩化ナトリウムは低く、槽外への液モレ
やガスケy )の侵食は認められなかった。
The sodium chloride content in the caustic soda was low, and no liquid leakage or gasket erosion outside the tank was observed.

上記の孔を閉塞処理した多孔体層のガーレナンバーは、
同等な複層隔膜に同等な閉塞処理した複層隔膜から、多
孔体層を剥し測定したところ 106以上であった。電
解性能を表5に示す。
The Gurley number of the porous layer with the above pores blocked is
When the porous layer was peeled off and measured from a multilayer diaphragm that had been subjected to a similar blocking treatment, it was found to be 106 or more. The electrolytic performance is shown in Table 5.

比較例3 実施例3において、複層隔膜に多孔体層の孔の閉塞処理
を行わないことの他は実施例3と同等な膜、電解槽、運
転条件にて50日間電解を行った。
Comparative Example 3 In Example 3, electrolysis was carried out for 50 days using the same membrane, electrolytic cell, and operating conditions as in Example 3, except that the multilayer diaphragm was not subjected to a treatment to block the pores of the porous layer.

LY性ソーダ中の塩化ナトリウム含有量は著しく高く、
槽外への液漏れも認められた。電解性能を表5に示す。
The sodium chloride content in LY soda is significantly high;
Liquid leakage outside the tank was also observed. The electrolytic performance is shown in Table 5.

表  5Table 5

Claims (10)

【特許請求の範囲】[Claims] (1)ガーレナンバーが1〜1000の親水性多孔体層
とイオン交換樹脂樹脂層とが積層された複層隔膜を、陽
極室と陰極室を形成した水性溶液の電解槽において電解
用隔膜として使用するにあたり、電流密度が膜の平均電
流密度の1/2以下である領域の複層隔膜の親水性多孔
体層の孔を閉塞処理して用いることを特徴とする複層隔
膜を使用する電解方法。
(1) A multilayer diaphragm in which a hydrophilic porous material layer with a Gurley number of 1 to 1000 and an ion exchange resin layer are laminated is used as an electrolysis diaphragm in an aqueous solution electrolytic cell that forms an anode chamber and a cathode chamber. An electrolytic method using a multilayer diaphragm, characterized in that the pores of the hydrophilic porous layer of the multilayer diaphragm in a region where the current density is 1/2 or less of the average current density of the membrane are blocked. .
(2)複層隔膜の親水性多孔体層の孔の閉塞処理する領
域が、膜の周辺部の締め付け部領域である特許請求の範
囲第1項記載の電解方法。
(2) The electrolytic method according to claim 1, wherein the area where the pores of the hydrophilic porous layer of the multilayer diaphragm are to be blocked is a tightening area at the periphery of the membrane.
(3)複層隔膜の閉塞処理領域が、電解槽上部の電解液
と接触しない隔膜の部分である特許請求の範囲第1項記
載の電解方法。
(3) The electrolytic method according to claim 1, wherein the blocking treatment area of the multilayer diaphragm is a portion of the diaphragm that does not come into contact with the electrolyte at the upper part of the electrolytic cell.
(4)複層隔膜の閉塞処理領域が、フィンガー型電解槽
における陽極の有効電解面と対向しない膜のコーナー曲
面部分である特許請求の範囲第1項記載の電解方法。
(4) The electrolytic method according to claim 1, wherein the closed region of the multilayer diaphragm is a curved corner portion of the membrane that does not face the effective electrolytic surface of the anode in the finger-type electrolytic cell.
(5)多孔体層の孔の閉塞処理により、多孔体層のガー
レナンバーが10^4以上である特許請求の範囲第1〜
4項記載の電解方法。
(5) Claims 1 to 3, wherein the Gurley number of the porous layer is 10^4 or more due to the pore blocking treatment of the porous layer.
The electrolytic method described in Section 4.
(6)孔の閉塞処理が圧力又は圧力と加熱により多孔体
層を圧密化させることにより為される特許請求の範囲第
1〜5項記載の電解方法。
(6) The electrolytic method according to any one of claims 1 to 5, wherein the pore blocking treatment is performed by consolidating the porous layer by pressure or pressure and heating.
(7)閉塞処理が、多孔体層の孔を耐塩素性でかつ好ま
しくは耐アルカリ性のグリース又は弗素系重合体の分散
液を塗布し閉塞させることにより為される特許請求の範
囲第1〜5項記載の電解方法。
(7) Claims 1 to 5, wherein the blocking treatment is performed by coating and blocking the pores of the porous layer with a chlorine-resistant and preferably alkali-resistant grease or a fluorine-based polymer dispersion. The electrolysis method described in section.
(8)複層隔膜が、孔径0.01〜30μ、膜厚が30
〜450μからなり、表面がガス解放層及び気孔内部が
親水性を有する多孔体層と、イオン交換容量が0.5〜
2.0ミリ当量/g樹脂を有し、多孔体層より薄い陽イ
オン交換体層からなる複層隔膜である特許請求の範囲第
1〜7項記載の電解方法。
(8) The multilayer diaphragm has a pore diameter of 0.01 to 30 μm and a membrane thickness of 30 μm.
~450μ, the surface is a gas release layer, the inside of the pores are hydrophilic, and the ion exchange capacity is 0.5~
The electrolytic method according to any one of claims 1 to 7, which is a multilayer diaphragm comprising a cation exchanger layer having a resin content of 2.0 meq/g and being thinner than the porous layer.
(9)陽イオン交換体層が、スルホン酸、又はカルボン
酸をイオン交換基とする含フッ素重合体からなる特許請
求の範囲第1〜8項記載の電解方法。
(9) The electrolysis method according to any one of claims 1 to 8, wherein the cation exchanger layer is made of a fluorine-containing polymer having sulfonic acid or carboxylic acid as an ion exchange group.
(10)水性溶液が、塩化アルカリ水溶液である特許請
求の範囲第1〜9項記載の電解方法。
(10) The electrolysis method according to any one of claims 1 to 9, wherein the aqueous solution is an aqueous alkali chloride solution.
JP61263939A 1986-11-07 1986-11-07 Electrolytic method using double-layer diaphragm Pending JPS63118083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61263939A JPS63118083A (en) 1986-11-07 1986-11-07 Electrolytic method using double-layer diaphragm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61263939A JPS63118083A (en) 1986-11-07 1986-11-07 Electrolytic method using double-layer diaphragm

Publications (1)

Publication Number Publication Date
JPS63118083A true JPS63118083A (en) 1988-05-23

Family

ID=17396358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61263939A Pending JPS63118083A (en) 1986-11-07 1986-11-07 Electrolytic method using double-layer diaphragm

Country Status (1)

Country Link
JP (1) JPS63118083A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1046556C (en) * 1990-09-27 1999-11-17 旭硝子株式会社 Fluorine-containing cation exchange membrane and its use in electrolysis
CN105140324A (en) * 2015-09-01 2015-12-09 北京汉能光伏投资有限公司 Solar cell protective film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1046556C (en) * 1990-09-27 1999-11-17 旭硝子株式会社 Fluorine-containing cation exchange membrane and its use in electrolysis
CN105140324A (en) * 2015-09-01 2015-12-09 北京汉能光伏投资有限公司 Solar cell protective film

Similar Documents

Publication Publication Date Title
US4604170A (en) Multi-layered diaphragm for electrolysis
EP0477432B1 (en) Fluorine-containing cation exchange membrane for electrolysis and process for producing alkali metal hydroxide by using the same
RU1823884C (en) Method of preparing of alkaline metal hydroxide
US4983264A (en) Four layer cation exchange fluoropolymer membrane
US4586992A (en) Process for producing potassium hydroxide
EP0753534B1 (en) Cation exchange membrane for electrolysis and process for producing potassium hydroxide of high purity
JPH0586971B2 (en)
JPS621652B2 (en)
JPS63118083A (en) Electrolytic method using double-layer diaphragm
JPH0660250B2 (en) Enhanced cation exchange membrane and method
JP2504135B2 (en) Cation exchange membrane for electrolysis
JP3511117B2 (en) Cation exchange membrane for electrolysis and method for producing high-purity potassium hydroxide
KR930005659B1 (en) Cation exchange membrane for electrolysis of alkali metal chloride
EP0189056B1 (en) Method for restoring the current efficiency
JPS63312988A (en) Production of alkali hydroxide
JPS6017034B2 (en) New cation exchange membrane for electrolysis
JPS62199629A (en) Novel multi-layer permeable membrane for electrolysis
JPS62280230A (en) Reinforced multilayer ion exchange diaphragm
JPH0617278A (en) Method for restarting electrolytic cell
JPH08120100A (en) Fluorine-containing cation-exchange membrane
JPS6045276B2 (en) Ion exchange membrane electrolyzer
JPS6040515B2 (en) Ion exchange membrane electrolyzer
JPH04297591A (en) Ion exchange membrane for electrolysis of alkali metal chloride
JPS636029A (en) Cation exchange membrane for use in electrolysis
JPS63310985A (en) Production of alkali hydroxide