JPH0617278A - Method for restarting electrolytic cell - Google Patents

Method for restarting electrolytic cell

Info

Publication number
JPH0617278A
JPH0617278A JP19656192A JP19656192A JPH0617278A JP H0617278 A JPH0617278 A JP H0617278A JP 19656192 A JP19656192 A JP 19656192A JP 19656192 A JP19656192 A JP 19656192A JP H0617278 A JPH0617278 A JP H0617278A
Authority
JP
Japan
Prior art keywords
exchange membrane
alkali hydroxide
concentration
cathode chamber
electrolytic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19656192A
Other languages
Japanese (ja)
Inventor
Tetsuji Shimodaira
哲司 下平
Yoshihiko Saito
義彦 斉藤
Haruhisa Miyake
晴久 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP19656192A priority Critical patent/JPH0617278A/en
Publication of JPH0617278A publication Critical patent/JPH0617278A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To develop stable high-electrolysis performance after restarting by supplying water or dilute aq. alkali hydroxide soln. to a cathode chamber and holding the soln., then reenergizing the soln. while increasing the concn. thereof at the time of restarting the once stopped electrolytic cell. CONSTITUTION:An aq. alkali chloride soln. is electrolyzed by an ion exchange membrane method electrolysis in the electrolytic cell having a fluorine-contained cation exchange membrane, the alkali hydroxide of a high concn. of >=42wt.% is produced in the cathode chamber. Water or the dilute aq. alkali hydroxide soln. is first supplied into the cathode chamber and is held for >=30 minutes, preferably 30 minutes to one day at 20 to 70 deg.C, at the time of restarting the electrolytic cell after temporarily stopping the electrolytic cell. The water or aq. solution is thereafter replaced with the aq. alkali hydroxide soln. of the concn. lower than the concn. in a ordinary operation state, more preferably 10 to 40%. The reenergization is executed in this state and the aq. alkali hydroxide soln. of the cathode chamber is thereafter increased up to the concn. of the ordinary operation state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、含フッ素陽イオン交換
膜を用いたイオン交換膜法電解により陰極室に42重量
%以上の高濃度の水酸化アルカリを製造する電解槽を一
時的に停止した場合の再起用方法に関するものである。
BACKGROUND OF THE INVENTION The present invention temporarily stops an electrolytic cell for producing a high-concentration alkali hydroxide of 42% by weight or more in a cathode chamber by ion exchange membrane electrolysis using a fluorinated cation exchange membrane. This is related to the method of reactivating the case.

【0002】[0002]

【従来の技術】含フッ素陽イオン交換膜を隔膜として使
用し、塩化アルカリ水溶液を電解して水酸化アルカリと
塩素を製造する所謂イオン交換膜法アルカリ電解は、従
来法に比べて低いエネルギー消費量にて高純度の水酸化
アルカリを製造できることから、近年、国際的に普及し
つつある。
2. Description of the Related Art So-called ion-exchange membrane alkaline electrolysis, which uses a fluorinated cation exchange membrane as a diaphragm and electrolyzes an aqueous solution of alkali chloride to produce alkali hydroxide and chlorine, has a lower energy consumption than conventional methods. Since it is possible to produce high-purity alkali hydroxide at, it has become popular internationally in recent years.

【0003】かかる、イオン交換膜法アルカリ電解にお
いては、初期の頃は、スルホン酸基をイオン交換基とす
る含フッ素イオン交換膜が使用されていたが、電流効率
を高くすることが困難であった。そのため、近年は、カ
ルボン酸基をイオン交換基とする陽イオン交換膜に変更
され、その結果、製造する水酸化アルカリ濃度が30〜
35重量%において、電流効率は93〜97%までに達
し、工業的にほぼ完成した域に達している。
In such an ion exchange membrane method alkaline electrolysis, a fluorine-containing ion exchange membrane having a sulfonic acid group as an ion exchange group was used in the early days, but it was difficult to increase the current efficiency. It was Therefore, in recent years, it has been changed to a cation exchange membrane having a carboxylic acid group as an ion exchange group, and as a result, the concentration of alkali hydroxide to be produced is 30 to
At 35% by weight, the current efficiency reaches 93 to 97%, which is almost industrially completed.

【0004】一方、水酸化アルカリを得る商業的なイオ
ン交換膜法電解プロセスでは、定常運転時の水酸化アル
カリ濃度(陰極液濃度)や温度を適正な条件に管理する
ことに加えて、電解停止、再起用のような非定常時にお
ける運転方法が、電解性能を長期にわたって安定して得
るための重要な因子となっている。
On the other hand, in a commercial ion-exchange membrane electrolysis process for obtaining alkali hydroxide, in addition to controlling the alkali hydroxide concentration (catholyte concentration) and temperature during steady operation to appropriate conditions, the electrolysis is stopped. The operating method during non-steady state such as restarting is an important factor for obtaining stable electrolytic performance over a long period of time.

【0005】再起用時の運転方法に関しては、一般に、
高い電解性能が得られる定常運転時の条件にできるだけ
近い条件で再通電することが好ましく、例えば、上記3
0〜35重量%の水酸化アルカリを得る場合、陰極液濃
度が25〜35重量%、温度が50〜80℃の条件で通
電を行い、再起用されている。さらにこの条件の中で
も、陰極液濃度が低い場合には再起用時の温度を低くす
るなどにより、膜の膨潤による性能低下を防いでいる。
一方、陰極液濃度が高い場合には、温度を高くするなど
により、再通電時の膜が受ける電気的ショックを緩和し
ている。
Regarding the operation method at the time of restarting, generally,
It is preferable to re-energize under conditions that are as close as possible to the conditions during steady operation where high electrolysis performance can be obtained.
In the case of obtaining 0 to 35% by weight of alkali hydroxide, electricity is supplied again under conditions of a catholyte concentration of 25 to 35% by weight and a temperature of 50 to 80 ° C., and then reused. Further, among these conditions, when the catholyte concentration is low, the temperature at the time of re-use is lowered to prevent the performance from being deteriorated due to the swelling of the film.
On the other hand, when the concentration of the catholyte is high, the electric shock received by the film during re-energization is alleviated by increasing the temperature.

【0006】一方、近年、含フッ素陽イオン交換膜を使
用し、濃度42重量%以上の水酸化アルカリを90%以
上の高電流効率にて電解により直接製造する電解方法が
開示されている(特開昭63−310985、特開平1
−242794)。
On the other hand, in recent years, an electrolysis method has been disclosed in which a fluorine-containing cation exchange membrane is used to directly produce an alkali hydroxide having a concentration of 42% by weight or more by electrolysis at a high current efficiency of 90% or more (special feature KAISHO 63-310985, JP-A-1
-242794).

【0007】しかし、これらの電解方法には定常運転に
おける好ましい運転条件は開示されているものの、再起
用のような非定常運転に関する方法は示されていない。
[0007] However, although these electrolysis methods disclose preferable operating conditions in steady state operation, methods for unsteady state operation such as restarting are not shown.

【0008】本発明者の研究によると、上記の濃度42
重量%以上の電解プロセスでは、従来行われている30
〜35重量%電解プロセスにおいて用いられている定常
運転条件に近い条件で再起用を行う場合には、意外なこ
とに電解性能が大きく低下することが見い出された。つ
まり、電解停止後定常運転条件に近い条件(例えば陰極
液水酸化アルカリ濃度40〜50重量%、温度75〜9
0℃)で再通電を行うと、電流効率が大幅に低下し、更
に場合によっては電解電圧の上昇も生じることが判明し
た。
According to the research conducted by the present inventor, the above concentration of 42
In the electrolytic process with a weight percentage of 30% or more, the conventional method is 30.
It has been surprisingly found that the electrolytic performance is significantly reduced when the re-running is performed under conditions close to the steady-state operating conditions used in the ~ 35 wt% electrolysis process. That is, after the electrolysis is stopped, the conditions are close to the steady operation conditions (for example, the concentration of the catholyte solution is 40 to 50% by weight, the temperature is 75 to 9
It was found that re-energization at 0 ° C. significantly reduced the current efficiency and, in some cases, increased the electrolysis voltage.

【0009】この現象は未だ原因が明らかではないが、
以下のように考えられる。即ち濃度42重量%以上の水
酸化アルカリを製造するイオン交換膜電解槽では、電解
を停止すると、陽極から陰極に向かって流れる電気浸透
水が止まるため、イオン交換膜の陰極側は42重量%以
上の高濃度の水酸化アルカリに直接接することになり、
膜の極端な脱水が生じることになる。このため膜中のア
ルカリ金属イオンが非常に動き難い状態となる。かかる
状態において再び通電を行うと、相対的に水酸イオンの
移動性が増加するため電流効率が低下するものと推定さ
れる。また、ある場合に生じる電解電圧が上昇する理由
は、上記脱水により膜が収縮することによりもたらされ
るものと推定される。
The cause of this phenomenon is not clear yet,
It can be considered as follows. That is, in an ion-exchange membrane electrolyzer producing alkali hydroxide with a concentration of 42 wt% or more, when electrolysis is stopped, electroosmotic water flowing from the anode to the cathode stops, so that the cathode side of the ion-exchange membrane is 42 wt% or more. Will come into direct contact with the high-concentration alkali hydroxide of
Extreme dehydration of the membrane will occur. For this reason, the alkali metal ions in the film are in a very difficult state to move. It is presumed that when current is applied again in such a state, the mobility of the hydroxide ions is relatively increased, so that the current efficiency is lowered. Further, it is presumed that the reason why the electrolysis voltage generated in a certain case is increased is that the membrane contracts due to the dehydration.

【0010】[0010]

【発明が解決しようとする課題】本発明は、含フッ素陽
イオン交換膜を用いたイオン交換膜法電解により、濃度
42重量%以上、特には45〜55重量%の水酸化アル
カリを製造する電解槽を一時的に停止し、再起用するに
あたり、再起用後も安定した高い電解性能を発現させる
ための新規な電解槽の再起用方法を提供することを目的
とする。
The present invention is an electrolysis for producing an alkali hydroxide having a concentration of 42% by weight or more, particularly 45 to 55% by weight, by an ion exchange membrane method electrolysis using a fluorine-containing cation exchange membrane. It is an object of the present invention to provide a novel method for restarting an electrolytic cell for temporarily exhibiting stable and high electrolysis performance after restarting when the cell is temporarily stopped and restarted.

【0011】[0011]

【課題を解決するための手段】かくして本発明は、含フ
ッ素陽イオン交換膜を用いたイオン交換膜法電解によっ
て陰極室に42重量%以上の高濃度の水酸化アルカリを
製造する電解槽を一時的に停止した後再起用するにあた
り、陰極室に水または希薄水酸化アルカリ水溶液を供給
して、30分間以上保持した後、該水または希薄水酸化
アルカリ水溶液を定常状態よりも低い濃度の水酸化アル
カリに置き換えた状態で再通電を行い、次いで陰極室の
水酸化アルカリ水溶液を定常状態の濃度にまで高めるこ
とを特徴とする。
Thus, the present invention provides a temporary electrolytic cell for producing a high concentration of 42% by weight or more of alkali hydroxide in the cathode chamber by ion exchange membrane electrolysis using a fluorine-containing cation exchange membrane. In order to reactivate after being stopped, water or a dilute aqueous solution of alkali hydroxide is supplied to the cathode chamber and held for 30 minutes or more, and then the water or the dilute aqueous solution of alkali hydroxide is hydrated at a concentration lower than that in the steady state. It is characterized in that re-energization is carried out in the state of being replaced with alkali, and then the alkali hydroxide aqueous solution in the cathode chamber is increased to a steady-state concentration.

【0012】本発明において使用される含フッ素陽イオ
ン交換膜は、水酸化アルカリを高電流効率で製造できる
含フッ素陽イオン交換膜であればいずれも使用できる
が、なかでも、カルボン酸基を有する含フッ素重合体か
らなる陽イオン交換膜層と、その陰極側に配した親水性
を有する多孔層とからなる複層陽イオン交換膜が好まし
い。陰極側の多孔層は42重量%以上の水酸化アルカリ
を長期にわたり高い電流効率で取得するために効果的で
ある。
As the fluorine-containing cation exchange membrane used in the present invention, any fluorine-containing cation exchange membrane capable of producing an alkali hydroxide with high current efficiency can be used. Among them, it has a carboxylic acid group. A multilayer cation exchange membrane comprising a cation exchange membrane layer made of a fluoropolymer and a hydrophilic porous layer disposed on the cathode side thereof is preferable. The cathode-side porous layer is effective for obtaining 42% by weight or more of alkali hydroxide with high current efficiency for a long period of time.

【0013】膜抵抗を小さくし、かつ大きい膜強度を賦
与するために上記カルボン酸基を有する含フッ素重合体
よりも比抵抗の小さい含フッ素カルボン酸重合体フィル
ムや含フッ素スルホン酸重合体フィルムまたはそれらの
混合物からなるフィルムを陽極側に積層した多層構造の
陽イオン交換膜も使用できる。また、これらの陽イオン
交換膜は、ポリテトラフルオロエチレンなどの耐食性を
有する含フッ素重合体からなる織布または不織布にて補
強することができる。
A fluorine-containing carboxylic acid polymer film or a fluorine-containing sulfonic acid polymer film having a specific resistance smaller than that of the above-mentioned fluorine-containing polymer having a carboxylic acid group in order to reduce the film resistance and impart a large film strength. A cation exchange membrane having a multi-layer structure in which a film made of a mixture thereof is laminated on the anode side can also be used. Further, these cation exchange membranes can be reinforced with a woven or non-woven fabric made of a fluorine-containing polymer having corrosion resistance such as polytetrafluoroethylene.

【0014】本発明において上記陽イオン交換膜を構成
する含フッ素カルボン酸重合体および含フッ素スルホン
酸重合体とは、好ましくは次の(イ)および(ロ)の重
合単位をもつ共重合体からなる。
In the present invention, the fluorinated carboxylic acid polymer and the fluorinated sulfonic acid polymer constituting the cation exchange membrane are preferably copolymers having the following (a) and (b) polymerized units: Become.

【0015】(イ)−(CF2 −CXX’)−、 (ロ)−{CF2 −CX(Y−A)}−。[0015] (b) - (CF 2 -CXX ') -, ( b) - {CF 2 -CX (Y -A)} -.

【0016】ここでX、X’は、−F、−Cl、−Hま
たは−CF3 であり、Aは−SO3Mまたは−CO2
(Mは水素またはアルカリ金属を表す)であり、Yは、
次のものから選ばれるが、そこでZ、Z’は−Fまたは
炭素数1〜10のパーフルオロアルキル基であり、x、
yは1〜10の整数を表す。
Here, X and X'are -F, -Cl, -H or -CF 3 , and A is -SO 3 M or -CO 2 M.
(M represents hydrogen or an alkali metal), and Y is
Selected from the following, wherein Z and Z ′ are —F or a perfluoroalkyl group having 1 to 10 carbon atoms, x,
y represents an integer of 1 to 10.

【0017】−(CF2x −、 −O−(CF2x −、 −(O−CF2 CFZ)x −、 −(O−CFZ−CF2x −O−(CFZ’)y −。[0017] - (CF 2) x -, -O- (CF 2) x -, - (O-CF 2 CFZ) x -, - (O-CFZ-CF 2) x -O- (CFZ ') y -.

【0018】さらに、(イ)および(ロ)の重合単位の
他に、次のような重合単位を含んでいてもよい。なお、
Z、Z’およびxは上記と同じである。
Further, in addition to the polymer units of (a) and (b), the following polymer units may be contained. In addition,
Z, Z ′ and x are the same as above.

【0019】−{CF2 −CF(O−Z)}−、 −{CF2 −CF(O−CF2 −CFZ’)x −O−
Z}−。
-{CF 2 -CF (O-Z)}-,-{CF 2 -CF (O-CF 2 -CFZ ') x -O-
Z}-.

【0020】なお、上記重合体を形成する(イ)/
(ロ)の組成比(モル比)は、含フッ素重合体が好まし
くは0.5〜4.0ミリ当量/g乾燥樹脂、特には0.
7〜2.0ミリ当量/g乾燥樹脂のイオン交換容量を形
成するように選ばれる。
The above polymer is formed (a) /
As for the composition ratio (molar ratio) of (b), the fluoropolymer is preferably 0.5 to 4.0 meq / g dry resin, and more preferably 0.
It is chosen to form an ion exchange capacity of 7-2.0 meq / g dry resin.

【0021】上記含フッ素重合体は、好ましくはパーフ
ルオロカーボン重合体が適切であり、その好ましい例
は、CF2 =CF2 とCF2 =CFOCF2 CF(CF
3 )OCF2 CF2 SO2 Fとの共重合体、CF2 =C
2 とCF2 =CFO(CF22-5 SO2 Fとの共重
合体、CF2 =CF2 とCF2 =CFO(CF21-5
COOCH3 との共重合体、CF2 =CF2 とCF2
CFO(CF22-5 CO2 CH3 との共重合体、更に
は、CF2 =CF2 とCF2 =CFOCF2 CF(CF
3 )OCF2 CF2 COOCH3 との共重合体が例示さ
れる。
The above-mentioned fluorine-containing polymer is preferably a perfluorocarbon polymer, and preferable examples thereof include CF 2 ═CF 2 and CF 2 ═CFOCF 2 CF (CF
3 ) Copolymer with OCF 2 CF 2 SO 2 F, CF 2 ═C
Copolymer of F 2 and CF 2 ═CFO (CF 2 ) 2-5 SO 2 F, CF 2 ═CF 2 and CF 2 ═CFO (CF 2 ) 1-5
Copolymer with COOCH 3 , CF 2 = CF 2 and CF 2 =
CFO (CF 2 ) 2-5 CO 2 CH 3 copolymer, and further, CF 2 ═CF 2 and CF 2 ═CFOCF 2 CF (CF
3 ) A copolymer with OCF 2 CF 2 COOCH 3 is exemplified.

【0022】陽イオン交換膜層の陰極側に配される上記
親水性を有する多孔層は、無機物粒子および親水基を有
する含フッ素重合体から形成されるのが好ましい。高濃
度、特に42重量%以上の水酸化アルカリ中での安定性
の観点から親水基は−SO3M(Mは前記と同じ)であ
ることが好ましい。
The hydrophilic porous layer disposed on the cathode side of the cation exchange membrane layer is preferably formed of inorganic particles and a fluoropolymer having a hydrophilic group. High density, it is preferable, especially 42 stability point of view from hydrophilic groups on a weight% or more of the alkali hydroxide is -SO 3 M (M is as defined above).

【0023】上記無機物粒子と親水基を有する含フッ素
重合体からなる多孔層は、好ましくは多孔率5〜95
%、より好ましくは10〜85%を有するが、これは種
々の方法で製造することができる。例えば、親水基を有
する含フッ素重合体の溶液に好ましくは耐アルカリ性の
無機物粒子または小繊維を分散させた混合物からキャス
ト製膜し、乾燥する方法、親水基を有する含フッ素重合
体に無機物粒子を混合、混練した後加熱、成形して薄膜
化し、延伸して多孔フィルム化する方法、メチルセルロ
ースなどの水溶性の適宜のバインダーを使用して無機物
粒子の多孔層を形成し、かかる2つの多孔層の間に親水
基を有する含フッ素重合体のフィルムで挟み、加熱、圧
着する方法などが挙げられる。
The porous layer composed of the above-mentioned inorganic particles and a fluoropolymer having a hydrophilic group preferably has a porosity of 5 to 95.
%, More preferably 10-85%, but it can be produced in various ways. For example, a solution of the fluoropolymer having a hydrophilic group is preferably cast from a mixture of alkali-resistant inorganic particles or fibrils dispersed in a film, a method of drying, inorganic particles to the fluoropolymer having a hydrophilic group. A method of mixing and kneading, then heating, molding to form a thin film, and stretching to form a porous film, a porous layer of inorganic particles is formed using a water-soluble appropriate binder such as methylcellulose, and two such porous layers are formed. A method in which a film of a fluoropolymer having a hydrophilic group is sandwiched therebetween, followed by heating and pressure bonding may be mentioned.

【0024】無機物粒子としては、好ましくは粒径0.
1〜20μmを有し、これらの好ましい例は、チタン、
ジルコニウム、ニオブ、ハフニウム、タンタル、インジ
ウム、スズ等の酸化物、窒化物、炭化物、水酸化物、ケ
イ素の酸化物、炭化物の単独または混合物である。
The inorganic particles preferably have a particle size of 0.
1 to 20 μm, preferred examples of which are titanium,
These are oxides, nitrides, carbides, hydroxides, silicon oxides, and carbides of zirconium, niobium, hafnium, tantalum, indium, tin, etc., alone or in a mixture.

【0025】陽イオン交換膜層と多孔層との複層化は、
上記により得られた多孔層と陽イオン交換膜層とを加
熱、圧着することで行うことができる。また、多孔層を
キャスト法で製膜する場合には、無機物粒子と親水基を
有する含フッ素重合体の混合溶液を陽イオン交換膜層に
直接塗布、乾燥することで複層化することもでき、更に
多孔層と陽イオン交換膜層の接着力を高めるために加熱
圧着処理を行うこともできる。
The multilayer structure of the cation exchange membrane layer and the porous layer is
It can be performed by heating and press-bonding the porous layer and the cation exchange membrane layer obtained above. Further, when the porous layer is formed by a casting method, a mixed solution of inorganic particles and a fluoropolymer having a hydrophilic group can be directly applied to the cation exchange membrane layer and dried to form a multilayer. Further, it is also possible to carry out a heat pressing treatment in order to further enhance the adhesive force between the porous layer and the cation exchange membrane layer.

【0026】上記した陽イオン交換膜層と多孔層との複
層膜は、そのままでも使用できるが、好ましくは、陽イ
オン交換膜の少なくとも一表面に、特に好ましくは、陽
極側表面に塩素ガス開放のための処理を施すことによ
り、電流効率の長期安定性を更に改良することができ
る。
The above-mentioned multilayer film of the cation exchange membrane layer and the porous layer can be used as it is, but preferably chlorine gas is released on at least one surface of the cation exchange membrane, particularly preferably on the anode side surface. By performing the treatment for, the long-term stability of the current efficiency can be further improved.

【0027】陽イオン交換膜の表面にガス開放のための
処理を施す方法としては、膜表面に微細な凹凸を施す方
法(特公昭60−26495)、電解槽に鉄、ジルコニ
ア等を含む液を供給して、膜表面に親水性無機粒子を付
着する方法(特開昭56−152980)、ガスおよび
液透過性の電極活性を有しない粒子を含む多孔層を設け
る方法(特開昭56−75583および特開昭57−3
9185)等が例示される。かかる陽イオン交換膜の表
面のガス開放層は電流効果の長期的安定性を改良する効
果のほかに電解下における電圧を更に改良することがで
きる。
As a method for treating the surface of the cation exchange membrane for releasing gas, a method of forming fine irregularities on the membrane surface (Japanese Patent Publication No. 60-26595) or a liquid containing iron, zirconia or the like in the electrolytic cell is used. A method for supplying hydrophilic inorganic particles to the surface of the membrane (JP-A-56-152980), and a method for forming a porous layer containing gas- and liquid-permeable particles having no electrode activity (JP-A-56-75583). And JP-A-57-3
9185) and the like are exemplified. The gas release layer on the surface of the cation exchange membrane can further improve the voltage under electrolysis in addition to the effect of improving the long-term stability of the current effect.

【0028】本発明において上記陽イオン交換膜を使用
し、濃度42重量%以上の水酸化アルカリを製造する電
解条件としては、例えば上記した特開昭54−1123
98に記載されるような既知の条件が採用できる。例え
ば陽極室には好ましくは2.5〜5.0規定(N)の塩
化アルカリ水溶液を供給し、陰極室には水または希釈水
酸化アルカリを供給しまたはこれらを供給することな
く、好ましくは50〜120℃、5〜100A/dm2
で電解される。かかる場合、塩化アルカリ水溶液中のカ
ルシウムおよびマグネシウム、ヨウ素イオンなどの不純
物重金属イオンは、イオン交換膜の劣化を招くので、可
及的に小さくせしめるのが好ましい。
In the present invention, as the electrolysis conditions for producing an alkali hydroxide having a concentration of 42% by weight or more using the above cation exchange membrane, for example, the above-mentioned JP-A-54-1123 is used.
Known conditions such as those described in 98 can be employed. For example, the anode chamber is preferably supplied with an aqueous solution of alkali chloride of 2.5 to 5.0 N (N), and the cathode chamber is supplied with water or diluted alkali hydroxide or without them, preferably 50 ~ 120 ° C, 5-100A / dm 2
Is electrolyzed. In this case, impurity heavy metal ions such as calcium and magnesium and iodine ions in the alkali chloride aqueous solution cause deterioration of the ion exchange membrane, and thus it is preferable to make them as small as possible.

【0029】そして、本発明は、上記高濃度の水酸化ア
ルカリを製造する電解を種々の理由により一時的に停止
した後再起用を行う場合の運転方法を提供するものであ
るが、再起用後も安定した性能を発現させるために次の
手段が採用される。即ち、電解槽の通電を停止した後、
陰極室の水酸化アルカリを徐々に水または希薄水酸化ア
ルカリ水溶液に置換していくことにより、陰極室に水ま
たは希薄水酸化アルカリを満たし、その後陰極液を上記
水または希薄水酸化アルカリから所定の濃度の水酸化ア
ルカリ水溶液に置換した後再通電を行い、その後目的と
する定常運転濃度まで陰極室水酸化アルカリ濃度を上昇
させることにより、再起用後も高い電解性能を維持でき
ることを見い出したものである。
The present invention provides an operating method in the case where the electrolysis for producing the high-concentration alkali hydroxide is temporarily stopped for various reasons and then restarted. Also, the following means are adopted to develop stable performance. That is, after stopping the energization of the electrolytic cell,
By gradually replacing the alkali hydroxide in the cathode chamber with water or a dilute aqueous alkali hydroxide solution, the cathode chamber is filled with water or a dilute alkaline hydroxide solution, and then the catholyte is treated with water or a dilute alkali hydroxide solution in a predetermined amount. It was found that high electrolytic performance can be maintained even after restarting by substituting the alkali hydroxide aqueous solution of the concentration and then re-energizing, and then increasing the cathode chamber alkali hydroxide concentration to the desired steady-state operating concentration. is there.

【0030】電解槽の停止は種々の理由により生じる
が、計画的に停止させる場合には、停止の2時間以上前
に予め陰極室水酸化アルカリ濃度を40重量%以下に下
げた状態で通電を停止することが好ましい。
Stopping of the electrolytic cell may occur for various reasons. However, in the case of planned stoppage, energization is performed with the concentration of alkali hydroxide in the cathode chamber being lowered to 40% by weight or less in advance at least 2 hours before the stop. It is preferable to stop.

【0031】陰極室での保持に用いる希薄水酸化アルカ
リ水溶液とは、好ましくは5重量%以下の水酸化アルカ
リ水溶液である。5重量%を超えた濃度では、陰極室で
の保持を本発明の条件で行っても、再起用後安定した電
解性能が得られない。
The diluted alkaline hydroxide aqueous solution used for holding in the cathode chamber is preferably an alkaline hydroxide aqueous solution of 5% by weight or less. If the concentration exceeds 5% by weight, stable electrolytic performance cannot be obtained after re-use even if it is held in the cathode chamber under the conditions of the present invention.

【0032】陰極室での水または希薄水酸化アルカリ水
溶液の保持は、好ましくは温度20〜70℃で30分間
以上、好ましくは30分〜1日間行う。特には30〜6
0℃、1〜8時間の保持が好ましい。保持温度および保
持時間が70℃および1日を超えると膜が不可逆に膨潤
してしまい、電流効率の低下が生じる。また20℃およ
び30分未満では、再起用後安定した電解性能が得られ
ない。
The holding of water or a dilute aqueous alkali hydroxide solution in the cathode chamber is preferably carried out at a temperature of 20 to 70 ° C. for 30 minutes or longer, preferably 30 minutes to 1 day. Especially 30 ~ 6
Holding at 0 ° C. for 1 to 8 hours is preferable. When the holding temperature and the holding time exceed 70 ° C. and one day, the film swells irreversibly and the current efficiency decreases. If it is less than 20 ° C. and 30 minutes, stable electrolytic performance cannot be obtained after re-use.

【0033】再通電時の陰極室水酸化アルカリ濃度は、
定常運転時の陰極室の水酸化アルカリの濃度よりも小さ
い、好ましくは10〜40重量%が選ばれ、特には15
〜30重量%が好ましい。10重量%未満および40重
量%超では膜にブリスターが発生する場合があり好まし
くない。
The concentration of alkali hydroxide in the cathode chamber during re-energization is
It is lower than the concentration of alkali hydroxide in the cathode chamber during steady operation, preferably 10 to 40% by weight, and particularly 15
-30% by weight is preferred. If it is less than 10% by weight or more than 40% by weight, blister may occur in the film, which is not preferable.

【0034】再通電時の陰極室水酸化アルカリ水溶液温
度は20〜90℃、なかでも40〜80℃であることが
好ましい。90℃超の温度は、定常運転時を超える温度
のため好ましくなく、また20℃未満とするには冷却設
備が必要であり、実際的ではない。
The temperature of the aqueous alkali hydroxide solution in the cathode chamber during re-energization is preferably 20 to 90 ° C, more preferably 40 to 80 ° C. A temperature above 90 ° C is not preferable because it exceeds the temperature at the time of steady operation, and a cooling facility is required to make it below 20 ° C, which is not practical.

【0035】[0035]

【作用】本発明において、安定した電解性能が得られる
理由は必ずしも明確ではないが、本発明により、膜の陰
極側の脱水状態が、陰極室に水または希薄水酸化アルカ
リ水溶液を供給することによって適切な含水状態に戻る
ため、アルカリ金属イオンが移動しやすい状態になるた
めと考えられる。
In the present invention, the reason why stable electrolytic performance is obtained is not always clear, but according to the present invention, the dehydration state on the cathode side of the membrane is determined by supplying water or a dilute aqueous alkali hydroxide solution to the cathode chamber. It is considered that the alkali metal ions are likely to move because they return to an appropriate water-containing state.

【0036】[0036]

【実施例】以下、実施例によって本発明を更に説明する
が、本発明はこれらの実施例によって何ら制限されるも
のではない。なお、実施例および比較例における電解は
有効通電面積0.25dm2 の温度調節装置を備えた電
解槽を用い、陽極としてはチタンのパンチドメタル(短
軸4mm、長軸8mmの菱形開口を有する)に酸化ルテ
ニウムと酸化イリジウムと酸化チタンとの固溶体を被覆
したものを用い、陰極としてはSUS304製パンチド
メタル(短軸4mm、長軸8mmの菱形開口を有する)
にルテニウム入りラネーニッケル(ルテニウム5%、ニ
ッケル50%、アルミニウム45%)を電着したものを
用いた。
The present invention will be further described below with reference to examples, but the present invention is not limited to these examples. In the electrolysis in Examples and Comparative Examples, an electrolytic cell equipped with a temperature control device having an effective energization area of 0.25 dm 2 was used, and a titanium punched metal (having a rhombic opening having a short axis of 4 mm and a long axis of 8 mm) was used as an anode. ) Is coated with a solid solution of ruthenium oxide, iridium oxide, and titanium oxide, and the cathode is made of SUS304 punched metal (having a rhombic opening with a short axis of 4 mm and a long axis of 8 mm).
The electrodeposited was Raney nickel containing ruthenium (ruthenium 5%, nickel 50%, aluminum 45%).

【0037】電解槽は、陽極と陽イオン交換膜と陰極と
を接触するように配置させ、陽極室に5Nの塩化ナトリ
ウム水溶液を、陰極室に水を供給しつつ、定常運転では
陽極室の塩化ナトリウム濃度を3.2〜3.6Nに、ま
た陰極室の水酸化ナトリウム濃度を50重量%に調整
し、90℃、電流密度30A/dm2 にて電解した。
The electrolytic cell is arranged so that the anode, the cation exchange membrane, and the cathode are in contact with each other. While supplying 5N aqueous sodium chloride solution to the anode chamber and water to the cathode chamber, the chloride of the anode chamber is maintained during steady operation. The sodium concentration was adjusted to 3.2 to 3.6 N and the sodium hydroxide concentration in the cathode chamber was adjusted to 50% by weight, and electrolysis was performed at 90 ° C. and a current density of 30 A / dm 2 .

【0038】各実施例および比較例は20日間の初期定
常運転を行った後、電解を停止した。陰極室の水酸化ナ
トリウムを排出し、代りに水を供給して満たし、表1に
示した各「水の保持条件」で保持した。次いで陰極室の
水を表1の各「再通電時の条件」に示した濃度および温
度の水酸化ナトリウム水溶液で置き換えた状態で通電を
再開した。その後、陰極室水酸化ナトリウム水溶液の濃
度を6時間かけて定常状態の濃度に上昇させ、その後2
0日間の定常運転を行ったものである。
In each of the examples and comparative examples, electrolysis was stopped after 20 days of initial steady operation. The sodium hydroxide in the cathode chamber was discharged, and instead, water was supplied to fill it, and it was held under each "water holding condition" shown in Table 1. Then, the electricity in the cathode chamber was restarted while the water in the cathode chamber was replaced with an aqueous sodium hydroxide solution having the concentration and temperature shown in "Conditions for re-energization" in Table 1. Then, the concentration of the sodium hydroxide aqueous solution in the cathode chamber was raised to a steady-state concentration over 6 hours, and then 2
This is the one that was subjected to steady operation for 0 days.

【0039】実施例および比較例で用いた含フツ素陽イ
オン交換膜は次の方法で製膜した。即ち、CF2 =CF
2 /CF2 =CFOCF2 CF2 CF2 CO2 CH3
重合体からなるイオン交換容量がそれぞれ1.25、
1.44、1.80ミリ当量/g乾燥樹脂の樹脂A、
B、C、およびCF2 =CF2 /CF2 =CFOCF2
CF(CF3 )OCF2 CF2 SO2 F共重合体からな
るイオン交換容量が1.10ミリ当量/g乾燥樹脂の樹
脂Dを合成した。また上記樹脂Cと樹脂Dを1:1の重
量比でブレンドした樹脂Eを得た。
The fluorine-containing cation exchange membrane used in the examples and comparative examples was formed by the following method. That is, CF 2 = CF
2 / CF 2 = CFOCF 2 CF 2 CF 2 CO 2 CH 3 copolymers each having an ion exchange capacity of 1.25,
Resin A of 1.44, 1.80 meq / g dry resin,
B, C, and CF 2 = CF 2 / CF 2 = CFOCF 2
A resin D having an ion exchange capacity of 1.10 meq / g dry resin composed of a CF (CF 3 ) OCF 2 CF 2 SO 2 F copolymer was synthesized. Also, a resin E was obtained by blending the resin C and the resin D in a weight ratio of 1: 1.

【0040】次に樹脂Aから厚み20μmのフィルム
A、樹脂Bから厚み100μmのフィルムB、樹脂Dか
ら厚み10μmのフィルムD、樹脂Eから厚み30μm
のフィルムEを溶融押出し法により成形し、次にA、
B、E、Dの順に加熱圧着することで陽イオン交換膜層
を得た。
Next, a resin A having a thickness of 20 μm, a resin B having a thickness of 100 μm, a resin D having a thickness of 10 μm, and a resin E having a thickness of 30 μm.
Of the film E of FIG.
A cation exchange membrane layer was obtained by heating and press-bonding B, E and D in this order.

【0041】次に樹脂Dの酸型ポリマーの9.5重量%
エタノール溶液に、平均粒径5μmのZrO2 を15.
8重量%分散させた混合液を調合し、この混合液を上記
陽イオン交換層のフィルムA面側に塗布・乾燥して、厚
み60μmの親水性を有する多孔層を形成させ、陽イオ
ン交換膜層と多孔層の複層陽イオン交換膜を得た。
Next, 9.5% by weight of the acid type polymer of Resin D
15. Add ZrO 2 having an average particle size of 5 μm to the ethanol solution.
A mixed liquid having 8% by weight dispersed therein is prepared, and the mixed liquid is applied to the film A side of the cation exchange layer and dried to form a hydrophilic porous layer having a thickness of 60 μm. A multi-layered cation exchange membrane consisting of a layer and a porous layer was obtained.

【0042】次いで、樹脂Dの酸型ポリマーの25重量
%エタノール溶液に、平均粒径3μmのSiCを20重
量%分散させた混合液を調合し、この混合液を上記複層
陽イオン交換膜の両面に、1cm2 当り固形分として
1.5mgとなるよう噴霧し、ガス開放性被膜を付着さ
せた。
Next, a mixed solution prepared by dispersing 20% by weight of SiC having an average particle diameter of 3 μm in a 25% by weight ethanol solution of an acid-type polymer of resin D was prepared, and this mixed solution was mixed into the multilayer cation exchange membrane. The both surfaces were sprayed so as to have a solid content of 1.5 mg per cm 2 , and a gas releasing film was attached.

【0043】この膜を25重量%水酸化ナトリウム水溶
液、70℃で16時間加水分解し、電解に用いた。上記
電解の結果を表1に示す。
This membrane was hydrolyzed with a 25 wt% sodium hydroxide aqueous solution at 70 ° C. for 16 hours and used for electrolysis. The results of the above electrolysis are shown in Table 1.

【0044】[0044]

【表1】 [Table 1]

【0045】本発明の条件により再通電を行った場合、
再起用後も安定した電解性能を発現しているが、本発明
をはずれた条件により再通電を行った場合、再起用前後
で3〜5%もの電流効率低下が生じた。
When re-energization is performed under the conditions of the present invention,
Although stable electrolysis performance is exhibited even after restarting, when re-energization was performed under conditions outside the present invention, a current efficiency decrease of 3 to 5% occurred before and after restarting.

【0046】[0046]

【発明の効果】イオン交換膜法電解によって42重量%
以上の高濃度の水酸化アルカリを直接製造する電解槽を
一時的に停止した後再起用するにあたり、再起用後も安
定した高い電解性能が簡便な方法によって得られる。
42% by weight by ion exchange membrane electrolysis
When the electrolytic cell for directly producing the high-concentration alkali hydroxide is temporarily stopped and then restarted, stable and high electrolytic performance can be obtained by a simple method even after restarting.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】含フッ素陽イオン交換膜を用いたイオン交
換膜法電解によって陰極室に42重量%以上の高濃度の
水酸化アルカリを製造する電解槽を一時的に停止した後
再起用するにあたり、陰極室に水または希薄水酸化アル
カリ水溶液を供給して30分間以上保持した後、該水ま
たは希薄水酸化アルカリ水溶液を定常状態よりも低い濃
度の水酸化アルカリ水溶液に置き換えた状態で再通電を
行い、次いで陰極室の水酸化アルカリ水溶液を定常状態
の濃度にまで高めることを特徴とする電解槽の再起用方
法。
1. When the electrolytic cell for producing a high-concentration alkali hydroxide having a concentration of 42% by weight or more in the cathode chamber by the ion exchange membrane method electrolysis using a fluorinated cation exchange membrane is temporarily stopped and then reused. After supplying water or a diluted alkaline hydroxide aqueous solution to the cathode chamber and holding it for 30 minutes or more, re-energization is performed with the water or the diluted alkaline hydroxide aqueous solution replaced with an alkaline hydroxide aqueous solution having a concentration lower than the steady state. A method for reactivating an electrolytic cell, which is performed, and then increases the alkaline hydroxide aqueous solution in the cathode chamber to a steady-state concentration.
【請求項2】陰極室に供給する水または希薄水酸化アル
カリ水溶液の温度が20〜70℃である請求項1の再起
用方法。
2. The method according to claim 1, wherein the temperature of the water or the diluted aqueous solution of alkali hydroxide supplied to the cathode chamber is 20 to 70 ° C.
【請求項3】定常状態よりも低い濃度の水酸化アルカリ
水溶液が濃度10〜40重量%を有する請求項1または
2の再起用方法。
3. The method of reactivating according to claim 1, wherein the aqueous alkali hydroxide solution having a concentration lower than that in the steady state has a concentration of 10 to 40% by weight.
【請求項4】定常状態よりも低い濃度の水酸化アルカリ
水溶液の温度が20〜90℃にて再通電を行う請求項
1、2または3の再起用方法。
4. The method for restarting according to claim 1, 2 or 3, wherein re-energization is carried out at a temperature of 20 to 90 ° C. of an alkali hydroxide aqueous solution having a concentration lower than that in a steady state.
【請求項5】含フッ素陽イオン交換膜が、カルボン酸基
を有する含フッ素重合体からなる陽イオン交換膜層と、
その陰極側の親水性を有する多孔層との複層膜である請
求項1、2、3または4の再起用方法。
5. A cation-exchange membrane layer comprising a fluorinated cation-exchange membrane and a fluorinated polymer having a carboxylic acid group.
The method of reactivating according to claim 1, 2, 3, or 4, which is a multilayer film with a hydrophilic porous layer on the cathode side.
【請求項6】親水性を有する多孔層が、無機物粒子およ
び親水基を有する含フッ素重合体からなる請求項5の再
起用方法。
6. The method of reactivating according to claim 5, wherein the hydrophilic porous layer is composed of inorganic particles and a fluoropolymer having a hydrophilic group.
【請求項7】親水基を有する含フッ素重合体が、スルホ
ン酸基を有する含フッ素重合体である請求項6の再起用
方法。
7. The method according to claim 6, wherein the fluoropolymer having a hydrophilic group is a fluoropolymer having a sulfonic acid group.
JP19656192A 1992-06-30 1992-06-30 Method for restarting electrolytic cell Withdrawn JPH0617278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19656192A JPH0617278A (en) 1992-06-30 1992-06-30 Method for restarting electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19656192A JPH0617278A (en) 1992-06-30 1992-06-30 Method for restarting electrolytic cell

Publications (1)

Publication Number Publication Date
JPH0617278A true JPH0617278A (en) 1994-01-25

Family

ID=16359786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19656192A Withdrawn JPH0617278A (en) 1992-06-30 1992-06-30 Method for restarting electrolytic cell

Country Status (1)

Country Link
JP (1) JPH0617278A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146577A (en) * 2000-11-09 2002-05-22 Nippon Soda Co Ltd Operating method for ion exchange membrane process alkali chloride electrolytic cell
WO2013180072A1 (en) * 2012-05-31 2013-12-05 日東電工株式会社 Diaphragm for alkaline water electrolysis
WO2013180071A1 (en) * 2012-05-31 2013-12-05 日東電工株式会社 Diaphragm for alkaline water electrolysis
JP2014227554A (en) * 2013-05-17 2014-12-08 旭化成ケミカルズ株式会社 Assembly method of electrolytic bath and operation restart method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146577A (en) * 2000-11-09 2002-05-22 Nippon Soda Co Ltd Operating method for ion exchange membrane process alkali chloride electrolytic cell
JP4627111B2 (en) * 2000-11-09 2011-02-09 日本曹達株式会社 Operation method of ion exchange membrane method alkaline chloride electrolytic cell.
WO2013180072A1 (en) * 2012-05-31 2013-12-05 日東電工株式会社 Diaphragm for alkaline water electrolysis
WO2013180071A1 (en) * 2012-05-31 2013-12-05 日東電工株式会社 Diaphragm for alkaline water electrolysis
JP2013249509A (en) * 2012-05-31 2013-12-12 Nitto Denko Corp Diaphragm for alkaline water electrolysis
JP2014227554A (en) * 2013-05-17 2014-12-08 旭化成ケミカルズ株式会社 Assembly method of electrolytic bath and operation restart method

Similar Documents

Publication Publication Date Title
US4683040A (en) Process for electrolysis of sodium chloride
US4178218A (en) Cation exchange membrane and use thereof in the electrolysis of sodium chloride
JPH0212495B2 (en)
RU1823884C (en) Method of preparing of alkaline metal hydroxide
EP0477432A1 (en) Fluorine-containing cation exchange membrane for electrolysis and process for producing alkali metal hydroxide by using the same
JPH0558077B2 (en)
JPH0617278A (en) Method for restarting electrolytic cell
JPS621652B2 (en)
JPH0617279A (en) Method for restarting electrolytic cell
JP3112039B2 (en) How to restart the electrolytic cell
JPS6317913B2 (en)
JP2004188375A (en) Fluorine-containing cation exchange membrane and salt electrolyzing method
JPS6264834A (en) Ion-exchange membrane
CA1282029C (en) Restoring current efficiency by temporary suspension of electrolysis and reduced catholyte concentration
JPH0219848B2 (en)
JPS59166541A (en) Production of porous membrane of chemical resistance
JPH0756079B2 (en) Method for producing alkali hydroxide
JPS62199629A (en) Novel multi-layer permeable membrane for electrolysis
JPS63310985A (en) Production of alkali hydroxide
JPS6255535B2 (en)
JP3108116B2 (en) Salt electrolysis method
JPH0254791A (en) Production of alkali hydroxide
JPS63118083A (en) Electrolytic method using double-layer diaphragm
JPH0570983A (en) Method for electrolyzing aqueous alkali chloride solution
JPS6223073B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831