JPS63118002A - Production of fine amorphous particle - Google Patents

Production of fine amorphous particle

Info

Publication number
JPS63118002A
JPS63118002A JP61263587A JP26358786A JPS63118002A JP S63118002 A JPS63118002 A JP S63118002A JP 61263587 A JP61263587 A JP 61263587A JP 26358786 A JP26358786 A JP 26358786A JP S63118002 A JPS63118002 A JP S63118002A
Authority
JP
Japan
Prior art keywords
particles
powder
alloy
amorphous
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61263587A
Other languages
Japanese (ja)
Inventor
Hiroshi Kimura
博 木村
Toru Degawa
出川 通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Miike Engineering Corp
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Miike Engineering Corp
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Miike Engineering Corp, Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Miike Engineering Corp
Priority to JP61263587A priority Critical patent/JPS63118002A/en
Publication of JPS63118002A publication Critical patent/JPS63118002A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To easily and efficiently produce fine amorphous particles by putting Co powder Ti, powder, ceramic particles, etc., into a high-speed ball mill so as to have specific compounding ratios and subjecting the powders to a rotary pulverization treatment. CONSTITUTION:The respective raw materials are so put into the high-speed ball mill in such a manner that the mixture consists of 5-85wt% powder of metals of one or >=two kinds among Ti, Ni and Zr and/or the alloy thereof, 0.1-40wt% ceramic particles and the balance substantially metals of one or >=two kinds among Co, Ni and Fe and/or the alloy thereof. The respective grain sizes of the raw materials used are specified to about 0.5-50mu and Y2O3, ZrO2, SiC, and Si3N4 are preferably used for the ceramics. The mixture composed thereof is then rotated for about 5-100hr at 0-200 deg.C and 100-400rpm number of resolution and is thereby subjected to the pulverization treatment. The amorphous particles as small as about <=5mu grain size are thereby easily and efficiently obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は非晶質(アモルファス)微小粒子の製造方法に
係り、特にメカニカルアロイング(機械的合金化)によ
り非晶質微小粒子を製造する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing amorphous microparticles, and particularly to a method for producing amorphous microparticles by mechanical alloying. Regarding the method.

[従来の技術] アモルファス金属は、周知のように、結晶化されていな
いもしくは結晶化度が極めて低い構造を有する金属であ
り、通常の結晶化した金属には見られない物理的、化学
的特性を有しており、近年その応用分野が急速に拡大し
つつある。
[Prior Art] As is well known, an amorphous metal is a metal that is not crystallized or has a structure with extremely low crystallinity, and has physical and chemical properties that are not found in ordinary crystallized metals. The field of application has been rapidly expanding in recent years.

特に、アモルファス金属の微小粒子は、表面の高活性や
垂直磁気異方性から、特異な性能を創り出したり、また
、適当な結合剤(連結剤)を用いることにより、あるい
は加圧焼結法、衝7圧着法等を採用することにより、所
望の形状のものを製造することができるので、アモルフ
ァス金属の応用分野を大幅に拡大するものとして、重視
されている。
In particular, amorphous metal microparticles can create unique performance due to their high surface activity and perpendicular magnetic anisotropy. By employing the crimping method or the like, it is possible to manufacture products with desired shapes, so it is considered important as it will greatly expand the field of application of amorphous metals.

従来、アモルファス金属粉末を製造する方法としては、
液体急冷法が一般的であるが、近年、複合体や層間物質
における固体的拡散を利用してアモルファス合金を固相
反応により製造する方法が開発されており、イオンイン
プランテーション法や水素吸収法等が提案されている。
Conventionally, methods for producing amorphous metal powder include:
The liquid quenching method is common, but in recent years, methods have been developed to produce amorphous alloys by solid-phase reaction using solid-state diffusion in composites and interlayer materials, such as ion implantation method, hydrogen absorption method, etc. is proposed.

更に、ごく最近になって、固相反応法によるアモルファ
ス生成プロセスとして、メカニカルアロイング(機械的
合金化)法が提案された。
Furthermore, very recently, a mechanical alloying method has been proposed as an amorphous production process using a solid phase reaction method.

メカニカルアロイングは、異種金属粒子の混合物を高エ
ネルギーボールで強酸形することによりi械的にアモル
ファス化させることができる新規なアプローチ法として
注目され初めており、溶製法では得られないアモルファ
ス合金組成、分散組織や界面構造等をより人工的に創出
できる材料開発のアプローチ法になりつるものである。
Mechanical alloying has begun to attract attention as a new approach that can mechanically turn a mixture of dissimilar metal particles into a strong acid form using a high-energy ball. This can serve as an approach to material development that allows for the creation of more artificially dispersed structures and interfacial structures.

[発明が解決しようとする問題点] しかしながら、従来提案されている液体急冷法やメカニ
カルアロイングの方法では、いずれも粒径20〜30μ
m程度の粒子しか得られず、また、粒度分布を大きく、
各粒子間の冷却速度も大ぎく変化しており、各種用途に
好適な極微小粒子を得ることはできなかった。気相法に
おいて、サブミクロンサイズ以下の粒子が得られている
が、量産性は極めて低く、性能のバラツキも大きいため
実用には適していない。
[Problems to be solved by the invention] However, in the liquid quenching method and mechanical alloying method that have been proposed so far, the particle size is 20 to 30 μm.
It is possible to obtain only particles of about m size, and to increase the particle size distribution
The cooling rate between each particle also varied greatly, making it impossible to obtain ultrafine particles suitable for various uses. Particles of submicron size or smaller have been obtained using the gas phase method, but mass productivity is extremely low and performance varies widely, so it is not suitable for practical use.

[問題点を解決するための手段及び作用コ木発明は、ア
モルファス金属を粒径5μm以下の極微小粒子として容
易に製造することができる、非晶質微小粒子の製造方法
を提供するものであって、 C01Ni及びFeの1種又は2種以上と、Ti%Nb
及びZrの1種又は2種以上との金属及び/又は合金の
粉末を高速ボールミル中でセラミック粒子を添加して回
転、粉砕処理することにより、Ti%Nb及びZrより
なる群から選ばれる1種又は2 fffi以上5〜85
重量%と、0.1〜40重量%のセラミックを含み残部
が実質的にC01Ni及びFeよりなる群から遭ばれる
1種又は2種以上である合金よりなる非晶質微小粒子を
製造することを特徴とする非晶質微小粒子の製造方法、 を要旨とするものである。
[Means and effects for solving the problem] The present invention provides a method for producing amorphous metal particles that can be easily produced as ultrafine particles with a particle size of 5 μm or less. and one or more of C01Ni and Fe, and Ti%Nb
By adding ceramic particles and rotating and pulverizing powder of metal and/or alloy with one or more of Zr and Zr in a high-speed ball mill, one selected from the group consisting of Ti%Nb and Zr. or 2 fffi or more 5-85
% by weight and an alloy containing 0.1 to 40% by weight of ceramic, the remainder being essentially one or more members from the group consisting of CO1Ni and Fe. The gist of the present invention is a method for producing amorphous microparticles with characteristics.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明においては、C01Ni、Fe、Ti、Zr、N
bの金属粒子、あるいはこれらの金属の合金粒子とセラ
ミック粒子とを原料として用い、これらを、Ti、Nb
及びZrの1種以上5〜80重量%、セラミック0.1
〜40重量%、残部が実質的にCo、Nt及びFeの1
種以上となるように、まず、金属、合金粒子のみを予め
均一混合させた後、アトライタ等の高エネルギーボール
ミルを用いて、Ar等の不活性ガス雰囲気中で機械的に
粉砕混合する。
In the present invention, C01Ni, Fe, Ti, Zr, N
Using metal particles of b or alloy particles of these metals and ceramic particles as raw materials, these are mixed with Ti, Nb
and 5 to 80% by weight of one or more types of Zr, ceramic 0.1
~40% by weight, the balance being essentially 1 of Co, Nt and Fe
First, only the metal and alloy particles are uniformly mixed in advance so that the particles are mixed in a uniform manner, and then mechanically pulverized and mixed in an inert gas atmosphere such as Ar using a high-energy ball mill such as an attritor.

この際の処理条件としては、温度0〜200℃、回転数
100〜400r、p、m、程度が好ましい。また、処
理時間は短過ぎると十分なアモルファス化がおこらず、
長過ぎてもそれ以上の効果は得られない。粉砕混合によ
る処理時間は、製造する微小粒子の粒径、量、合金組成
等によっても異なるが、一般的には5〜100時間程度
とする。
The processing conditions at this time are preferably a temperature of 0 to 200° C. and a rotation speed of 100 to 400 r, p, m. Also, if the processing time is too short, sufficient amorphization will not occur.
If it is too long, no further effect will be obtained. The processing time for pulverization and mixing varies depending on the particle size, amount, alloy composition, etc. of the microparticles to be produced, but is generally about 5 to 100 hours.

粉末混合により、十分に微細なメカニカルアロイングア
モルファス粒子が得られるが、本発明においては、ボー
ルミル内のメカニカルアロイング粒子にセラミック粒子
を投入添加した後、更にエタノールを加えて1〜50時
間程度混合分散処理を行う。
Sufficiently fine mechanically alloyed amorphous particles can be obtained by powder mixing, but in the present invention, after adding ceramic particles to mechanically alloyed particles in a ball mill, ethanol is further added and mixed for about 1 to 50 hours. Perform distributed processing.

この処理により粒径5μm以下の極めて微小な非晶質粒
子が得られるが、更に1〜20分程度微粒化処理するこ
とにより得られる粒子の粒度はより低減される。
Although extremely fine amorphous particles with a particle size of 5 μm or less are obtained by this treatment, the particle size of the particles obtained is further reduced by further atomization treatment for about 1 to 20 minutes.

なお、本発明において用いる金属又は合金粒子、セラミ
ック粒子の粒径は細かい方が、均一に混合できることか
ら好ましい。一般には粒径0.5〜50μm程度の市販
品を用いて行うことができる。
Note that it is preferable that the metal or alloy particles or ceramic particles used in the present invention have a smaller particle size because they can be mixed uniformly. Generally, commercially available products having a particle size of about 0.5 to 50 μm can be used.

本発明において、セラミックとしては金属酸化物、炭化
物、窒化物が好適である。金属酸化物としては’l 2
03 、  Z r O2が好適であり、炭化物として
はSiCが、また窒化物としてはSi3N4が好適であ
る。
In the present invention, metal oxides, carbides, and nitrides are suitable as the ceramic. As a metal oxide, 'l2
03, Z r O2 is preferred, SiC is preferred as the carbide, and Si3N4 is preferred as the nitride.

このような本発明の方法によれば、Y2o3/ F e
 −Z r系、Y2O3/Ni−Zr系、Y2O3/C
o−Ni−Zr系、Y2O3/C。
According to such a method of the present invention, Y2o3/F e
-Z r system, Y2O3/Ni-Zr system, Y2O3/C
o-Ni-Zr system, Y2O3/C.

−Nb−Zr系等のセラミックを含んだ非晶質微小粒子
を製造することができる。
-Amorphous fine particles containing ceramics such as -Nb-Zr can be produced.

[実施例] 以下、実施例について説明する。[Example] Examples will be described below.

実施例I Ni粉末(平均粒径5μm)及びZr粉末(平均粒径4
0μm)を1・1(重量比)の割合で混合し、得られた
混合粉末を、50℃にてArガス強制循環方式の高速エ
ネルギーボールミルで粉砕混合した。
Example I Ni powder (average particle size 5 μm) and Zr powder (average particle size 4
0 μm) at a ratio of 1.1 (weight ratio), and the resulting mixed powder was pulverized and mixed at 50° C. in a high-speed energy ball mill with forced Ar gas circulation.

この際、一定時間毎にボールミルの内容物を取り出し、
走査電子顕微鏡を用いて、メカニカルアロイング粉の形
態を調べた。その結果、約2時間後の粉砕混合初期では
、金属粒子は一旦凝着肥大化し層状構造化するが、約1
6時間粉砕混合を行った中期では、処理時間の経過と共
に複合粒子のサイズは急に小さくなり、その形態も一部
凝集かみられるが、定形化し、構造は均一化してくるこ
とが認められた。更に、混合粉砕を約21時間行いアモ
ルファス化したメカニカルアロイング後期では、サイズ
はほぼ一定になり、それ以上のサイズ減少は殆どみられ
なくなる。
At this time, take out the contents of the ball mill at regular intervals,
The morphology of the mechanically alloyed powder was investigated using a scanning electron microscope. As a result, at the initial stage of pulverization and mixing after about 2 hours, the metal particles once coagulate and become enlarged and form a layered structure, but about 1
In the middle stage after pulverization and mixing for 6 hours, the size of the composite particles suddenly decreased as the processing time progressed, and although some agglomeration was seen in the morphology, it was observed that they became regularized and the structure became uniform. Furthermore, in the latter stage of mechanical alloying, where mixing and pulverization is carried out for about 21 hours to make the material amorphous, the size becomes almost constant, and there is hardly any further size reduction.

第1図に、本例のNi−Zrの混合粉末を2時間と16
時間メカニカルアロイングした粉末のX線ディフラクト
メータによる解析図形を示す。第1図より、2時間のメ
カニカルアロイングではNiとZr結晶のピークかみら
れるのみでアモルファス化していないが、強度の弱いピ
ークではすでに消滅している。16時間後では結晶ピー
クは完全にみられず、アモルファス特有のバーロバター
ンのみであること、また、この処理時間までに新たに出
現したピークがないことから、メカニカルアロイング粉
は顕著な中間相を経ずにアモルファス構造に直接変態し
ていることがわかる。
Figure 1 shows that the Ni-Zr mixed powder of this example was heated for 2 hours and 16 hours.
This figure shows an analysis pattern obtained by an X-ray diffractometer of a time-mechanically alloyed powder. From FIG. 1, it can be seen that after 2 hours of mechanical alloying, only peaks of Ni and Zr crystals can be seen and no amorphous state has occurred, but weak peaks have already disappeared. After 16 hours, no crystalline peaks were observed, only the barropattern characteristic of amorphous, and no new peaks appeared by this time, indicating that the mechanically alloyed powder had a significant intermediate phase. It can be seen that the structure is directly transformed into an amorphous structure without any process.

この21時間混合粉砕したメカニカルアロイング後期に
Y2O3粒子(平均粒径20〜10100nを全型ユの
3重量%となるようにボールミルに投入添加して、8時
間分散化させ(即ち、全処理時間は29時間)、更に1
0分間の微粒化処理を行った。
In the latter stage of the mechanical alloying after mixing and pulverizing for 21 hours, Y2O3 particles (average particle size 20 to 10,100 nm, 3% by weight of the total Y) were added to a ball mill and dispersed for 8 hours (i.e., the total processing time 29 hours), and 1
Atomization treatment was performed for 0 minutes.

得られた非晶質微小粒子の粒度分布を、各処理段階にお
ける粒子の粒度分布と共に、第2図に示す。
The particle size distribution of the obtained amorphous microparticles is shown in FIG. 2 together with the particle size distribution of the particles at each treatment stage.

実施例2 Fe粉末(平均粒径5μm)及びZr粉末(平均粒径4
0μm)を1:1 (重量比)の割合で得られた混合粉
末について、実施例1と同様にメカニカルアロイングを
行い、累積パーセント50%と10%での粒子サイズと
処理時間との関係を求め、結果を第3図に示した。
Example 2 Fe powder (average particle size 5 μm) and Zr powder (average particle size 4
0 μm) at a ratio of 1:1 (weight ratio), mechanical alloying was performed in the same manner as in Example 1, and the relationship between particle size and processing time at cumulative percentages of 50% and 10% was determined. The results are shown in Figure 3.

第2図及び第3図より、いずれのメカニカルアロイング
粉も対数正規分布に従い、酸化物分散化と微粒化処理を
すると直線の勾配は犬きくなり、よりシャープな粒度分
布に変化していることがわかる。同時にこれらの処理に
よりメジアン粒径も急に減少しており、この粘い合金系
でもミクロンサイズの粉末が得られている。
From Figures 2 and 3, it can be seen that all mechanically alloyed powders follow a log-normal distribution, and when oxide dispersion and atomization are performed, the slope of the straight line becomes steeper and the particle size distribution changes to a sharper one. I understand. At the same time, the median particle size was rapidly reduced by these treatments, and micron-sized powder was obtained even with this viscous alloy system.

また、Y203粒子を分散させる前後のFe−Zr系メ
カニカルアロイング粉について走査型τ子顕微鏡にて粒
子の状態を調べたところ、Y2O3粒子の分散前の粒子
凝集が、Y2O3粒子分散後においては殆ど1こめられ
なかった。
Furthermore, when we examined the state of the Fe-Zr mechanical alloying powder before and after dispersing Y203 particles using a scanning tau microscope, we found that particle aggregation before dispersion of Y2O3 particles was almost non-existent after dispersion of Y2O3 particles. I couldn't put in 1.

これらの結果から、酸化物粒子の没入、微粒化処理によ
り、得られる粒子の粒度は、粉砕時間と共に著しく小さ
くなることが明らかである。
From these results, it is clear that due to the immersion of oxide particles and the atomization treatment, the particle size of the obtained particles becomes significantly smaller as the grinding time increases.

実施例3 実施例1で得られたNi−Zr系ヌカニカルアロイング
粒子(Y203粒子分散前のもの)について、示差走査
熱量計を用いて、ガラス化遷移等の熱的安定性を調べた
Example 3 The Ni-Zr based nuclear alloy particles obtained in Example 1 (prior to dispersion of Y203 particles) were examined for thermal stability such as vitrification transition using a differential scanning calorimeter.

第4図にDSC(示差走査熱量計)カーブを示す。FIG. 4 shows a DSC (differential scanning calorimeter) curve.

第4図より、110°Cあたりからアモルファス相の不
可逆過程の構造緩和による緩やかな発熱反応がみられ、
約450℃でのガラス遷移に伴う吸熱反応の後結晶化に
よる大きな発熱反応がみられる。このメカニカルアロイ
ング粉の結晶化挙動は従来DSCで測定されているアモ
ルファスNiZr系合金の急冷リボン試片とほぼ一致し
ている。Y2O3粒子分散後の粒子についても、同様な
結果が得られた。
From Figure 4, a gradual exothermic reaction due to structural relaxation of the irreversible process of the amorphous phase is observed from around 110°C.
After the endothermic reaction accompanying the glass transition at about 450°C, a large exothermic reaction due to crystallization is observed. The crystallization behavior of this mechanically alloyed powder is almost the same as that of a quenched ribbon specimen of an amorphous NiZr alloy that has been conventionally measured by DSC. Similar results were obtained for particles after dispersion of Y2O3 particles.

[発明の効果コ 以上詳述した通り、本発明の非晶質微小粒子の製造方法
は、高速ボールミルによるメカニカルアロイングで、特
定組成のアモルファス合金の微小粒子を製造するもので
あって、粒径5μm以下とりわけ1μm以下の極めて微
細な非晶質微粒子を容易かつ効率的に製造することがで
きる。
[Effects of the Invention] As detailed above, the method for producing amorphous microparticles of the present invention is to produce microparticles of amorphous alloy with a specific composition by mechanical alloying using a high-speed ball mill, and the particle size Extremely fine amorphous particles of 5 μm or less, particularly 1 μm or less, can be easily and efficiently produced.

このため、本発明によれば、アモルファス合金の応用分
野の拡大が図れ、工業的に極めて有利である。
Therefore, according to the present invention, the field of application of amorphous alloys can be expanded, which is extremely advantageous industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1で得られたNi−Zr系メカニカルア
ロイング粒子のX線回折図形を示す図、第2図は実施例
1で得られた各処理段階の粒子の粒度分布を示すグラフ
、第3図は実施例2で得られたFe−Zr系粒子の粒子
サイズと処理時間との関係を示す図、第4図は実施例3
で得られたDSCカーブを示す図である。 代理人   弁理士   重 野  剛Ni−Zr □ 2e、 degree 第2図 粒径(、um) 第3図 第4図
Fig. 1 is a diagram showing the X-ray diffraction pattern of the Ni-Zr mechanically alloyed particles obtained in Example 1, and Fig. 2 is a graph showing the particle size distribution of the particles at each processing stage obtained in Example 1. , FIG. 3 is a diagram showing the relationship between particle size and processing time of Fe-Zr particles obtained in Example 2, and FIG. 4 is a diagram showing the relationship between the particle size and processing time of Fe-Zr particles obtained in Example 2.
FIG. 2 is a diagram showing a DSC curve obtained in FIG. Agent Patent Attorney Tsuyoshi Shigeno Ni-Zr □ 2e, degree Figure 2 Particle size (, um) Figure 3 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)Co、Ni及びFeの1種又は2種以上と、Ti
、Nb及びZrの1種又は2種以上との金属及び/又は
合金の粉末を高速ボールミル中でセラミック粒子を添加
して回転、粉砕処理することにより、Ti、Nb及びZ
rよりなる群から選ばれる1種又は2種以上5〜85重
量%と、0.1〜40重量%のセラミックを含み、残部
が実質的にCo、Ni及びFeよりなる群から選ばれる
1種又は2種以上である合金よりなる非晶質微小粒子を
製造することを特徴とする非晶質微小粒子の製造方法。
(1) One or more of Co, Ni and Fe and Ti
, Ti, Nb and Zr by rotating and pulverizing powder of metal and/or alloy with one or more of Nb and Zr in a high-speed ball mill with the addition of ceramic particles.
One or more selected from the group consisting of 5 to 85% by weight of one or more selected from the group consisting of r, and 0.1 to 40% by weight of ceramic, with the remainder substantially consisting of Co, Ni and Fe. Or a method for producing amorphous microparticles, which comprises producing amorphous microparticles made of an alloy of two or more types.
(2)セラミック粒子は金属酸化物であることを特徴と
する特許請求の範囲第1項に記載の方法。
(2) The method according to claim 1, wherein the ceramic particles are metal oxides.
(3)セラミック粒子は窒化物又は炭化物であることを
特徴とする特許請求の範囲第1項に記載の方法。
(3) The method according to claim 1, wherein the ceramic particles are nitride or carbide.
JP61263587A 1986-11-05 1986-11-05 Production of fine amorphous particle Pending JPS63118002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61263587A JPS63118002A (en) 1986-11-05 1986-11-05 Production of fine amorphous particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61263587A JPS63118002A (en) 1986-11-05 1986-11-05 Production of fine amorphous particle

Publications (1)

Publication Number Publication Date
JPS63118002A true JPS63118002A (en) 1988-05-23

Family

ID=17391619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61263587A Pending JPS63118002A (en) 1986-11-05 1986-11-05 Production of fine amorphous particle

Country Status (1)

Country Link
JP (1) JPS63118002A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146456A (en) * 2000-11-10 2002-05-22 Hitachi Powdered Metals Co Ltd Crack propagation suppressing member and its production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146456A (en) * 2000-11-10 2002-05-22 Hitachi Powdered Metals Co Ltd Crack propagation suppressing member and its production method
JP4535601B2 (en) * 2000-11-10 2010-09-01 日立粉末冶金株式会社 Crack growth inhibiting member and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPS58189307A (en) Manufacture of mechanical alloyed powder
US3531245A (en) Magnesium-aluminum nitrides
JP2539712B2 (en) Nitride powder
JPH02125801A (en) Flat-state fe base soft magnetic alloy fine powder and manufacture thereof
JP2600762B2 (en) Method for producing zinc oxide whiskers
JP2003306330A (en) Lithium-containing double oxide and method for manufacturing it
JPS63118002A (en) Production of fine amorphous particle
Zaara et al. Solid solution evolution during mechanical alloying in Cu-Nb-Al compounds
Salimon et al. Preparation and analysis of quasicrystalline phases by high energy ball milling and X-ray diffraction
US4384884A (en) Process for the production of a hard solid solution containing molybdenum
JP3903301B2 (en) Aluminum alloy powder for neutron absorbing material and neutron absorbing material
JPS58213618A (en) Production of powder of composite carbonitride solid solution
Gaffet et al. Mechanical milling
KR100707855B1 (en) Manufacturing method of metal fine particles-feedstock for powder injection molding
JPS63239104A (en) Production of fine silicon nitride powder containing beta-phase
JPS63243210A (en) Production of fine metal powder
JPS59170206A (en) Production of tungsten-cerium oxide powder
KR20040072991A (en) Method for manufacturing Nano Fe-base powder with mill scale
JPH11152534A (en) Tungsten sheet and its production
KR100960624B1 (en) Manufacturing process for oxide dispersion strengthened alloys using wet mixing with yttrium salts and oxide dispersion strengthened alloys manufactured thereby
JPS61174348A (en) Oxide-dispersed super alloy and its production
JP2000349354A (en) Manufacture of thermotelectirc material
JPH06216414A (en) Manufacture of thermoelectric conversion material
JPH07133157A (en) Electrically conductive ceramics and its production
JPS58213619A (en) Production of powder of composite carbonitride solid solution