JPS63312988A - Production of alkali hydroxide - Google Patents

Production of alkali hydroxide

Info

Publication number
JPS63312988A
JPS63312988A JP62149151A JP14915187A JPS63312988A JP S63312988 A JPS63312988 A JP S63312988A JP 62149151 A JP62149151 A JP 62149151A JP 14915187 A JP14915187 A JP 14915187A JP S63312988 A JPS63312988 A JP S63312988A
Authority
JP
Japan
Prior art keywords
exchange membrane
layer
soln
cation exchange
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62149151A
Other languages
Japanese (ja)
Inventor
Yoshio Sugaya
良雄 菅家
Isamu Takeshita
竹下 勇
Atsushi Watakabe
淳 渡壁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP62149151A priority Critical patent/JPS63312988A/en
Publication of JPS63312988A publication Critical patent/JPS63312988A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To produce an aq. alkali hydroxide soln. having a high concn. and an aq. acid soln. with superior current efficiency when an aq. soln. of an alkali metal salt is electrolyzed to produce an aq. alkali hydroxide soln., by using a three-chamber type electrolytic cell provided with a cation exchange membrane having a specified multilayered structure. CONSTITUTION:When an aq. soln. of an alkali metal salt such as Na2SO4 is electrolyzed in a diaphragm system electrolytic cell to produce 35-55wt.% aq. NaOH soln. from the cathode and an aq. H2SO4 soln. from the anode, the aq. soln. of Na2SO4 or the like is fed to the intermediate chamber of the three- chamber type electrolytic cell provided with a cation exchange membrane consisting of two layers on the cathode side and an anion exchange membrane on the anode side. The first layer of the cation exchange membrane is made of a hydrocarbon-based cross-linked polymer having corrosion resistance to >=35wt.% aq. NaOH soln., e.g., a sulfonated styrene-divinylbenzene copolymer or a fluorine-contg. linear polymer having -SO3M or -OM groups (M is an alkali metal). The second layer has 2-7wt.% hydration rate in 45wt.% aq. NaOH soln., >=5mum thickness and -CO2M groups. The cation exchange membrane is stretched in the cell so that the first layer confronts the cathode.

Description

【発明の詳細な説明】 [産業上の利用分野] 未発IJIは、水酸化アルカリ水溶液の製造方法に関す
るものであり、特に王室型イオン交換膜法において、陽
極から酸水溶液を、陰極から比較的高濃度の水酸化アル
カリを製造する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] Undeveloped IJI relates to a method for producing an aqueous alkali hydroxide solution, and in particular, in the royal ion exchange membrane method, an acid aqueous solution is supplied from the anode and relatively from the cathode. The present invention relates to a method for producing highly concentrated alkali hydroxide.

[従来の技術] 塩化アルカリ水溶゛液を電解して、水酸化アルカリと塩
素との製造において、含フツ素陽イオン交換膜を隔膜と
して使用する所謂イオン交換脱法アルカリ電解は、高純
度、高濃度の水酸化アルカリが、それまでの従来法に比
べ低エネルギー消費量にて製造できることから、近年国
際的に普及しつつある。
[Prior art] In the production of alkali hydroxide and chlorine by electrolyzing an aqueous alkali chloride solution, the so-called ion-exchange elimination method alkaline electrolysis uses a fluorine-containing cation exchange membrane as a diaphragm, which produces high purity and high concentration. Alkali hydroxide has become popular internationally in recent years because it can be produced with lower energy consumption than conventional methods.

一方、芒硝等のアルカリ金属塩水溶液を電解して、水酸
化アルカリと酸との製造では、塩化アルカリ電解と異な
り、イオン交換膜に耐蝕性(特に1耐塩素性)が必要と
されないため、炭化水素系の陰イオン交換II々と陽イ
オン交換膜を各々陽極側と陰極側に配した王室型電解が
行なわれている。しかしながら、従来のスチレン−ジビ
ニルベンゼン共重合体のスルホン化陽イオン交換膜を使
用した場合、高い電流効率で電解できるのは、陰極側の
水酸化アルカリ濃度が10〜15重量%どまりである。
On the other hand, in the production of alkali hydroxide and acid by electrolyzing an aqueous solution of alkali metal salts such as Glauber's Salt, unlike alkali chloride electrolysis, the ion exchange membrane does not need to have corrosion resistance (particularly chlorine resistance); Royal electrolysis is carried out in which hydrogen-based anion exchange II and cation exchange membranes are placed on the anode and cathode sides, respectively. However, when a conventional sulfonated cation exchange membrane of styrene-divinylbenzene copolymer is used, electrolysis can be performed with high current efficiency only when the alkali hydroxide concentration on the cathode side is only 10 to 15% by weight.

高い電流効率で、高濃度の水酸化アルカリを得る目的で
、塩化アルカリ電解用に使用されている少なくとも陰極
側にカルボン酸基を有する含フツ素陽イオン交換膜を王
室型電解の陰極側に使用した場合でも、長期にわったて
低電圧で高い電流効率が得られるのも濃度がおよそ38
〜40重量%までの水酸化アルカリを製造する場合に限
られることが見い出された。本発明者の研究によると、
水酸化アルカリのeJIVがおよそ40重積%までは9
4〜98%の高い電流効率が得られるが、それよりも高
濃度になると電流効率が急に低下することが見出された
。また、このように高濃度になると、膜抵抗も急に大き
くなり電解電圧が丘昇し、−週間ないし一年間の長期に
わたって運転した場合には、電流効率も次第に低下して
ゆく現象が見られた。このような高濃度の水酸化アルカ
リで長期間運転した膜の陰極側表面のイオン交換容量を
61一定してみるとカルボン酸基の分解により表面のイ
オン交換容量が低下していることが明らかになった。か
くして膜の陰極側にカルボン酸基を有する陽イオン交換
膜では、−ヒ記のような高濃度の水酸化アルカリを1業
的に製造するのは好ましくない。
In order to obtain highly concentrated alkali hydroxide with high current efficiency, a fluorine-containing cation exchange membrane that has at least a carboxylic acid group on the cathode side, which is used for alkaline chloride electrolysis, is used on the cathode side of royal electrolysis. Even if the concentration is about 38, high current efficiency can be obtained at low voltage over a long period of time.
It has been found that this is limited to the production of up to 40% by weight of alkali hydroxide. According to the inventor's research,
The eJIV of alkali hydroxide is 9 up to approximately 40% by volume.
Although a high current efficiency of 4 to 98% can be obtained, it has been found that when the concentration is higher than that, the current efficiency suddenly decreases. In addition, when the concentration is high, the membrane resistance suddenly increases, the electrolytic voltage rises, and when operated for a long period of one week to one year, the current efficiency gradually decreases. Ta. When the ion exchange capacity of the cathode surface of a membrane operated for a long period of time with such a high concentration of alkali hydroxide is kept constant at 61, it becomes clear that the ion exchange capacity of the surface decreases due to the decomposition of the carboxylic acid groups. became. Thus, in the case of a cation exchange membrane having a carboxylic acid group on the cathode side of the membrane, it is not preferable to produce alkali hydroxide at a high concentration as described in (a) in a single-day process.

しかしながら高濃度の水酸化アルカリを高い電流効率、
低い電解電圧で製造できるようになると、従来水酸化ア
ルカリの濃縮に要してぃたエネルギーを節減もしくは不
要にすることができる。
However, with high current efficiency and high concentration of alkali hydroxide,
If it can be produced at a low electrolytic voltage, the energy conventionally required for concentrating alkali hydroxide can be saved or eliminated.

[発明の解決しようとする問題点1 本発明は、アルカリ金属塩水溶液の電解において、陰極
より高濃度、好ましくは濃度42重量%以F、特には4
5重量%以りの水酸化アルカリを製造するにあたり、初
期において高電流効率を午えるばかりでなく、長期間運
転した場合も高い電流効率を保持できるイオン交換膜を
使用した高濃度水酸化アルカリの製造方法を提供するこ
とを目的とする。
[Problem to be Solved by the Invention 1] The present invention is directed to electrolysis of an aqueous alkali metal salt solution at a higher concentration than the cathode, preferably at a concentration of 42% by weight or more, particularly at a concentration of 4% by weight or more.
In producing alkali hydroxide with a concentration of 5% by weight or more, we use an ion exchange membrane that not only achieves high current efficiency in the initial stage but also maintains high current efficiency even after long-term operation. The purpose is to provide a manufacturing method.

E問題点を解決するための手段] 本発明は前述の問題点を解決すべくなされたものであり
、耐アルカリ性を有する厚さ 5JL腸以りの一503
M又/および−OM基(Xはアルカリ金属)を有する第
一の層の陽イオン交換体と、45重量%MaOH水溶液
中の含水率が2〜7重量%であり、厚さが5ル腸以Eの
−CO2N基(Mはアルカリ金属)を有する第二の層の
少なくても二層からなる陽イオン交換膜を、第一の層を
陰極室に向は配し、陽極側には、陰イオン交換膜を配し
た圧室型電解槽の中間室に、アルカリ金属塩水溶液を供
給して電解することを特徴とする水酸化アルカリの製造
方法を提供するものである。
[Means for Solving Problem E] The present invention has been made to solve the above-mentioned problem, and has a thickness of 5JL with alkali resistance.
The first layer cation exchanger having M and/or -OM groups (X is an alkali metal), the water content in the 45 wt % MaOH aqueous solution is 2 to 7 wt %, and the thickness is 5 ml. A cation exchange membrane consisting of at least two layers, the second layer having a -CO2N group (M is an alkali metal), the first layer facing the cathode chamber, and the anode side having: The present invention provides a method for producing alkali hydroxide, which comprises supplying an aqueous alkali metal salt solution to an intermediate chamber of a pressure chamber type electrolytic cell equipped with an anion exchange membrane for electrolysis.

更に詳しくは水酸化アルカリの濃度が、好ましくは35
重楡%以り、特に42重量%以上の水酸化アルカリの製
造方法に関するものである。
More specifically, the concentration of alkali hydroxide is preferably 35
The present invention relates to a method for producing alkali hydroxide with a concentration of more than 42% by weight, particularly 42% by weight or more.

本発明に使用する陽イオン交換膜の陰極側に向は配す耐
アルカリ性を有する陽イオン交換体は、35重量%以上
、特に42重量%以Hの水酸化アルカリに対し耐蝕性を
有する陽イオン交換体であれば、いずれも使用でき、好
ましくはスルホン化スチレン−ジビニルベンゼン共重合
体、ヒドロキシスチレン−ジビニルベンゼン共重合体1
等の炭化水素系架橋体や、−503M基や−CRfRf
’ON基を有する含フツ素系線状重合体等が例示される
The cation exchanger having alkali resistance, which is disposed toward the cathode side of the cation exchange membrane used in the present invention, is a cation exchanger having corrosion resistance against alkali hydroxide containing 35% by weight or more, particularly 42% by weight or more. Any exchanger can be used, preferably sulfonated styrene-divinylbenzene copolymer, hydroxystyrene-divinylbenzene copolymer 1
Hydrocarbon-based crosslinked bodies such as -503M group and -CRfRf
Examples include fluorine-containing linear polymers having an ON group.

本発明に使用する陽イオン交換膜の耐アルカリ性陽イオ
ン交換樹脂層を有する第一の層の厚さは5μm以−に、
好ましくは10〜200 gtaである。5gmよりも
薄い場合には45重量%以りの水酸化アルカリを製造す
る場合に十分な電流効率が得られず、カルボン酸基の高
濃度アルカリによる劣化も上方に防止できない、  2
00p層を超えると膜抵抗が大きくなり、電解電圧が高
くなるため好ましくない。
The thickness of the first layer having the alkali-resistant cation exchange resin layer of the cation exchange membrane used in the present invention is 5 μm or more,
Preferably it is 10-200 gta. If it is thinner than 5gm, sufficient current efficiency cannot be obtained when producing alkali hydroxide of 45% by weight or more, and deterioration of carboxylic acid groups due to high concentration of alkali cannot be prevented.2
Exceeding the 00p layer is not preferable because the membrane resistance increases and the electrolytic voltage increases.

耐アルカリ性陽イオン交換樹脂からなる第一の層は、イ
オン交換樹脂単独でも使用できるが、第一層と後で述べ
る第二層との耐剥離性の改善や、第一層の機械的強度、
例えば脆性の改善を目的として、第一層のイオン交換樹
脂層に各種の添加材を加えることが出来る。
The first layer made of an alkali-resistant cation exchange resin can be used as an ion exchange resin alone, but it is important to improve the peeling resistance between the first layer and the second layer, which will be described later, and to improve the mechanical strength of the first layer.
For example, various additives can be added to the first ion exchange resin layer for the purpose of improving brittleness.

そのような添加材としては、実質的にイオン交換基を有
しない耐アルカリ性高分子や、耐アルカリ性無機化合物
のウェブ、小繊維、粒子等が使用できる。ウェブを構成
する繊維径又は小繊維径および粒子径は第一の層の厚さ
のr以下、好ましくは三分の一以下の径を有するものが
使用される。第一層に添加される耐アルカリ性無機化合
物としては、チタン、ジルコニウム、ニオブ、タンタル
、インジウム、スズ、マンガン、ニッケル、コバルトの
水酸化物、酸化物、窒化物、炭化物、ケイ素の窒化物、
炭化物及びそれらの混合物から選択される。又、イオン
交換基を有しない耐アルカリ性高分子としては、ポリエ
チレン、ボプロピレン等のポリオレフィン、ポリフッ化
ビニル、ポリ三フフ化エチレン、ポリテトラフルオロエ
チレン、ポリフッ化ビニリデン、四フッ化エチレン/六
フッ化プロピレン)I−重合体、四フッ化エチレン/パ
ーフルオロプロピルビニルエーテル共重合体、四フッ化
エチレン/パーフルオロメチルビニルエーテル共重合体
などの含フツ素カーボン重合体が例示される。該耐アル
カリ性高分子又は、耐アルカリ性無機物は、第一の層中
、容積比率(耐アルカリ性物質の容y!/(耐アルカリ
性物質の容積+陽イオン交換樹脂の容積))として、好
ましくは75%以下、更に好ましくは20〜60%を、
好ましくは均一に含有せしめるのが適切である。この場
合、該粒子の乎均粒径又は小繊維の平均線径は、第一の
層の厚みの二分の一以下であって、且つ20終履以下、
特には10終鳳以下であることが好ましい、この範囲か
らはずれると、理由は明らかではないが、電流効率の低
下もしくは耐久性の低下を招く、更に、陽イオン交換膜
の耐アルカリ性陽イオン交換体の第一層に可溶性の添加
材を加えることもできる。可溶性の添加材、例えばS 
i02、AI、 Al(OH)3 、粒子等のアルカリ
に可溶な無機物や炭化水素系又は含フッ素系の低分子量
の有機化合物、ポリマー、界面活性剤など(以下造孔剤
と呼ぶ)を第一の層を形成する陽イオン交換体又はその
前駆体に好ましくは5〜85容量%、特には20〜80
容量%を含むものを製I模し、これをアルカリ及び/又
は水を含む溶液等に浸せきして上記造孔剤を溶出する方
法が挙げられる。かくして得られる多孔層は、少なくと
も製膜後の水又はアルカリ水溶液等の液体に濡れていな
い状態において、孔の貫通性が小さいことが好ましい0
本発明においては、孔の貫通性は、製膜後の乾いた状態
の多孔体について、ガーレーナンバー、即ち、圧力差0
.0132kg/c諺2の下で1001の空気が6.4
5cm2の面積を通過する秒数で評価され、そのf〆1
が1000以−ヒであることが好ましい、透過性がこれ
よりも大きい多孔体では、陰極室より高濃度の水酸化ア
ルカリがカルボン酸層の表面まで侵入するため好ましく
ない、実際の電解条件下では、該多孔体層は、ある場合
においては。
As such additives, alkali-resistant polymers having substantially no ion exchange groups, webs, fibrils, particles, etc. of alkali-resistant inorganic compounds can be used. The fiber diameter or small fiber diameter and particle diameter constituting the web are preferably equal to or less than r, preferably one-third or less of the thickness of the first layer. Examples of the alkali-resistant inorganic compounds added to the first layer include hydroxides, oxides, nitrides, and carbides of titanium, zirconium, niobium, tantalum, indium, tin, manganese, nickel, and cobalt, nitrides of silicon,
selected from carbides and mixtures thereof. In addition, examples of alkali-resistant polymers without ion exchange groups include polyolefins such as polyethylene and bopropylene, polyvinyl fluoride, polytrifluoroethylene, polytetrafluoroethylene, polyvinylidene fluoride, and tetrafluoroethylene/hexafluoride. Examples include fluorine-containing carbon polymers such as (propylene) I-polymer, tetrafluoroethylene/perfluoropropyl vinyl ether copolymer, and tetrafluoroethylene/perfluoromethyl vinyl ether copolymer. The alkali-resistant polymer or alkali-resistant inorganic substance preferably has a volume ratio (volume of alkali-resistant substance y!/(volume of alkali-resistant substance + volume of cation exchange resin)) of 75% in the first layer. Below, more preferably 20 to 60%,
Preferably, it is appropriate to contain it uniformly. In this case, the average particle diameter of the particles or the average wire diameter of the fibrils is not more than half the thickness of the first layer, and not more than 20 mm,
In particular, it is preferable that it is 10 or less. If it deviates from this range, the reason is not clear, but it will cause a decrease in current efficiency or a decrease in durability. It is also possible to add soluble additives to the first layer. Soluble additives, such as S
i02, AI, Al(OH)3, particles and other alkali-soluble inorganic substances, hydrocarbon-based or fluorine-containing low-molecular-weight organic compounds, polymers, surfactants, etc. (hereinafter referred to as pore-forming agents). Preferably 5 to 85% by volume, especially 20 to 80% by volume of the cation exchanger or its precursor forming one layer.
An example of this method is to prepare a sample containing % by volume and immerse it in a solution containing an alkali and/or water to elute the above-mentioned pore-forming agent. The porous layer thus obtained preferably has small pore penetration, at least in a state where it is not wet with a liquid such as water or an aqueous alkali solution after film formation.
In the present invention, the permeability of the pores is determined by the Gurley number, that is, the pressure difference is 0 for the porous body in a dry state after film formation.
.. 1001 air under 0132kg/c proverb 2 is 6.4
It is evaluated by the number of seconds it takes to pass through an area of 5 cm2, and its f〆1
It is preferable that the permeability is 1000 or more. If the permeability is larger than this, alkali hydroxide at a higher concentration than the cathode chamber will penetrate to the surface of the carboxylic acid layer, which is undesirable. Under actual electrolytic conditions, , in some cases, the porous layer is.

イオンの流れの影響等により、微細な孔ができてもかま
わない。
It does not matter if fine pores are formed due to the influence of ion flow, etc.

本発明者らの研究によれば、第一の層が多孔化された陽
イオン交換体でなくとも、42重量%以−L、特には4
5重量%以上のNaOH水溶液で高い電流効率を出すこ
とが回走であるが、第一の層を多孔化することにより、
更に長期に渡って安定して高い電流効率を得ることが可
能になった。そのメカニズムは必ずしも明らかではない
が、第一の層に空孔な設けることにより、第一の層の剥
離や、クラックを発生させる応力が緩和されるためと思
われる。
According to the research of the present inventors, even if the first layer is not a porous cation exchanger, 42% by weight or more, especially 4%
Circulation is to achieve high current efficiency with a NaOH aqueous solution of 5% by weight or more, but by making the first layer porous,
Furthermore, it has become possible to stably obtain high current efficiency over a long period of time. Although the mechanism is not necessarily clear, it is thought that the provision of pores in the first layer relieves the stress that causes peeling and cracking of the first layer.

次に本発明に使用する陽イオン交換膜の第二の層は厚さ
 5終腸以−Lの−GO2M (Mはアルカリ金属)を
有する陽イオン交換体が使用される。
Next, as the second layer of the cation exchange membrane used in the present invention, a cation exchanger having -GO2M (M is an alkali metal) with a thickness of about 5 L is used.

−GO?’14基を含有する陽イオン交換体としては、
アクリル酸、メタクリル酸とジビニルベンの共重合体等
の架橋重合体や、アクリル酸、メタクリル酸とエチレン
との共重合体や、パーフルオロビニルエーテルのカルボ
ン酸エステルと4弗化エチレンの共重合体等の線状重合
体が例示される。なかでも、エチレン又は、4弗化エチ
レンと共重合した一COyH基を含有した線状重合体が
高濃度水酸化アルカリで高い電流効率が得られるので好
ましい、−002M基を含有した線状重合体が、高濃度
の水酸化アルカリ中で高い電流効率を示す理由は明らか
にされていないが、線状重合体が高濃度水酸化アルカリ
中で収縮して含水率が低下することから膜中のイオンが
透過する孔が小さくなるためと解釈される。
-GO? As a cation exchanger containing '14 groups,
Crosslinked polymers such as copolymers of acrylic acid, methacrylic acid and divinylben; copolymers of acrylic acid, methacrylic acid and ethylene; copolymers of perfluorovinyl ether carboxylic acid ester and tetrafluoroethylene; A linear polymer is exemplified. Among them, a linear polymer containing a COyH group copolymerized with ethylene or tetrafluoroethylene is preferable because a high current efficiency can be obtained with a high concentration of alkali hydroxide, and a linear polymer containing a -002M group is preferable. However, the reason why it exhibits high current efficiency in high concentration alkali hydroxide is not clear, but because the linear polymer shrinks in high concentration alkali hydroxide and the water content decreases, ions in the membrane This is interpreted to be because the pores through which the particles pass through become smaller.

かくして、陽イオン交換膜の第二の層は、45重量%M
aOH水溶液中の含水率が、2〜7重量%、好ましくは
2.5〜5重量%の範囲にあることが好ましい、この範
囲から外れると上のに高い゛、I!:流効率が得られな
い、ここで本発明において45重喰%MaOH中の含水
率とは、陽イオン交換11りを電解運転温度の45重量
%MaOH水溶液に18時間浸せきし、25℃に冷却後
、膜表面のアルカリ水溶液を拭きとった後の重量をag
、その膜を90°Cのイオン交換水に16時間浸せきし
た後、130℃で16時間真空乾燥したときの重量をb
gとしたとき、 含水率(%) = (a −b) / bXlooで!
Lえられるものをいう。
Thus, the second layer of the cation exchange membrane contains 45% by weight M
It is preferable that the water content in the aOH aqueous solution is in the range of 2 to 7% by weight, preferably 2.5 to 5% by weight; outside this range, the water content will be higher than above.I! : Flow efficiency cannot be obtained. Here, in the present invention, the water content in 45 wt% MaOH means that the cation exchanger 11 is immersed in a 45 wt% MaOH aqueous solution at the electrolysis operating temperature for 18 hours, and then cooled to 25°C. After that, the weight after wiping off the alkaline aqueous solution on the membrane surface is
The weight when the membrane was soaked in ion-exchanged water at 90°C for 16 hours and vacuum-dried at 130°C for 16 hours was b.
When g, moisture content (%) = (a - b) / bXloo!
L means something that can be gained.

そのような含水率をあたえる一GO2M基を含有する重
合体として、イオン交換容量0.6〜1.8ミリ当量/
g乾燥樹脂、好ましくは0.85〜1.8 ミリ当量/
g乾燥樹脂の (メタ)アクリル酸エチレン共重合体、
 (メタ)アクリル酸−プロピレン共重合体又はCO2
Mal含有パーフルオロカーボン爪合体の厚さ5〜30
0 gtaが使用される。
As a polymer containing one GO2M group giving such a water content, the ion exchange capacity is 0.6 to 1.8 meq/
g dry resin, preferably 0.85-1.8 meq/
(meth)acrylic acid ethylene copolymer of dry resin,
(meth)acrylic acid-propylene copolymer or CO2
Thickness of Mal-containing perfluorocarbon nail combination: 5 to 30
0 gta is used.

本発明で使用する陽イオン交換膜の第一層及び第二層で
使用される陽イオン交換性含フツ素重合体は少なくとも
二種の単量体の共重合体からなり、好ましくは次の(イ
)及び(ロ)の重合単位をもつ共重合体からなる。
The cation-exchangeable fluorine-containing polymer used in the first and second layers of the cation-exchange membrane used in the present invention is composed of a copolymer of at least two types of monomers, preferably the following ( It consists of a copolymer having the polymerized units of (a) and (b).

(()  −(CF2JXX’)−、(0)  −(C
F2−CX)−+4 ココテ、x、x’は、−F、−CI 、 −H又は−C
F3テあり、Aは一9O314、−CRfRf’ON又
は−co2x (には水素、アルカリ金属、Rf、Rf
’は炭素数1−10のパーフルオロアルキル基)又は加
水分解等により、これらの基に転化する基を表し、Yは
、次のちのから選ばれるが、そこで、z、z’は−F又
は1161−10のパーフルオロアルキル基であり、!
+y、2は 1−10の整数を表す。
(() −(CF2JXX')−, (0) −(C
F2-CX) -+4 Cocote, x, x' are -F, -CI, -H or -C
F3TE, A is -9O314, -CRfRf'ON or -co2x (represents hydrogen, alkali metal, Rf, Rf
' represents a perfluoroalkyl group having 1 to 10 carbon atoms) or a group that can be converted into these groups by hydrolysis etc., and Y is selected from the following, where z and z' are -F or 1161-10 perfluoroalkyl group,!
+y, 2 represents an integer from 1 to 10.

−(CF2)!−,−0−(CFz)x−、−(0−C
F2−OF)x−。
-(CF2)! −, −0−(CFz)x−, −(0−C
F2-OF)x-.

−(0−OF−Oh )y−0−(CF)z−ZZ゛ さらに、 (イ)及び(ロ)の重合単位の他に1次のよ
うな重合単位を含んでいてもよい。
-(0-OF-Oh)y-0-(CF)z-ZZ゛Furthermore, in addition to the polymerized units (a) and (b), the following polymerized units may be included.

lCF?(:F)−−(CF2−CF)−0−Z   
   (0−CF2−CF) x−0−ZZ゛ なお、L記重合体中の(ロ)の含有量は、含フツ素重合
体が」−記イオン交換容量を形成するように選ばれる。
lCF? (:F)--(CF2-CF)-0-Z
(0-CF2-CF)

l−配合フッ素重合体は、好ましくは加水分解されたも
のがパーフルオロカーボン重合体であることが適切であ
り、その好ましい例は、CF2 =CF2 とCF2−
CFOFG20F (CFz)OGF20F2S02 
Fとの共重合体、CF2 =CF2 とCFz−CFO
(CFz)2〜5SO2Fとの共重合体、CFz −C
F2 とCF2冨CFOFC2CF2 C(CF3 )
20Hとの共重合体、CF2−CF2 と0F2=CF
OCCF2 )2〜5GO7CH3との共重合体、更に
は、CF2−CF2 とCF2−CFOCF2CF(C
F+)0(CFz)?−GO2CH3との共重合体が例
示される。
The l-blended fluoropolymer is preferably a hydrolyzed perfluorocarbon polymer, and preferred examples thereof include CF2=CF2 and CF2-
CFOFG20F (CFz)OGF20F2S02
Copolymer with F, CF2 = CF2 and CFz-CFO
(CFz) Copolymer with 2-5SO2F, CFz -C
F2 and CF2F CFOFC2CF2C (CF3)
Copolymer with 20H, CF2-CF2 and 0F2=CF
OCCF2 )2-5GO7CH3 copolymers, and further copolymers with CF2-CF2 and CF2-CFOCF2CF(C
F+)0(CFz)? A copolymer with -GO2CH3 is exemplified.

第一の層と第二の層の積層は、種々の方法を採用するこ
とができる0例えば、第一の層と第二の層又はその曲駆
体からなる別々のフィルムを類ブレスにより積層する方
法、第一の層及び第二の層を回持に共押し出しにより積
層する方法(米国特許4437952号)、予め乾式も
しくは湿式製11りにより製膜された第一の層もしくは
第二の層の旧にもう一方の層を構成する陽イオン交換体
又はその前駆体等を含有する溶液又はモノマーを塗布し
、乾燥又は重合して積層する方法などが採用され得る。
The first layer and the second layer can be laminated by various methods. For example, separate films consisting of the first layer and the second layer or their derivatives are laminated by a similar press. method, a method of laminating the first layer and the second layer by coextrusion while recirculating (U.S. Pat. No. 4,437,952), a method of laminating the first layer and the second layer by coextrusion in advance; A method may be employed in which a solution or monomer containing a cation exchanger or its precursor constituting the other layer is applied, and then dried or polymerized to form a layer.

本発明で使用される陽イオン交換膜においては、第一の
層及び第二の層に加えて必要により、更に第三の層を積
層することができる。かかる好ましい例として、第二の
層の陽極側に、厚み30〜350pmの好ましくは一5
03M基又は−GO2M基(Mはアルカリ金属)のイオ
ン交換基を有する炭化水素重合体又は含フツ素重合体か
らなり、第二の層よりも比抵抗の小さい層が好ましい。
In the cation exchange membrane used in the present invention, in addition to the first layer and the second layer, a third layer can be further laminated if necessary. As such a preferred example, the second layer has a thickness of 30 to 350 pm on the anode side.
A layer made of a hydrocarbon polymer or a fluorine-containing polymer having an ion exchange group of 03M group or -GO2M group (M is an alkali metal) and has a lower specific resistance than the second layer is preferable.

更に、第二の層又は第三の層の陽極側に、厚み10〜4
50 uLraの気孔率30〜95%を有し1表面及び
内部を親水化した多孔性含フツ素重合体の第四の層を積
層することができる。かかる第三の層や第四の層を積層
することにより、第一の層及び第二の層のみからなる膜
に比べて、膜の機械的強度を更に大きく安定化すること
ができる。
Further, on the anode side of the second layer or the third layer, a thickness of 10 to 4
A fourth layer of a porous fluorine-containing polymer having a porosity of 50 uLra from 30 to 95% and having one surface and the inside made hydrophilic can be laminated. By stacking such a third layer and a fourth layer, the mechanical strength of the film can be stabilized to a greater degree than that of a film consisting only of the first layer and the second layer.

更に、−■−記に加えて、本発明で使用される陽イオン
交換11りは、1−記第一の層、第二の層更には第三の
層の積層を強固に行なうために、必要により結合層を設
けることができる。
Furthermore, in addition to -■-, the cation exchanger 11 used in the present invention has the following properties: A bonding layer can be provided if necessary.

また、本発明の陽イオン交換膜の好ましくは陽極側の層
に、必要に応じて例えばポリプロピレン、ポリテトラフ
ルオロエチレンなどの耐熱性、耐アルカリ性の重合体製
のウェブなどの補強材を埋め込むこともできる。
Furthermore, if necessary, a reinforcing material such as a web made of a heat-resistant and alkali-resistant polymer such as polypropylene or polytetrafluoroethylene may be embedded in the layer preferably on the anode side of the cation exchange membrane of the present invention. can.

J二記陽イオン交換膜は、そのままでも使用できるが、
好ましくは、陽イオン交換膜の少なくとも一表面に、特
に好ましくは、少なくともイオン交換膜の陰極側表面に
水素ガス解放のための処理を施すことにより、電流効率
の長期安定性を改良する効果の他に電解下における電圧
を更送低減することができる。
The J2 cation exchange membrane can be used as is, but
Preferably, at least one surface of the cation exchange membrane, particularly preferably at least the cathode side surface of the ion exchange membrane, is treated to release hydrogen gas, thereby improving the long-term stability of current efficiency. The voltage under electrolysis can be further reduced.

該イオン交換膜の表面にガス解放のための処理を施す方
法としては、膜表面に微細な凹凸を施す方法(特公昭H
−28495号)、電解槽に鉄、ジルコニア等を含む液
を供給して、膜表面に親水性無機粒子をデポジットする
方法 (特開昭56−152980号)、ガス及び液透
過性の電極活性を有しない粒子を含む多孔質層を設ける
方法(特開昭58−75583号及び特開昭57−39
185号公報)等が例示される。
As a method of treating the surface of the ion exchange membrane for gas release, there is a method of forming fine irregularities on the membrane surface (as described by Tokko Sho H.
-28495), a method of supplying a liquid containing iron, zirconia, etc. to an electrolytic cell and depositing hydrophilic inorganic particles on the membrane surface (Japanese Patent Application Laid-Open No. 152980/1983), A method of providing a porous layer containing particles that do not have any
No. 185), etc. are exemplified.

かくして形成した陽イオン交換膜は、第一の層を陰極に
向は配置し、一方、陽極側に陰イオン交換膜を配するこ
とで、王室型電解槽を形成する。
The cation exchange membrane thus formed forms a royal electrolytic cell by arranging the first layer facing the cathode and arranging the anion exchange membrane on the anode side.

陽極側に使用する陰イオン交換膜は、特に限定する必要
はないが、好ましくは、陽極に生成する酸水溶液に対し
耐蝕性を有し、且つ酸製造の効率を高くするために、水
素イオンを透過しにくい陰イオン交換膜が使用される。
The anion exchange membrane used on the anode side is not particularly limited, but preferably has corrosion resistance against the acid aqueous solution generated at the anode and contains hydrogen ions in order to increase the efficiency of acid production. A poorly permeable anion exchange membrane is used.

そのような陰イオン交換膜として、ビニルピリジン−ジ
ビニルベンゼン共重合膜、ビニルイミダゾール−ジビニ
ルベンゼン共重合膜、ポリアミン−エポキシ縮合1漠、
アミ7基含有シラン−エポキシ基含有シラン縮合膜の架
橋型弱塩基性陰イオン交換1漠や、フッ素系アニオン交
換膜−(CF2−CF2 )x −(CF2−0F)V
 −(OC12CF)m−0(CF2)n−AF3 (Aは、四級アンモニウム基又は/あるいは1〜3級ア
ミノ基を含有する官俺基) 等が例示できる。
Such anion exchange membranes include vinylpyridine-divinylbenzene copolymer membranes, vinylimidazole-divinylbenzene copolymer membranes, polyamine-epoxy condensation membranes,
Cross-linked weakly basic anion exchange membrane of silane containing 7 amino groups and silane condensation membrane containing epoxy group 1, fluorine-based anion exchange membrane -(CF2-CF2)x-(CF2-0F)V
Examples include -(OC12CF)m-0(CF2)n-AF3 (A is a quaternary ammonium group and/or a functional group containing a primary to tertiary amino group).

かくして、陰イオン交換膜と陽イオン交換膜で区分され
た中間室に、アルカリ金属塩水溶液を供給し、陽イオン
交換膜で区分された陰極室に水又は稀釈水酸化アルカリ
溶液を、又陰イオン交換膜で区分された陽極室に水又は
稀釈醸水溶液を供給し電解することで、陰極から高濃度
の水酸化アルカリを、陽極室から酸水溶液を製造するこ
とができる。
In this way, an aqueous alkali metal salt solution is supplied to the intermediate chamber divided by the anion exchange membrane and the cation exchange membrane, water or diluted alkali hydroxide solution is supplied to the cathode chamber divided by the cation exchange membrane, and anion By supplying water or a diluted aqueous solution to an anode chamber separated by an exchange membrane and electrolyzing it, highly concentrated alkali hydroxide can be produced from the cathode and an acid aqueous solution can be produced from the anode chamber.

本発明に用いる電解槽の陽極及び陰極としては、従来公
知の電極材料を用いることができるが[1的とする゛逝
解プロセスの電極反応に対し、安価で低過電圧を示し、
かつ耐蝕性の優れた電極材料が適宜選択される。
As the anode and cathode of the electrolytic cell used in the present invention, conventionally known electrode materials can be used.
In addition, an electrode material having excellent corrosion resistance is appropriately selected.

[実施例] 実施例1 イオン交換容量1.33 ミリ当量/g乾燥樹脂のCF
2 =lCF?/CF2−CFO(C:Fz )3−C
OOCH3共重合体(共重合体A)からなる厚さ200
gmのフィルム上に、イオン交換容量1.1 ミリ当量
/g乾燥樹脂のCF2 =CF2 /CF7本CFOC
FzCF(Oh)O(CF2)2sO3H(共重合体B
)と平均粒径5終腫のZ「02粒子を372の体積割合
で含むエタノール混合液を塗布、乾燥することにより、
厚さ501L11の共重合体BとZ r0202部を形
成し 120°Cにて熱プレスを施した0次いで苛性ソ
ーダ溶液で加水分解し陽イオン交換膜を得た。
[Example] Example 1 Ion exchange capacity 1.33 milliequivalents/g dry resin CF
2 =lCF? /CF2-CFO(C:Fz)3-C
OOCH3 copolymer (copolymer A) with a thickness of 200
Ion exchange capacity 1.1 meq/g dry resin CF2 = CF2 / 7 CFs on gm film CFOC
FzCF(Oh)O(CF2)2sO3H (copolymer B
) and an ethanol mixture containing Z'02 particles with an average particle size of 5 at a volume ratio of 372, and by drying,
Copolymer B with a thickness of 501L11 and 202 parts of Zr0 were formed and heat-pressed at 120°C, followed by hydrolysis with a caustic soda solution to obtain a cation exchange membrane.

一方、アニオン交換膜は、ジビニベンゼン20部、4−
ビニルピリジン38部、スチレン42部からなる七ツマ
ー溶液を、ポリプロピレン支持体に含浸して重合し、厚
さ150 tL膳の弱塩基性陰イオン交換膜を得た。
On the other hand, the anion exchange membrane contains 20 parts of divinibenzene, 4-
A polypropylene support was impregnated with a 7mer solution consisting of 38 parts of vinylpyridine and 42 parts of styrene and polymerized to obtain a weakly basic anion exchange membrane having a thickness of 150 tL.

かくして得られた陽イオン交換膜の厚さ50IL11の
共重合体BとZrO2からなる層側に、 5LIS30
4製パンチトメタルを52重量%の−・Y性ソーダ中、
 150°Cで52時間エツチング処理して得られた低
水素過電圧陰極を、又アニオン交換膜を、チタンのパン
チトメタルに貴金属酸化を被rU した陽極側に配し、
陽イオン交換膜と陰イオン交換膜で区分された厚さio
amの中間室に3.5NNa2SOs水溶液を供給しつ
つ、陰極室のNaOH濃度を45屯量%に、又陽極室の
硫酸濃度を4Nに保ちつつ、90℃、電流密度30A/
dm2にて電解せしめたところ、摺電圧4.5Vで、I
JY性ソーダ生成の電流効率95%、硫酸生成の電流効
率85%であった。
On the layer side of the thus obtained cation exchange membrane made of copolymer B and ZrO2 with a thickness of 50IL11, 5LIS30 was added.
Panchitometal manufactured by No. 4 in 52% by weight of -Y soda,
A low hydrogen overvoltage cathode obtained by etching at 150°C for 52 hours and an anion exchange membrane were placed on the anode side of a punched titanium metal coated with noble metal oxidation.
Thickness divided by cation exchange membrane and anion exchange membrane io
While supplying a 3.5N Na2SOs aqueous solution to the intermediate chamber of the am, the NaOH concentration in the cathode chamber was maintained at 45% by volume, and the sulfuric acid concentration in the anode chamber was maintained at 4N, at 90°C and at a current density of 30A/
When electrolyzed at dm2, the sliding voltage was 4.5V, and I
The current efficiency for JY soda production was 95%, and the current efficiency for sulfuric acid production was 85%.

比較例1 実施例1において、陽イオン交換膜の片面に共重合体B
とZ r02の混合層を形成させない以外同様に電解し
た。その結果、摺電圧4.8Vで、%7性ソーダ生成の
電流効率88%、硫酸生成の電流効率85%であった。
Comparative Example 1 In Example 1, copolymer B was added to one side of the cation exchange membrane.
Electrolysis was carried out in the same manner except that a mixed layer of Zr02 and Zr02 was not formed. As a result, at a sliding voltage of 4.8 V, the current efficiency for producing 7% soda was 88% and the current efficiency for producing sulfuric acid was 85%.

実施例2 共重合体A(カルボキシル基1.33ミリ当量/g)の
40鉢厚と共重合体B(スルホン酸基11ミリ当量/g
)の 180 !厚を積層した0次いで、共重合体A側
に、孔径が065島、膜厚が30uL空隙率80%のポ
リテトラフルオロエチレン製多孔体を積層し、該多孔体
に共重合体Bのエタノール溶液を繰り返し吹き付けるこ
とにより、該多孔体内部に共重合体Bの層を形成した後
、苛性カリ溶液で加水分解した。
Example 2 40 pot thickness of copolymer A (carboxyl group 1.33 meq/g) and copolymer B (sulfonic acid group 11 meq/g)
) of 180! Next, on the copolymer A side, a polytetrafluoroethylene porous body with a pore diameter of 065 and a film thickness of 30 μL and a porosity of 80% was laminated, and an ethanol solution of copolymer B was added to the porous body. A layer of copolymer B was formed inside the porous body by repeatedly spraying and then hydrolyzed with a caustic potash solution.

かくして得た陽イオン交換膜の共重合体Bを充填された
多孔体層側を陰極に向け、実施例1と同様に王室型電解
槽を組み立てた。中間室に4Nの硝酸ソーダを供給しつ
つ、陰極室のNaOH濃度を45重量%に、又陽極室の
硝酸濃度を8N/1に保ちつつ、50℃、電流密度10
A/da2にて電解せしめたところ、摺電圧4.2vで
、苛性ソーダ生成の電流効率95%、硝酸生成の電流効
率88%であった。
A royal electrolytic cell was assembled in the same manner as in Example 1, with the porous layer side filled with copolymer B of the cation exchange membrane thus obtained facing the cathode. While supplying 4N sodium nitrate to the intermediate chamber, maintaining the NaOH concentration in the cathode chamber at 45% by weight and the nitric acid concentration in the anode chamber at 8N/1, the temperature was 50°C and the current density was 10.
When electrolyzed at A/da2, the current efficiency for producing caustic soda was 95% and the current efficiency for producing nitric acid was 88% at a sliding voltage of 4.2V.

比較例2 実施例2において使用した共重合体B  180ル膜を
単独に用いた以外は、全て同様に電解した。その結果、
/・Y性ソーダ生成の−[流動率は65%であった。
Comparative Example 2 Electrolysis was carried out in the same manner as in Example 2, except that the Copolymer B 180 membrane used in Example 2 was used alone. the result,
/・Flow rate of Y-based soda production was 65%.

実施例3 イオン交換容量 1.4 ミリ当量/g乾燥樹脂のエチ
レン−アクリル醜共重合体からなる厚さ100ルのフィ
ルム上に、孔径0.lp、厚さ80ル空隙率70%のポ
リプロピレン多孔体を積層した0次いで該多孔体に、ス
チレンBO%、ジビニルベンゼン5%ジオクチルフタレ
ート35%の七ツマー溶液を含浸重合させた後、スルホ
ン化処理した。
Example 3 Ion exchange capacity 1.4 milliequivalents/g dry resin was deposited on a 100 l thick film of ethylene-acrylic copolymer with a pore size of 0. A laminated polypropylene porous body with a thickness of 80 lp and a porosity of 70% was then impregnated and polymerized with a 7-mer solution containing styrene BO%, divinylbenzene 5%, and dioctyl phthalate 35%, followed by sulfonation treatment. did.

かくして得られた陽イオン交換膜のスルホン化スチレン
−ジビニルベンゼン重合体を含浸した多孔体側を陰極側
に向は配置した以外は、実施例2と同様に電解したとこ
ろ、陰極室より45%MaOH溶液が電流効率94%で
生成した。
Electrolysis was carried out in the same manner as in Example 2, except that the porous body side impregnated with the sulfonated styrene-divinylbenzene polymer of the cation exchange membrane thus obtained was placed toward the cathode side, and a 45% MaOH solution was introduced from the cathode chamber. was generated with a current efficiency of 94%.

比較例3 実施例3において、多孔体の積層及びスチレン−ジビニ
ルベンゼンの含浸重合を行なわない以外全く同様にして
電解したところ、陰極室よ945%溶液が゛電流効率8
0%で生成した。
Comparative Example 3 Electrolysis was carried out in exactly the same manner as in Example 3 except that the porous material was not laminated and the styrene-divinylbenzene impregnation polymerization was not performed.
It was produced at 0%.

比較例4 陽イオン交換IQとして、スチレン−ジビニルヘンセン
の共ffi合体のスルホン化膜(厚さ150JLm)を
使用した以外、実施例3と同様にして電解したところ、
陰極室より45%MaOH溶液が電流効率40%で生成
した。
Comparative Example 4 Electrolysis was carried out in the same manner as in Example 3, except that a sulfonated membrane (thickness 150 JLm) of co-ffi combination of styrene and divinylhensen was used as the cation exchange IQ.
A 45% MaOH solution was produced from the cathode chamber at a current efficiency of 40%.

手続宇甫正書(方式) ■、事件の表示 昭和62年特許願第149151号 2、発明の名称 水酸化アルカリの製造方法 3、補正をする者 事件との関係  特許出願人 住 所  東京都千代田区丸の内二丁目1番2号氏名 
  (004)旭硝子株式会社 6、補正により増加する発明の数    なし7、補正
の対象 明細書 8、補正の内容 願書に最初に添付した明細書の浄書・別紙の通り(内容
に変更なし)
Procedure Uho Seisho (Method) ■, Indication of the case Patent Application No. 149151 of 1988 2, Name of the invention Process for producing alkali hydroxide 3, Person making the amendment Relationship with the case Patent applicant address Chiyoda, Tokyo 2-1-2 Marunouchi Ward Name
(004) Asahi Glass Co., Ltd. 6. Number of inventions increased by amendment None 7. Specification subject to amendment 8. Contents of amendment As per the engraving and attached sheet of the specification originally attached to the application (no change in content)

Claims (3)

【特許請求の範囲】[Claims] (1)耐アルカリ性を有する厚さ5μm以上の−SO_
3M(Mはアルカリ金属を表す)及び/又は−OM基を
有する第一の層の陽イオン交換体と、45重量%MaO
H水溶液中の含水率が2〜7重量%であり、厚さが5μ
m以上の−CO_2M基(Mはアルカリ金属)を有する
第二の層との少なくても二層からなる陽イオン交換膜を
、第一の層を陰極室に向けて配し、陽極側には、陰イオ
ン交換膜を配した三室型電解槽の中間室にアルカリ金属
塩水溶液を供給して電解することを特徴とする水酸化ア
ルカリの製造方法。
(1) -SO_ with a thickness of 5 μm or more with alkali resistance
a first layer cation exchanger having 3M (M represents an alkali metal) and/or -OM group and 45% by weight MaO
The water content in the H aqueous solution is 2 to 7% by weight, and the thickness is 5μ
A cation exchange membrane consisting of at least two layers including a second layer having m or more -CO_2M groups (M is an alkali metal) is arranged with the first layer facing the cathode chamber, and the anode side A method for producing alkali hydroxide, which comprises supplying an aqueous alkali metal salt solution to an intermediate chamber of a three-chamber electrolytic cell equipped with an anion exchange membrane for electrolysis.
(2)陽イオン交換膜の第二の層が、厚さ5〜300μ
m、イオン交換容量0〜1.8ミリ当量/g乾燥樹脂の
−CO_2M基含有の線状重合体からなる層である特許
請求の範囲(1)の方法。
(2) The second layer of the cation exchange membrane has a thickness of 5 to 300μ
2. The method according to claim 1, wherein the layer is a linear polymer containing -CO_2M groups and has an ion exchange capacity of 0 to 1.8 meq/g dry resin.
(3)アルカリ金属塩溶液を、陰イオン交換膜と陽イオ
ン交換膜とで区分された中間室に供給し、陰イオン交換
膜で区分された陽極室から酸水溶液を、陽イオン交換膜
で区分された陰極室から、35〜55重量%の水酸化ア
ルカリ溶液を製造する特許請求の範囲(1)〜(2)の
方法。
(3) The alkali metal salt solution is supplied to an intermediate chamber divided by an anion exchange membrane and a cation exchange membrane, and the acid aqueous solution is divided by a cation exchange membrane from the anode chamber divided by an anion exchange membrane. The method according to claims (1) and (2), for producing a 35 to 55% by weight alkali hydroxide solution from the cathode chamber.
JP62149151A 1987-06-17 1987-06-17 Production of alkali hydroxide Pending JPS63312988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62149151A JPS63312988A (en) 1987-06-17 1987-06-17 Production of alkali hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62149151A JPS63312988A (en) 1987-06-17 1987-06-17 Production of alkali hydroxide

Publications (1)

Publication Number Publication Date
JPS63312988A true JPS63312988A (en) 1988-12-21

Family

ID=15468895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62149151A Pending JPS63312988A (en) 1987-06-17 1987-06-17 Production of alkali hydroxide

Country Status (1)

Country Link
JP (1) JPS63312988A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8834688B2 (en) 2009-02-10 2014-09-16 Calera Corporation Low-voltage alkaline production using hydrogen and electrocatalytic electrodes
US8869477B2 (en) 2008-09-30 2014-10-28 Calera Corporation Formed building materials
US8883104B2 (en) 2009-03-02 2014-11-11 Calera Corporation Gas stream multi-pollutants control systems and methods
US8894830B2 (en) 2008-07-16 2014-11-25 Celera Corporation CO2 utilization in electrochemical systems
US9133581B2 (en) 2008-10-31 2015-09-15 Calera Corporation Non-cementitious compositions comprising vaterite and methods thereof
US9260314B2 (en) 2007-12-28 2016-02-16 Calera Corporation Methods and systems for utilizing waste sources of metal oxides

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9260314B2 (en) 2007-12-28 2016-02-16 Calera Corporation Methods and systems for utilizing waste sources of metal oxides
US8894830B2 (en) 2008-07-16 2014-11-25 Celera Corporation CO2 utilization in electrochemical systems
US8869477B2 (en) 2008-09-30 2014-10-28 Calera Corporation Formed building materials
US9133581B2 (en) 2008-10-31 2015-09-15 Calera Corporation Non-cementitious compositions comprising vaterite and methods thereof
US8834688B2 (en) 2009-02-10 2014-09-16 Calera Corporation Low-voltage alkaline production using hydrogen and electrocatalytic electrodes
US9267211B2 (en) 2009-02-10 2016-02-23 Calera Corporation Low-voltage alkaline production using hydrogen and electrocatalytic electrodes
US8883104B2 (en) 2009-03-02 2014-11-11 Calera Corporation Gas stream multi-pollutants control systems and methods

Similar Documents

Publication Publication Date Title
EP0185228B1 (en) Multi-layered diaphragm for electrolysis
US4683041A (en) Process for electrolysis of sodium chloride
RU1823884C (en) Method of preparing of alkaline metal hydroxide
US5149403A (en) Fluorine-containing cation exchange membrane for electrolysis and process for producing alkali metal hydroxide by using the same
US4147605A (en) Method of producing sols by electrodialysis
JPS5911674B2 (en) Electrolysis method and electrolyzer
EP0229321B1 (en) Method for producing an alkali metal hydroxide and electrolytic cell useful for the method
JPS63312988A (en) Production of alkali hydroxide
JPH0586971B2 (en)
JPH0660250B2 (en) Enhanced cation exchange membrane and method
JPH02133448A (en) Production of hydrophilic porous film
JPS6264834A (en) Ion-exchange membrane
JPH0254791A (en) Production of alkali hydroxide
JPH0288645A (en) Fluorine-containing cation exchange membrane for alkali chloride electrolysis
JP2623572B2 (en) Method for producing alkali hydroxide
JP2623571B2 (en) Method for producing alkali hydroxide
JPH0320490A (en) Production of alkali hydroxide
JPS62199629A (en) Novel multi-layer permeable membrane for electrolysis
JPS5925036B2 (en) Fluorine resin cation exchange membrane for electrolysis
JPS648714B2 (en)
JPS6040515B2 (en) Ion exchange membrane electrolyzer
JPS63310986A (en) Production of alkali hydroxide
JPS5950753B2 (en) Method for producing sodium hydroxide
JPS63310984A (en) Production of alkali hydroxide
Ismail et al. New Trends in Electrolytic Reactor Materials: Diaphragms