JP2002146456A - Crack propagation suppressing member and its production method - Google Patents

Crack propagation suppressing member and its production method

Info

Publication number
JP2002146456A
JP2002146456A JP2000343571A JP2000343571A JP2002146456A JP 2002146456 A JP2002146456 A JP 2002146456A JP 2000343571 A JP2000343571 A JP 2000343571A JP 2000343571 A JP2000343571 A JP 2000343571A JP 2002146456 A JP2002146456 A JP 2002146456A
Authority
JP
Japan
Prior art keywords
powder
matrix
volume
tini
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000343571A
Other languages
Japanese (ja)
Other versions
JP4535601B2 (en
Inventor
Tamio Takada
民夫 高田
Mitsuru Kanbe
満 神戸
Hideo Yomo
英雄 四方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Resonac Corp
Original Assignee
Central Research Institute of Electric Power Industry
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Hitachi Powdered Metals Co Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP2000343571A priority Critical patent/JP4535601B2/en
Publication of JP2002146456A publication Critical patent/JP2002146456A/en
Application granted granted Critical
Publication of JP4535601B2 publication Critical patent/JP4535601B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a crack propagation suppressing member by which a desired Ti-Ni alloy is sufficiently formed without forming a reaction product with a matrix when high energy is applied, and the propagation of cracks can efficiently be prevented. SOLUTION: In the matrix, a TiNi phase composed of 45 to 65 vol.% Ti, and the balance Ni, and in which Ti and Ni are formed of a fine lamellar structure or an amorphous structure is dispersed in 10 to 50 vol.% of the whole.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高エネルギーの衝
撃などが負荷された際の衝突による亀裂の進展を抑止す
る機能を有し、航空機、スペースシャトル等の宇宙移動
手段などの材料に用いて好適な亀裂進展抑止部材に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a function of suppressing the growth of a crack due to a collision when a high-energy impact or the like is applied, and is used as a material for space transportation means such as an aircraft and a space shuttle. The present invention relates to a suitable crack growth suppressing member.

【0002】[0002]

【従来の技術】亀裂進展抑止部材では、通常時は一般の
構造物としての機械的特性を有するが、万一、何らかの
障害物などに衝突して高エネルギーの負荷が加わった際
に、衝突の熱エネルギーにより亀裂先端が局部的に高温
になり、超塑性現象を発現する金属間化合物が生成し、
この金属間化合物が亀裂の進展を抑止する。このような
亀裂進展抑止部材は、航空機の圧カバウンダリーの脆性
破壊防止や、宇宙漂流物対策等で適用が検討されてい
る。
2. Description of the Related Art In general, a crack growth suppressing member has mechanical properties as a general structure. However, if a high energy load is applied by colliding with an obstacle or the like, the crushing of the member is prevented. The crack tip is locally heated to a high temperature by thermal energy, and an intermetallic compound that develops a superplastic phenomenon is generated.
This intermetallic compound suppresses crack growth. The application of such a crack growth suppressing member is being studied for preventing brittle fracture of a pressure boundary of an aircraft, countermeasures for space drifting objects, and the like.

【0003】このような亀裂進展抑止部材としては、
「傾斜機能材料の二一ズ調査」(平成3年3月;(社)
未踏科学技術協会)で開示されたものがあり、以下のよ
うな方法で製造される。まず、Ti粒子、A1
子、TiウイスカおよびNiウイスカを予め体積分率を
制御して混合する。この微細混合物を、粉末スプレー積
層法で外面をTi、内面をA1として外内面の材
料間組成が一方から他方へ傾斜して変化するように例え
ば管材の表面に成形した後、冷間静水圧形成(CIP)
および熱間静水圧成形(HIP)を用いて比較的低温・
高圧の処理を行う。この製法による亀裂進展抑止部材に
おいて、ウイスカは、マトリックスの短繊維強化、強靭
性化する働きを有するとともに、部材に高エネルギーの
負荷が加わった際、局部的な発熱によりTiとNiの共
晶温度(960℃)に達し、Ti−Ni合金が生成され
ることにより亀裂の進展を抑止するという機能を有す
る。
[0003] As such a crack growth suppressing member,
"Studies on Functionally Gradient Materials" (March 1991; company)
There is one disclosed by the Japan Society of Unexplored Science and Technology, and is manufactured by the following method. First, Ti particles are mixed by controlling the A1 2 0 3 particles, pre volume fraction of Ti whiskers and Ni whiskers. After the fine mixture was molded outer surface with a powder spray lamination Ti, inner surface of A1 2 0 3 as the surface of for example the tubing so that the material between the composition of the outer interior surface is changed to be inclined from one to the other, cold Hydrostatic pressure formation (CIP)
And relatively low temperature using hot isostatic pressing (HIP)
Perform high pressure processing. In the crack growth suppressing member manufactured by this method, the whisker has the function of reinforcing the matrix with short fibers and increasing the toughness, and when a high energy load is applied to the member, the eutectic temperature of Ti and Ni due to local heat generation. (960 ° C.), and has the function of suppressing the growth of cracks by the generation of a Ti—Ni alloy.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
組織構造を有する亀裂進展抑止部材では、衝突などの高
エネルギーの負荷が加わったときに所望の合金のみが形
成されるとは限らない。すなわち、マトリックスに分散
したTiとNiが反応してTi−Ni合金が生成される
だけではなく、TiおよびNiとマトリックス合金との
反応も生じ、各種の生成物が形成され易い。このような
生成物は、衝突による亀裂進展の抑止に寄与するTi−
Ni合金の生成量を減少させたり、新たな亀裂進展の起
点となる可能性を高くするため好ましくない。したがっ
て、マトリックス合金中に所望の合金組成を分散しただ
けの組織構造では、亀裂進展を抑止する効果を十分発揮
することができない恐れがある。
However, in the crack growth suppressing member having the above-described structure, only a desired alloy is not always formed when a high energy load such as a collision is applied. That is, not only does Ti and Ni dispersed in the matrix react to form a Ti-Ni alloy, but also a reaction between Ti and Ni and the matrix alloy occurs, and various products are easily formed. Such products contribute to Ti-
This is not preferable because it reduces the amount of Ni alloy produced or increases the possibility of starting a new crack growth. Therefore, a structure in which a desired alloy composition is merely dispersed in a matrix alloy may not be able to sufficiently exhibit the effect of suppressing crack growth.

【0005】さらに、粉末スプレー積層法は傾斜組成を
持った材料の成形法として有効な手段であるが、厚さの
ある大型の構造部品、三次元的に造形された複雑形状部
品の成形法には向かない。また、成形後の固化および繊
密化の手段としてCIPおよびHIPは極めて有効であ
るが、ゴム型あるいは缶などの加圧媒体への封入の工程
を必要とし、最終的な寸法精度を得るための機械加工が
必要であるため、全体の製造工程が煩雑となる。
Further, the powder spray lamination method is an effective means as a method for molding a material having a gradient composition. However, the powder spray lamination method is not suitable for molding a large-sized structural part having a large thickness or a three-dimensionally shaped complex-shaped part. Is not suitable. CIP and HIP are extremely effective as means for solidification and densification after molding, but require a step of encapsulation in a pressurized medium such as a rubber mold or a can, and are required to obtain final dimensional accuracy. Since machining is required, the entire manufacturing process becomes complicated.

【0006】したがって、本発明は、高エネルギの負荷
が加わったときにマトリックスとの反応生成物を形成せ
ず、所望のTi−Ni合金が充分に形成されるととも
に、製造工程を簡略化することができる亀裂進展抑止部
材を提供することを目的としている。
Accordingly, the present invention does not form a reaction product with a matrix when a high energy load is applied, allows a desired Ti-Ni alloy to be sufficiently formed, and simplifies a manufacturing process. It is an object of the present invention to provide a crack growth suppressing member capable of cracking.

【0007】[0007]

【課題を解決するための手段】本発明の亀裂進展抑止部
材は、マトリックス中に、Ti:45〜65体積%で残
部がNiであって、TiとNiが微細な層状組織または
非晶質組織であるTiNi相が全体の10〜50体積%
分散することを特徴としている。以下、本発明の数値限
定の根拠を本発明の作用とともに説明する。
According to the present invention, there is provided a crack growth suppressing member comprising: a matrix having 45 to 65% by volume of Ti and the balance of Ni; Is 10 to 50% by volume of the whole
It is characterized by being dispersed. Hereinafter, the basis of the numerical limitation of the present invention will be described together with the operation of the present invention.

【0008】TiNi相:全体の10〜50体積% マトリックス中のTiNi相の体積比が10%未満で
は、衝突による亀裂進展を防止するように機能するTi
−Ni合金の生成量が少なく、亀裂進展抑止の効果が得
られない。TiNi相の体積比の増加に伴いTi−Ni
合金の形成量が多くなり亀裂進展抑止の効果は向上する
が、TiNi相の体積比が50%を超えると亀裂進展抑
止の効果は高まるものの構造部材としての強度が低下す
る。よって、マトリックス中のTiNi相の体積比は1
0〜50%とした。
[0008] TiNi phase: The volume ratio of TiNi phase in total 10 to 50 volume percent matrix is less than 10%, functions to prevent crack growth by collision Ti
-The amount of Ni alloy generated is small, and the effect of suppressing crack growth cannot be obtained. As the volume ratio of the TiNi phase increases, Ti-Ni
Although the formation amount of the alloy increases and the effect of suppressing crack growth is improved, when the volume ratio of the TiNi phase exceeds 50%, the effect of suppressing crack growth increases but the strength as a structural member decreases. Therefore, the volume ratio of the TiNi phase in the matrix is 1
0 to 50%.

【0009】TiNi相中のTi:45〜65体積% TiNi相中のTiが45体積%未満の場合は、残部の
Niが多くなり過ぎてNiとマトリックスとの各種反応
生成物の形成が多くなる。一方、TiNi相中のTiが
65体積%を超えるとTiが多くなるためTiとマトリ
ックスとの各種反応生成物の形成が多くなる。よって、
TiNi相中のTiは45〜65体積%とした。
[0009] Ti in the TiNi phase: 45 to 65% by volume When the Ti in the TiNi phase is less than 45% by volume, the remaining Ni becomes too large, and the formation of various reaction products between Ni and the matrix increases. . On the other hand, if the Ti in the TiNi phase exceeds 65% by volume, the amount of Ti increases, so that the formation of various reaction products between Ti and the matrix increases. Therefore,
Ti in the TiNi phase was 45 to 65% by volume.

【0010】ただし、TiNi相中のTiとNiとが予
め合金化していると、Ti−Ni合金生成によるエネル
ギーの吸収が行われず亀裂進展抑止の効果がなくなるの
で、TiとNiは独立して存在している必要がある。さ
らに、TiとNiが近接していないとTi−Ni合金だ
けでなくTiもしくはNiとマトリックスとの反応生成
物が形成されることとなる。したがってTiNi相は、
TiとNiが交互に重なり合った微細な層状組織または
TiとNiが混合された非晶質組織であることが必要で
ある。
However, if Ti and Ni in the TiNi phase are pre-alloyed, energy is not absorbed by the formation of the Ti—Ni alloy and the effect of suppressing crack propagation is lost, so that Ti and Ni exist independently. Need to be. Further, if Ti and Ni are not close to each other, not only a Ti-Ni alloy but also a reaction product of Ti or Ni with a matrix will be formed. Therefore, the TiNi phase is
It is necessary to have a fine layered structure in which Ti and Ni alternately overlap or an amorphous structure in which Ti and Ni are mixed.

【0011】微細な層状組織のTiNi相は、TiとN
iとが常に近接した状態で維持できるため、高エネルギ
ーの負荷が加わった際、Ti−Ni合金の生成が容易と
なるとともにマトリックスとの反応生成物の形成を防止
でき、亀裂進展抑止の効果を高くすることができる。ま
た非晶質組織のTiNi相では、高エネルギーの負荷が
加わった際、結晶質のTi−Ni合金が晶出することに
よりエネルギーを吸収し亀裂進展を抑止する。
The TiNi phase having a fine layered structure is composed of Ti and N
i can always be kept in close proximity to each other, so that when a high energy load is applied, it becomes easy to form a Ti-Ni alloy, and it is possible to prevent the formation of a reaction product with the matrix, and to suppress the crack growth. Can be higher. In addition, in a TiNi phase having an amorphous structure, when a high energy load is applied, a crystalline Ti—Ni alloy is crystallized, thereby absorbing energy and suppressing crack propagation.

【0012】次に、本発明の亀裂進展抑止部材の製造方
法は、Ti:45〜65体積%および残部:Niであっ
て、TiとNiが微細な層状組織または非晶質組織であ
るTiNi粉:10〜50体積%にマトリックス粉:残
部を混合して圧縮成形し、焼結することを特徴としてい
る。
Next, the method for producing a crack growth suppressing member according to the present invention is directed to a TiNi powder in which Ti: 45 to 65% by volume and the balance: Ni, wherein Ti and Ni have a fine layered structure or an amorphous structure. : 10 to 50% by volume, the matrix powder: the remainder is mixed, compression-molded, and sintered.

【0013】微細な層状組織または非晶質組織を有する
TiNi粉は、Ti粉:45〜65体積%およびNi
粉:残部からなる混合粉に対して20分〜5時間メカニ
カルアロイング処理を施すことで製造することができ
る。
The TiNi powder having a fine layered structure or amorphous structure is composed of 45 to 65% by volume of Ti powder and Ni powder.
Powder: The powder can be produced by subjecting a mixed powder consisting of the remainder to mechanical alloying treatment for 20 minutes to 5 hours.

【0014】上記製造方法によれば、メカニカルアロイ
ング処理により、TiとNiが層状に微細に分散する組
織または非晶質合金の組織を得ることができ、また、粉
末スプレー積層法やCIP、HIPと比べて極めて簡便
である。ただし、メカニカルアロイング処理の時間が短
すぎるとTiとNiの層状組織が得られず、Tiまたは
Niのみの部分が残留した偏析の多いものとなり、亀裂
進展抑止の効果が乏しくなる。一方、処理時間が長い
と、TiとNiが合金化してしまい亀裂進展抑止の効果
が乏しくなる。このような観点から、処理時間は20分
〜5時間が望ましく、30分〜4時間であればさらに好
適である。
According to the above-described manufacturing method, a structure in which Ti and Ni are finely dispersed in a layer or a structure of an amorphous alloy can be obtained by a mechanical alloying treatment. It is extremely simple compared to. However, if the time of the mechanical alloying treatment is too short, a layered structure of Ti and Ni cannot be obtained, and a portion of only Ti or Ni remains and a large amount of segregation occurs, and the effect of suppressing crack growth is poor. On the other hand, if the treatment time is long, Ti and Ni are alloyed, and the effect of suppressing crack growth becomes poor. From such a viewpoint, the processing time is preferably 20 minutes to 5 hours, and more preferably 30 minutes to 4 hours.

【0015】[0015]

【発明の実施の形態】以下、本発明の好ましい実施の形
態を説明する。TiNi相の組織状態は、TiNi相、
およびTi粉末とNi粉末を混合しただけの混合粉末に
ついて、X線回折を行った際のTiおよびNiのピーク
強度を比較することで調べることができる。X線回折に
よるピーク強度の比較は、TiもしくはNiの各々の元
素のピーク全てについて比較することが望ましいが、ピ
ーク強度の高い3つの線(3強線)のピーク強度のみで
比較しても差し支えない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described. The structure state of the TiNi phase is TiNi phase,
It can be examined by comparing peak intensities of Ti and Ni when X-ray diffraction is performed on a mixed powder obtained by mixing Ti powder and Ni powder only. It is desirable to compare the peak intensities by X-ray diffraction for all peaks of each element of Ti or Ni, but it is also possible to compare only the peak intensities of three lines (three strong lines) having high peak intensities. Absent.

【0016】Ti粉末とNi粉末の混合粉末のTiおよ
びNiの各々の3強線のピーク強度合計に対するTiN
i相のTiおよびNiの各々の3強線のピーク強度合計
の比(以下、ピーク強度比と称する)が50%を超えて
いる場合は、TiもしくはNiの偏析が残留している状
態を示しており、高エネルギーの負荷が加わった際、効
率よくTi−Ni合金の反応生成が行われないばかり
か、偏析したTiもしくはNiとマトリックスとの反応
生成物が形成されることとなる。また、ピーク強度比が
5%に満たない場合は、TiとNiの合金化が進行して
いる状態を示しており、亀裂進展抑止の効果が乏しくな
る。したがって、ピーク強度比は、5〜50%であるこ
とが望ましい。
TiN with respect to the total peak intensity of the three strong lines of Ti and Ni of the mixed powder of Ti powder and Ni powder
When the ratio of the peak intensity sum of the three strong lines of each of the i-phase Ti and Ni (hereinafter, referred to as peak intensity ratio) exceeds 50%, it indicates that the segregation of Ti or Ni remains. Therefore, when a high energy load is applied, not only is the reaction generation of the Ti—Ni alloy not performed efficiently, but also a reaction product of the segregated Ti or Ni and the matrix is formed. Further, when the peak intensity ratio is less than 5%, it indicates that alloying of Ti and Ni is in progress, and the effect of suppressing crack growth is poor. Therefore, the peak intensity ratio is desirably 5 to 50%.

【0017】本発明の亀裂進展抑止部材は、粉末冶金法
により製造することができる。すなわち、原料粉末とし
てTi粉末、Ni粉末およびマトリックス粉末の混合粉
を用い、混合粉を金型内で上下方向より圧縮成形した成
形体を焼結する方法、混合粉をラバー等に封入して静水
圧成形した成形体を焼結する方法、混合粉を缶等に封入
して高温静水圧成形した後缶材を除去する方法、粉末押
出し法により混合粉を押出し成形した成形体を焼結する
方法等が挙げられる。
The crack growth suppressing member of the present invention can be manufactured by a powder metallurgy method. That is, a method of using a mixed powder of Ti powder, Ni powder and matrix powder as raw material powder, sintering a compact obtained by compressing the mixed powder in a vertical direction in a mold, enclosing the mixed powder in a rubber or the like, and statically A method of sintering a compact formed by hydraulic molding, a method of enclosing a mixed powder in a can or the like, removing a can material after high-temperature isostatic pressing, and a method of sintering a molded body formed by extruding a mixed powder by powder extrusion. And the like.

【0018】本発明の亀裂進展抑止部材のマトリックス
としては、軽量かつ高強度で、加工性の良好なものが好
ましく、CuもしくはCu合金、またはAlもしくはA
l合金が好適である。たとえば、JIS3300「銅お
よび銅合金継目無管」に規定される建築配管用銅管の無
酸素銅・りん脱酸銅などの純Cu系、各種プラントの熱
交換器管用のアドミラルティ黄銅(C4430)、アル
ミニウム黄銅(C6870)、キュプロニッケル(C7
060,C7150,C7164)等のCuおよびCu
合金、また加工性に優れる純Al(JIS1000
系)、耐熱性・強度に優れるAl−Cu系(2000
系)、耐食性・加工性に優れるAl−Mg系(3000
系)、耐食性・押し出し性に優れるAl−Mg−si系
(6000系)、溶接性・強度に優れるAl−Zn−M
g系(7000系)等のAlおよびAl合金が挙げられ
る。
The matrix of the member for inhibiting crack growth of the present invention is preferably a lightweight, high-strength material having good workability, such as Cu or Cu alloy, or Al or A.
1 alloy is preferred. For example, pure Cu-based materials such as oxygen-free copper and phosphorous deoxidized copper for copper pipes for building piping specified in JIS 3300 "Copper and copper alloy seamless pipes", and Admiralty brass for heat exchanger tubes of various plants (C4430) , Aluminum brass (C6870), cupronickel (C7
060, C7150, C7164) and the like.
Alloy and pure Al with excellent workability (JIS1000
System), Al-Cu system (2000)
System), Al-Mg system (3000) with excellent corrosion resistance and workability
System), Al-Mg-si system (6000 system) with excellent corrosion resistance and extrudability, Al-Zn-M with excellent weldability and strength
Al and Al alloys such as g-based (7000-based) are exemplified.

【0019】[0019]

【実施例】以下、具体的な実施例を参照して本発明をさ
らに詳細に説明する。 [実施例1]原料粉として、Ti粉(平均粒度:30μ
m)、カーボニルNi粉(平均粒度:1μm)を使用
し、50体積%のTi粉をNi粉に配合して混合した
後、メカニカルアロイング処理を行った。メカニカルア
ロイング処理は、凝着防止のためメタノールを添加した
Ar雰囲気中で、原料粉の投入量を500g、処理時間
を0.1〜4時間として行った。得られたTiNi相お
よびメカニカルアロイング処理前の混合粉について、そ
れぞれX線回折を行い、TiとNiの3強線のピーク強
度の合計を測定した結果を表1に示す。また、TiNi
相の組織状態の評価を表1に併せて示す。さらに、図1
および図2に、メカニカルアロイング処理時間が2時間
および4時間のTiNi相の組織写真を示す。
Hereinafter, the present invention will be described in more detail with reference to specific examples. [Example 1] Ti powder (average particle size: 30 µ
m) and carbonyl Ni powder (average particle size: 1 μm), and after mixing and mixing 50% by volume of Ti powder with Ni powder, a mechanical alloying treatment was performed. The mechanical alloying treatment was performed in an Ar atmosphere to which methanol was added to prevent adhesion, with the amount of the raw material powder charged being 500 g and the treatment time being 0.1 to 4 hours. Table 1 shows the results obtained by performing X-ray diffraction on the obtained TiNi phase and the mixed powder before the mechanical alloying treatment, and measuring the total peak intensity of the three strong lines of Ti and Ni. Also, TiNi
Table 1 also shows the evaluation of the phase structure. Further, FIG.
2 and FIG. 2 show microstructure photographs of the TiNi phase when the mechanical alloying treatment time is 2 hours and 4 hours.

【0020】[0020]

【表1】 [Table 1]

【0021】図1および図2から判るように、処理時間
が2時間では、未反応のTiとNiが層状および非晶質
の状態で微細に分散した組織、処理時間が4時間では、
TiとNiが非晶質の状態で微細に分散した組織が得ら
れた。また、図示は省略したが、処理時間が30分では
未反応のTiとNiが層状に微細に分散した組織が得ら
れた。この結果により、メカニカルアロイング処理の時
間を30分〜4時間とすることで、層状組織または非晶
質組織からなる所望のTiNi相が得られることが確認
された。なお、メカニカルアロイング処理の時間を20
分〜5時間とすることでも層状組織または非晶質組織か
らなるTiNi相が得られるものと推測される。
As can be seen from FIGS. 1 and 2, when the processing time is 2 hours, the structure in which unreacted Ti and Ni are finely dispersed in a layered and amorphous state, and when the processing time is 4 hours,
A structure in which Ti and Ni were finely dispersed in an amorphous state was obtained. Although not shown in the drawing, a structure in which unreacted Ti and Ni were finely dispersed in a layered manner was obtained in a processing time of 30 minutes. From these results, it was confirmed that a desired TiNi phase composed of a layered structure or an amorphous structure was obtained by setting the mechanical alloying treatment time to 30 minutes to 4 hours. The time of the mechanical alloying process is set to 20.
It is presumed that a TiNi phase composed of a layered structure or an amorphous structure can be obtained even when the time is from 5 minutes to 5 hours.

【0022】また、表1の結果から、TiNi相の粉末
X線回折の3強線のピーク強度の合計が、メカニカルア
ロイング処理前の単純混合物の3強線のピーク強度の合
計の5〜50%の強度比となるようにメカニカルアロイ
ングを行うことにより、TiとNiが層状に微細に分散
する組織または非晶質合金の組織を呈し、合金化が不完
全なTiNi相が得られることが判った。
Also, from the results in Table 1, the sum of the peak intensities of the three strong lines in the powder X-ray diffraction of the TiNi phase is 5 to 50 times the sum of the peak intensities of the three strong lines of the simple mixture before the mechanical alloying treatment. % By mechanical mechanical alloying so as to obtain a structure in which Ti and Ni are finely dispersed in a layer or an amorphous alloy structure, and a TiNi phase incompletely alloyed can be obtained. understood.

【0023】[実施例2]粒度:88μm以下の電解C
u粉末に、実施例1において2時間のメカニカルアロイ
ング処理を行ったTiNi相からなる粉末を体積比で1
0%、30%、50%をそれぞれ配合し、混合した後、
ホットプレスを用い焼結固化した。素材の形状は直径5
0mmで高さが5mmの円板状とし、ホットプレス条件
は、CuマトリックスとTiNi相が著しく反応しない
温度範囲の650℃、保持時間30分間、雰囲気5×1
−2Torrの真空中で、加圧力400kgf/cm
で行った。試料の評価は、素材から切り出した10×
10×5mmの試験片表面に電流30〜35A、照射時
間が1〜4秒の範囲で高エネルギーのレーザを照射した
後、照射部の切断面におけるTiNi合金の形成状況を
X線回折により分析した。
Example 2 Electrolytic C having a particle size of 88 μm or less
The powder composed of the TiNi phase subjected to the mechanical alloying treatment for 2 hours in Example 1 was added to the u powder at a volume ratio of 1
After blending 0%, 30% and 50% respectively, and mixing,
It was sintered and solidified using a hot press. The shape of the material is diameter 5
0 mm and a disk shape with a height of 5 mm. The hot pressing conditions were 650 ° C. in a temperature range where the Cu matrix and the TiNi phase did not significantly react, a holding time of 30 minutes, and an atmosphere of 5 × 1.
Pressure of 400 kgf / cm in a vacuum of 0 -2 Torr
2 was performed. The evaluation of the sample is 10 ×
After irradiating a high-energy laser to a 10 × 5 mm specimen surface with a current of 30 to 35 A and an irradiation time of 1 to 4 seconds, the formation state of the TiNi alloy on the cut surface of the irradiated portion was analyzed by X-ray diffraction. .

【0024】図3〜図5は、上記試料のレーザ照射部分
周辺のX線回折パターンを示すチャートである。これら
のチャートから明らかなように、何れの試料についても
CuマトリックスとTiおよびNiとの反応物は観察さ
れなかった。また、いずれの試料についても、TiNi
相がレーザのエネルギーにより合金化したTi−Ni合
金(◎印)が認められ、本発明におけるTiNi相の効
果が確認された。
FIGS. 3 to 5 are charts showing X-ray diffraction patterns around the laser-irradiated portion of the sample. As is clear from these charts, no reaction products of the Cu matrix with Ti and Ni were observed in any of the samples. In addition, for all samples, TiNi
A Ti—Ni alloy in which the phase was alloyed by the energy of the laser (marked with ◎) was recognized, and the effect of the TiNi phase in the present invention was confirmed.

【0025】[0025]

【発明の効果】以上説明したように本発明によれば、マ
トリックス中に、TiとNiが微細な層状組織または非
晶質組織であるTiNi相が分散したものであるから、
衝突等の高エネルギー負荷が発生した際、TiとNiが
確実に反応してTi−Ni合金を形成し、上記エネルギ
ーを吸収するとともに、TiもしくはNiとマトリック
スの反応生成物の形成を防止でき、効率よく亀裂進展を
防止することができる。
As described above, according to the present invention, since Ti and Ni are dispersed in a matrix, a TiNi phase having a fine layered structure or an amorphous structure is dispersed.
When a high energy load such as a collision occurs, Ti and Ni surely react to form a Ti-Ni alloy, absorb the energy, and prevent the formation of a reaction product of Ti or Ni and the matrix, Crack growth can be efficiently prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例の金属組織を示す図であっ
て、2時間のメカニカルアロイング処理を行ったときの
TiNi相を示すものである。
FIG. 1 is a view showing a metal structure of an example of the present invention, showing a TiNi phase when a mechanical alloying process is performed for 2 hours.

【図2】 本発明の実施例の金属組織を示す図であっ
て、4時間のメカニカルアロイング処理を行ったときの
TiNi相を示すものである。
FIG. 2 is a view showing a metal structure of an example of the present invention, showing a TiNi phase when a mechanical alloying process is performed for 4 hours.

【図3】 本発明の実施例における試料のレーザ照射部
分周辺のX線回折パターンである。
FIG. 3 is an X-ray diffraction pattern around a laser-irradiated portion of a sample in an example of the present invention.

【図4】 本発明の実施例における試料のレーザ照射部
分周辺のX線回折パターンである。
FIG. 4 is an X-ray diffraction pattern around a laser-irradiated portion of a sample in an example of the present invention.

【図5】 本発明の実施例における試料のレーザ照射部
分周辺のX線回折パターンである。
FIG. 5 is an X-ray diffraction pattern around a laser-irradiated portion of a sample in an example of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 四方 英雄 千葉県松戸市大金平1−48−1 Fターム(参考) 4K018 AA03 AA14 BA02 BA03 BA04 BA08 BC16 KA61 KA62  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hideo Shikata 1-48-1, Daikindaira, Matsudo-shi, Chiba F-term (reference) 4K018 AA03 AA14 BA02 BA03 BA04 BA08 BC16 KA61 KA62

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 マトリックス中に、Ti:45〜65体
積%および残部:Niであって、TiとNiが微細な層
状組織または非晶質組織であるTiNi相が、全体の1
0〜50体積%分散することを特徴とする亀裂進展抑止
部材。
1. A TiNi phase in which 45 to 65% by volume of Ti and the balance: Ni in which Ti and Ni are a fine layered structure or an amorphous structure is contained in a matrix.
A crack growth suppressing member characterized by being dispersed in 0 to 50% by volume.
【請求項2】 前記マトリックスがCuもしくはCu合
金、またはAlもしくはAl合金であることを特徴とす
る請求項1に記載の亀裂進展抑止部材。
2. The member according to claim 1, wherein the matrix is Cu or a Cu alloy, or Al or an Al alloy.
【請求項3】 前記TiNi相のX線回折におけるTi
およびNiの各々の3強線のピーク強度の合計は、その
原料粉末であるTi粒子およびとNi粒子の混合粉末の
X線回折におけるTiおよびNiの各々の3強線のピー
ク強度の合計に対し5〜50%であることを特徴とする
請求項1または2に記載の亀裂進展抑止部材。
3. An X-ray diffraction of the TiNi phase
Is the sum of the peak intensities of the three strong lines of Ti and Ni in the X-ray diffraction of the mixed powder of the Ti particles and the Ni particles as the raw material powder. The crack growth suppressing member according to claim 1 or 2, wherein the content is 5 to 50%.
【請求項4】 Ti:45〜65体積%および残部:N
iであって、TiとNiが微細な層状組織または非晶質
組織であるTiNi粉:10〜50体積%にマトリック
ス粉:残部を混合して圧縮成形し、焼結することを特徴
とする亀裂進展抑止部材の製造方法。
4. Ti: 45 to 65% by volume and balance: N
i, a crack characterized by mixing TiNi powder having a fine layered structure or amorphous structure with Ti and Ni: 10 to 50% by volume, matrix powder: remainder, compression molding, and sintering. A method for manufacturing a progress inhibiting member.
【請求項5】 前記TiNi粉が、Ti粉:45〜65
体積%およびNi粉:残部からなる混合粉に対して20
分〜5時間メカニカルアロイング処理を施した粉末であ
ることを特徴とする請求項4に記載の亀裂進展抑止部材
の製造方法。
5. The method according to claim 1, wherein the TiNi powder is Ti powder: 45 to 65.
Volume% and Ni powder: 20 based on the mixed powder consisting of the balance
The method for producing a crack growth suppressing member according to claim 4, wherein the powder is a powder that has been subjected to a mechanical alloying treatment for minutes to 5 hours.
JP2000343571A 2000-11-10 2000-11-10 Crack growth inhibiting member and manufacturing method thereof Expired - Fee Related JP4535601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000343571A JP4535601B2 (en) 2000-11-10 2000-11-10 Crack growth inhibiting member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000343571A JP4535601B2 (en) 2000-11-10 2000-11-10 Crack growth inhibiting member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002146456A true JP2002146456A (en) 2002-05-22
JP4535601B2 JP4535601B2 (en) 2010-09-01

Family

ID=18817918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000343571A Expired - Fee Related JP4535601B2 (en) 2000-11-10 2000-11-10 Crack growth inhibiting member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4535601B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332506A (en) * 2001-05-07 2002-11-22 Central Res Inst Of Electric Power Ind Structure material having function of suppressing propagation of cracking

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118002A (en) * 1986-11-05 1988-05-23 Mitsui Eng & Shipbuild Co Ltd Production of fine amorphous particle
JPH0565584A (en) * 1991-09-05 1993-03-19 Yoshida Kogyo Kk <Ykk> Production of high strength aluminum alloy powder
JPH09111313A (en) * 1995-10-17 1997-04-28 Masumoto Takeshi Production of aluminum alloy powder for high-strength aluminum alloy molding and production of high-strength aluminum alloy molding
JPH1150102A (en) * 1998-05-26 1999-02-23 Japan Storage Battery Co Ltd Production of hydrogen storage alloy powder for battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118002A (en) * 1986-11-05 1988-05-23 Mitsui Eng & Shipbuild Co Ltd Production of fine amorphous particle
JPH0565584A (en) * 1991-09-05 1993-03-19 Yoshida Kogyo Kk <Ykk> Production of high strength aluminum alloy powder
JPH09111313A (en) * 1995-10-17 1997-04-28 Masumoto Takeshi Production of aluminum alloy powder for high-strength aluminum alloy molding and production of high-strength aluminum alloy molding
JPH1150102A (en) * 1998-05-26 1999-02-23 Japan Storage Battery Co Ltd Production of hydrogen storage alloy powder for battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332506A (en) * 2001-05-07 2002-11-22 Central Res Inst Of Electric Power Ind Structure material having function of suppressing propagation of cracking
JP4591985B2 (en) * 2001-05-07 2010-12-01 財団法人電力中央研究所 Structural material

Also Published As

Publication number Publication date
JP4535601B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
Uddin et al. Processing and characterization of crack-free aluminum 6061 using high-temperature heating in laser powder bed fusion additive manufacturing
US20170120386A1 (en) Aluminum alloy products, and methods of making the same
Kimura et al. Microstructural formation and characterization mechanisms of selective laser melted Al–Si–Mg alloys with increasing magnesium content
EP3616810A1 (en) High-strength aluminum alloy laminated molding and production method therefor
JP4037901B2 (en) Method for producing aluminum composite material
Lee et al. Fabrication, microstructures, and tensile properties of magnesium alloy AZ91/SiCp composites produced by powder metallurgy
US4469757A (en) Structural metal matrix composite and method for making same
US11247268B2 (en) Methods of making metal matrix composite and alloy articles
Alman et al. Processing, structure and properties of metal-intermetallic layered composites
WO2002083964A1 (en) Quasi-crystalline phase hardened magnesium alloy with excellent hot formability and method for preparing the same
WO2005123972A1 (en) High toughness magnesium-base alloy, drive component using same, and method for producing high toughness magnesium-base alloy material
JP5322754B2 (en) Metal matrix composite
WO2019055623A1 (en) Aluminum alloy products, and methods of making the same
Hunt, Jr Aluminum metal matrix composites today
US11421303B2 (en) Titanium alloy products and methods of making the same
JP2011500958A (en) Method for producing metal matrix composite
WO2019191056A1 (en) Additively manufactured aluminum alloy products having nanoscale grain refiners
WO2020081157A1 (en) Improved aluminum alloy products and methods for making the same
CN105543525B (en) A kind of preparation method of aluminium alloy
JP2013241675A (en) Method of manufacturing metal-based composite material
Ro et al. The direct powder-rolling process for producing thin metal strip
Gilmore et al. Microstructure of diffusion-bonded joints in Al-Li 8090 alloy
JP2002146456A (en) Crack propagation suppressing member and its production method
Ahmadkhaniha et al. Mechanical alloying by friction stir processing
Roy et al. Transient Liquid Phase Diffusion Bonding of 6061Al-15 wt.% SiC p Composite Using Mixed Cu-Ag Powder Interlayer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees