JPS63117413A - Manufacture of rare earth magnet - Google Patents

Manufacture of rare earth magnet

Info

Publication number
JPS63117413A
JPS63117413A JP26425386A JP26425386A JPS63117413A JP S63117413 A JPS63117413 A JP S63117413A JP 26425386 A JP26425386 A JP 26425386A JP 26425386 A JP26425386 A JP 26425386A JP S63117413 A JPS63117413 A JP S63117413A
Authority
JP
Japan
Prior art keywords
rare earth
gel
solution
magnet
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26425386A
Other languages
Japanese (ja)
Inventor
Motoyuki Toki
元幸 土岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP26425386A priority Critical patent/JPS63117413A/en
Publication of JPS63117413A publication Critical patent/JPS63117413A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To manufacture a rare earth magnet of a high heat-resisting property in an arbitrary shape, by dissolving a rare earth metal and forming it into a solid solution and pulverizing this solution and adding it to a sol whose raw material is silica and placing it under a magnetic field to form a gel and next demagnetizing the gel and drying it and sintering it to obtain magnetization. CONSTITUTION:Sm of 8 wt.% and Co of 18 wt.% and F6 as a remnant are dissolved under an Ar atmosphere by the use of a high-frequency dissolving furnace so as to be formed into a solid solution. Next the solid solution is pulverized by a ball mill to obtain Sm2 (CO0.7F63)17 powder of 2 mum to 30 mum in particle diameter. This powder is mixed into a solution of polypylene resin and coated. Next this powder is added to a solution in which ethylsilicate is hydrolyzed by hydrochloric acid and this solution is adjusted to PH 5.0. While this solution is placed under a magnetic field and left as it is for one night, it is formed into a gel. The gel is demagnetized and dried and formed into a dry gel, and the dry gel is sintered at 1000 deg.C and magnetized so that a magnet is formed. Thus the magnet high in a heat-resisting property can be manufactured in an arbitrary shape.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は任意形状の希土類磁石の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a rare earth magnet of arbitrary shape.

〔従来の技術〕[Conventional technology]

従来の希土類磁石の製造方法には2種類有っ几。 There are two types of conventional manufacturing methods for rare earth magnets.

一つは、焼結法と呼ばれるもので、希土類磁石粉末を不
活性ガス中で磁場成形し焼結しt後、所望の形状に研磨
加工し着磁するものであった。他の一つけ、樹脂結合法
と呼ばれるもので、希±am石粉末−と樹脂とを混練し
t後、磁場成形することにより所望の形状に成形し着磁
するものである。
One method is called a sintering method, in which rare earth magnet powder is magnetically formed in an inert gas, sintered, and then polished into a desired shape and magnetized. Another method is called the resin bonding method, in which rareite powder and resin are kneaded and then molded into a desired shape by magnetic field molding and magnetized.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前述の従来技術では次のような欠点が有る。す
なわち、 (焼結法) 焼結法は磁気性能は高いが、形状の任意性に欠け、加工
しないと形状を出せない。また、もろくて欠けやすいt
め加工も困難という欠点を有する。
However, the above-mentioned conventional technology has the following drawbacks. In other words, (Sintering method) Although the sintering method has high magnetic performance, it lacks arbitrary shape and cannot be shaped without processing. Also, it is brittle and easily chipped.
It also has the disadvantage of being difficult to process.

(樹脂結合法) 樹脂結合法は、加工が不要で、特K IIソング状磁石
が成形で錬るという長所を持っているが、磁気性能が低
く、さらに耐熱性が100℃以下であり低耐熱性である
という欠点を有している。
(Resin bonding method) The resin bonding method has the advantage that no processing is required and the special K II song-shaped magnet can be molded, but it has low magnetic performance and has low heat resistance as it has a heat resistance of 100℃ or less. It has the disadvantage of being gender-neutral.

そこで1本発明はこのような問題点を解決するもので、
その目的とするところは、任意形状の希土類磁石を容易
K11t造できるようKし、さらに耐熱性が高い、希土
類磁石の製造方法を提供するところに有る。
Therefore, the present invention solves these problems.
The purpose is to provide a method for manufacturing rare earth magnets that can be easily manufactured into rare earth magnets of arbitrary shapes and that also have high heat resistance.

〔問題点を解決する友めの手段〕[Friendly means of solving problems]

本発明の希土類磁石の製造方法は、任意形状の磁石を以
下の工程により製造することを特徴とする。
The method for manufacturing a rare earth magnet according to the present invention is characterized in that a magnet having an arbitrary shape is manufactured by the following steps.

α)希土類金It(適当な磁石組成の合金)を溶解し、
溶体化後、粉砕し希土類磁石粉末とする工程。
α) Melting rare earth gold It (alloy with suitable magnet composition),
After solution treatment, the process is pulverized to produce rare earth magnet powder.

b)少なくとも金属アルコキシドあるいけ超微粉末シリ
カを原料とするゾル−ゲル法によるゾルに王妃希土類磁
石粉末を添加する工程。
b) A step of adding queen rare earth magnet powder to a sol produced by a sol-gel method using at least metal alkoxide or ultrafine powdered silica as a raw material.

C)磁場をかけながらゲル化する工程。C) A process of gelling while applying a magnetic field.

d)ゲル化後脱磁する工程。d) A step of demagnetizing after gelation.

−)王妃ゲルを乾燥しドライゲルとする工程。-) A step of drying the queen gel to form a dry gel.

f)ドライゲルを焼結する工程。f) Sintering the dry gel.

g)着磁する工程。g) Step of magnetizing.

ま比、希土類磁石粉末は一般に、水や酸素に触れると発
火するので、それを防ぐ之め、希土類磁石粉末を有機ポ
リマーでコーティングしt後にゾルに添加することh;
必要になる。
However, rare earth magnet powder generally ignites when it comes into contact with water or oxygen, so to prevent this, it is necessary to coat the rare earth magnet powder with an organic polymer and then add it to the sol.
It becomes necessary.

〔実施例〕〔Example〕

実施例t いずれも重量比でam aチ、 Coが18%、残部が
IFgとなるように、高周波溶解炉を用いてAT雰囲気
中で溶体化後ボールミルで粉砕し8m2 (co O,
?F+#り1丁の粒材2〜30μmの粉末とした。この
粉末をポリプレン樹脂液中に混合しコーティングをし九
〇 ついで、エチルシリケート100ccを塩酸で加水分解
し几溶液に1匂の前記粉末を加え、PH5,0に調整し
、外径10cIjL、内径51のリング状の容器に移し
比。これに磁場をかけながら、−夜装置しゲル化させた
。ゲル化後、脱磁を行ない、60℃で1週間、フタの開
孔率を1t4にして乾燥し、リング状のドライゲルを得
比。ドライゲルを1000℃で焼結して、着磁しリング
状の磁石とすること6Zできた。
Example t In each case, the weight ratio was 8 m2 (co O,
? One piece of F+# granules was made into a powder with a diameter of 2 to 30 μm. This powder was mixed in a polyprene resin solution and coated.Next, 100 cc of ethyl silicate was hydrolyzed with hydrochloric acid, and 1 odor of the above powder was added to the solution, the pH was adjusted to 5.0, and the outer diameter was 10 cIjL and the inner diameter was 51 cm. Transfer to a ring-shaped container. While applying a magnetic field, this was placed in an apparatus overnight to gel. After gelation, it was demagnetized and dried at 60°C for one week with a lid porosity of 1t4 to obtain a ring-shaped dry gel. The dry gel was sintered at 1000°C and magnetized to form a ring-shaped magnet.

この磁石は、500℃まで上げても、素形することもな
く、又磁力の強さも変化しなかった。
Even when the temperature was raised to 500° C., this magnet did not form, and the strength of its magnetic force did not change.

実施例2 いずれも重量比で8m35%、残部をコバルトである溶
体化物’l (Bm Cos )を粉砕したのち、実施
例1と同様にして、リング状の磁石を作成した。
Example 2 A ring-shaped magnet was prepared in the same manner as in Example 1 after pulverizing a solution compound 'l (Bm Cos ) having a weight ratio of 8m35% and the balance being cobalt.

この磁石も実施例1と同様に耐熱性のあるものであった
Like Example 1, this magnet also had heat resistance.

実施例3゜ いずれも重量比で、Nd 27 係、B1チ、残りをF
+lで、溶体化処庁し九粉末を作成した(NdzFg1
4B)。以下実施例1.と同様にしてリング状の磁石を
作成し比。
Example 3 In all cases, the weight ratio is Nd 27, B1, and F the rest.
NdzFg1 powder was prepared by solution treatment with +l.
4B). Example 1 below. Create a ring-shaped magnet in the same way as the ratio.

この磁石も実施例1と同様に耐熱性のあるものであう之
This magnet is also heat resistant like Example 1.

実施例4゜ 実施例2の磁性粉末を用いて、エチルシリケートの加水
分解し比ゾルに、F3i0z微粉末を重量比で1:1と
なるよう加え激しく攪拌した。このゾル混合液に、磁性
粉末を加え九のち実施例1と同様に処理をして、磁石を
得た。
Example 4 Using the magnetic powder of Example 2, F3i0z fine powder was added to a hydrolyzed sol of ethyl silicate at a weight ratio of 1:1 and stirred vigorously. Magnetic powder was added to this sol mixture, and the mixture was then treated in the same manner as in Example 1 to obtain a magnet.

この磁石は耐熱性h;あり、実施例2よりも割れにくい
ものであり比ゆ その他の磁性材料として1本実施例以外に、 Nd−C
O−Fd−情系又はNd −Co−0x −Fg−B系
又は前記のものの一部をyb、  zr、’v、  T
a  などで置換したもの、又はBm −Co −Cu
 −Fd −B系の一部をyb、  zr、  V、 
 Ta などで置換しt希土類磁石などでもよい。さら
に希土類としてOe、Pr。
This magnet has a heat resistance of h; and is more difficult to break than Example 2. In addition to this example, Nd-C is used as another magnetic material.
yb, zr, 'v, T
a substituted with etc., or Bm -Co -Cu
-Fd -Part of the B system is yb, zr, V,
A rare earth magnet or the like may be used instead of Ta. Furthermore, Oe and Pr are rare earth elements.

Pm、Euρd、  Tb、  Dy、 Ho、  W
r、  Tm、  Y6.Luなどの)ちの一種又は複
数種を選択し之ものでもよい。
Pm, Euρd, Tb, Dy, Ho, W
r, Tm, Y6. One or more types of chi (such as Lu) may be selected.

〔発明の効果〕〔Effect of the invention〕

以上述べ几ようk、本発明によれば、希土類磁石粉末を
ゾル−ゲル法のゾルでバインドしている之め、高耐熱性
で任意形状の磁石を製造することhtでンるようになっ
た。このような磁石は高温下で作動するモーター等に応
用できる。
As stated above, according to the present invention, since the rare earth magnet powder is bound with the sol of the sol-gel method, it has become possible to manufacture magnets with high heat resistance and arbitrary shapes. . Such magnets can be applied to motors that operate at high temperatures.

以  上that's all

Claims (2)

【特許請求の範囲】[Claims] (1)任意形状の磁石を以下の工程により製造すること
を特徴とする希土類磁石の製造方法。 α)希土類金属(適当な磁石組成の合金)を溶解し溶体
化後、粉砕し希土類磁石粉末とする工程、 b)少なくとも金属アルコキシドあるいは超微粉末シリ
カを原料とするゾル−ゲル法によるゾルに上記希土類磁
石粉末を添加する工程 c)磁場をかけながらゲル化する工程 d)ゲル化後脱磁する工程 e)上記ゲルを乾燥しドライゲルとする工程f)ドライ
ゲルを焼結する工程 g)着磁する工程
(1) A method for manufacturing a rare earth magnet, characterized by manufacturing a magnet of any shape by the following steps. α) A step of melting and solutionizing rare earth metals (alloys with appropriate magnet composition) and then pulverizing them to obtain rare earth magnet powder; b) Adding the above to the sol by the sol-gel method using at least metal alkoxide or ultrafine powder silica as a raw material. Step of adding rare earth magnet powder c) Step of gelling while applying a magnetic field d) Step of demagnetizing after gelling e) Step of drying the above gel to form a dry gel f) Step of sintering the dry gel g) Magnetizing Process
(2)特許請求の範囲第1項記載の希土類磁石粉末を有
機ポリマーでコーティングした後にゾルに添加すること
を特徴とする希土類磁石の製造方法。
(2) A method for producing a rare earth magnet, which comprises coating the rare earth magnet powder according to claim 1 with an organic polymer and then adding it to a sol.
JP26425386A 1986-11-06 1986-11-06 Manufacture of rare earth magnet Pending JPS63117413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26425386A JPS63117413A (en) 1986-11-06 1986-11-06 Manufacture of rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26425386A JPS63117413A (en) 1986-11-06 1986-11-06 Manufacture of rare earth magnet

Publications (1)

Publication Number Publication Date
JPS63117413A true JPS63117413A (en) 1988-05-21

Family

ID=17400606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26425386A Pending JPS63117413A (en) 1986-11-06 1986-11-06 Manufacture of rare earth magnet

Country Status (1)

Country Link
JP (1) JPS63117413A (en)

Similar Documents

Publication Publication Date Title
JP2016032116A (en) Manganese-bismuth based magnetic material, manufacturing method thereof, manganese-bismuth based sintered magnet, and manufacturing method thereof
JPH07106110A (en) Powder composition for manufacturing bond magnet, and magnetic anisotropic permanent magnet, and manufacture of magnetic anisotropic permanent magnet
JPS6036081B2 (en) Permanent magnets and their manufacturing method
CN103317145B (en) Chemical method prepares the method for samarium-cobalt magnetic powder
JP3099895B2 (en) Method for producing molded body made of hard ferrite
JPS6338216A (en) Manufacture of corrosion-resistant rare-earth magnetic powder and magnetic unit made of the powder
JPS63117413A (en) Manufacture of rare earth magnet
JPS6127457B2 (en)
US3811962A (en) Large grain cobalt-samarium intermetallic permanent magnet material stabilized with zinc and process
JPS59143002A (en) Organic binder of fine pulverous powder for powder metallurgy
JPH05335120A (en) Anisotropic bonded manget manufacturing magnet powder coated with solid resin binder and manufacture thereof
JP6213726B2 (en) Method for manufacturing permanent magnet
JP4590920B2 (en) Magnetic powder
JPS63234503A (en) Manufacture of permanent magnet
JPH10261514A (en) Magnetic material
JPH05326229A (en) Permanent magnet powder and production thereof
JPH04125907A (en) Nanocomposite permanent magnet material
JP2004115921A (en) Sm-Fe-N BASED ALLOY POWDER AND METHOD FOR MANUFACTURING THE SAME
JPH10140211A (en) Production of magnetic material
CN106876075B (en) A kind of magnetic material and preparation method thereof
JPH03295204A (en) Permanent magnet and manufacture thereof
JP2008024979A (en) Method for producing rare earth-iron-nitrogen-based magnet powder
JP2002180111A (en) Method for manufacturing rare earth-transition metal alloy powder, and resultant product
JP2000297306A (en) Production of magnetic powder
JPS63216307A (en) Alloy powder for magnet