JPS63115412A - Packing method for surface acoustic wave element - Google Patents

Packing method for surface acoustic wave element

Info

Publication number
JPS63115412A
JPS63115412A JP26094586A JP26094586A JPS63115412A JP S63115412 A JPS63115412 A JP S63115412A JP 26094586 A JP26094586 A JP 26094586A JP 26094586 A JP26094586 A JP 26094586A JP S63115412 A JPS63115412 A JP S63115412A
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
electrodes
wave element
comb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26094586A
Other languages
Japanese (ja)
Inventor
Shinichi Yamamoto
真一 山本
Shoichi Kishi
正一 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP26094586A priority Critical patent/JPS63115412A/en
Publication of JPS63115412A publication Critical patent/JPS63115412A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To mount a surface acoustic wave element and a semiconductor active element forming a filter, oscillator, etc., onto the same semiconductor substrate, by setting the comb line electrodes and the grating reflectors against the opening face side of a recess part. CONSTITUTION:A surface acoustic wave element 10 contains a pair of comb line electrodes 12 at the center of the surface of a piezoelectric crystal plate 11 made of crystal, zircon titanate, etc., and a pair of grating reflectors 13 formed at both sides of the electrodes 12. While the connecting center part of electrode pieces of the electrodes 12 is extended toward the edge of the plate 11. Then the band-shaped electrodes 15 are formed at places near edges of the plate 11 and in parallel with those edges. In such a constitution, the thermal distortions due to the temperature changes caused at the time of packing of the element 10, at the time of production of a semiconductor active element 6 or at the time of working of them give no influence to the parts of electrodes 12. Thus, the characteristic reliability is improved with the element 10.

Description

【発明の詳細な説明】 〔概要〕 半導体能動素子を形成する半導体基板の所望の個所に、
櫛形電極の占有面積よも大きい開口面を有する凹部を設
け、弾性表面波素子を裏返しにして、凹部に対応する半
導体基板の表面上に実装することにより、半導体能動素
子を形成する際に、弾性表面波素子が損傷する恐れがな
い、小形で、低コストのフィルタ、発振器等の電子部品
を提供する。
[Detailed Description of the Invention] [Summary] At a desired location of a semiconductor substrate forming a semiconductor active element,
By providing a recess with an opening surface larger than the area occupied by the comb-shaped electrode, and mounting the surface acoustic wave element upside down on the surface of the semiconductor substrate corresponding to the recess, elastic To provide small, low-cost electronic components such as filters and oscillators that do not cause damage to surface wave elements.

〔産業上の利用分野〕[Industrial application field]

本発明は、フィルタ、発振器等に用いる弾性表面波素子
の実装方法に関する。
The present invention relates to a method for mounting surface acoustic wave elements used in filters, oscillators, etc.

弾性表面波を伝播させる水晶、チタン酸バリウム等の圧
電性結晶板の表面に、電気−弾性波のエネルギーを変換
させるトランスジューサーを形成した弾性表面波素子は
、高周波帯のフィルタ、発振器等に広く使用されている
Surface acoustic wave elements, which have a transducer that converts electricity-acoustic wave energy on the surface of a piezoelectric crystal plate such as crystal or barium titanate that propagates surface acoustic waves, are widely used in high-frequency band filters, oscillators, etc. It is used.

この際、弾性表面波素子と弾性表面波素子を駆動する半
導体能動素子とを、同一基板上に実装することにより、
フィル外発振器等の、小形化。
At this time, by mounting the surface acoustic wave element and the semiconductor active element that drives the surface acoustic wave element on the same substrate,
Miniaturization of outside fill oscillators, etc.

低コスト化がはかられている。Efforts are being made to reduce costs.

〔従来の技術〕[Conventional technology]

第3図は従来の実装方法を示す斜視図であって、1は、
例えばシリコン等の半導体基板であって、裏面に絶縁膜
(例えばSiO□膜)2が、表面に絶縁膜(例えばSi
O□膜)3が半導体ウェハーを直接酸化するか、或いは
気相反応法等の手段により形成されている。
FIG. 3 is a perspective view showing a conventional mounting method, and 1 is a perspective view showing a conventional mounting method.
For example, it is a semiconductor substrate made of silicon or the like, and has an insulating film (e.g., SiO□ film) 2 on the back surface and an insulating film (e.g., SiO
The O□ film) 3 is formed by directly oxidizing the semiconductor wafer or by a vapor phase reaction method.

半導体基板1には弾性表面波素子10が実装され、弾性
表面波素子10の近傍に、弾性表面波素子10を駆動す
る例えばIC,LSI等の半導体能動素子6を製作して
、導体パターン4を介して弾性表面波素子10に接続さ
せて、フィルタ、発振器等の電子部品を構成している。
A surface acoustic wave device 10 is mounted on a semiconductor substrate 1, and a semiconductor active device 6 such as an IC or LSI for driving the surface acoustic wave device 10 is fabricated near the surface acoustic wave device 10, and a conductive pattern 4 is formed. It is connected to the surface acoustic wave element 10 via the filter to configure electronic components such as a filter and an oscillator.

弾性表面波素子10は、水晶、ジルコンチタン酸鉛等の
圧電性結晶板11の表面の中央部に、一対の櫛形電極1
2を形成し、櫛形電極12の両側に、一対のグレーティ
ング反射器13を形成して、構成されたものである。
The surface acoustic wave element 10 includes a pair of comb-shaped electrodes 1 at the center of the surface of a piezoelectric crystal plate 11 made of crystal, lead zirconium titanate, etc.
2, and a pair of grating reflectors 13 are formed on both sides of the comb-shaped electrode 12.

また、それぞれの櫛形電極12の一部を延伸して電極パ
ラ)12aを形成しである。
Further, a portion of each comb-shaped electrode 12 is stretched to form an electrode parallax 12a.

このような弾性表面波素子10は、圧電性結晶板11の
裏面を半導体基板1の表面に密接させ、接着剤を塗布し
、加熱し硬化させ、半導体基板1に実装している。そし
て、それぞれの電極パット12aと導体パターン4の端
末に設けたパット5とを、例えば金線等の接続線14を
ワイヤボンデングして接続している。
Such a surface acoustic wave element 10 is mounted on the semiconductor substrate 1 by bringing the back surface of the piezoelectric crystal plate 11 into close contact with the front surface of the semiconductor substrate 1, applying an adhesive, heating and curing the adhesive. Each electrode pad 12a and a pad 5 provided at the end of the conductive pattern 4 are connected by wire bonding with a connecting wire 14 such as a gold wire.

これらの櫛形電極12、電極パット12a、グレーティ
ング反射器13は、例えばアルミニュウム、金等を蒸着
或いはスパッタリング等して形成したものである。
These comb-shaped electrodes 12, electrode pads 12a, and grating reflectors 13 are formed, for example, by vapor deposition or sputtering of aluminum, gold, or the like.

上述のような弾性表面波素子10は、櫛形電極12に高
周波電圧を印加すると、レイリー波が励起され、このレ
イリー波がグレーティング反射器13で反射することに
より、櫛形電極の形状により定まる、所定の周波数で共
振する。
In the surface acoustic wave element 10 as described above, when a high frequency voltage is applied to the comb-shaped electrode 12, Rayleigh waves are excited, and this Rayleigh wave is reflected by the grating reflector 13, thereby producing a predetermined waveform determined by the shape of the comb-shaped electrode. resonate at a frequency.

なお、この弾性表面波素子10を実装する際に、接着剤
を硬化させるため、半導体基板1を加熱しなければなら
ない。よって、半導体基板1に半導体能動素子6を先に
形成しておくと、半導体能動素子6が損傷するので、弾
性表面波素子10の実装は、半導体能動素子6を製作す
る前に実施している。
Note that when mounting this surface acoustic wave element 10, the semiconductor substrate 1 must be heated in order to cure the adhesive. Therefore, if the semiconductor active element 6 is formed on the semiconductor substrate 1 first, the semiconductor active element 6 will be damaged, so the surface acoustic wave element 10 is mounted before the semiconductor active element 6 is manufactured. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記従来のものは、半4体能動素子6を製
作時に、弾性表面波素子10の櫛形電極12゜グレーテ
ィング反射器13を保護するために、圧電性結晶板11
の表面に保護膜を形成しなければならないという問題点
がある。
However, in the above-mentioned conventional device, in order to protect the comb-shaped electrode 12° grating reflector 13 of the surface acoustic wave device 10, the piezoelectric crystal plate 11 is
There is a problem in that a protective film must be formed on the surface.

また、弾性表面波素子10を接着剤等を用いて実装する
際に、弾性表面波素子10を加熱(約100℃前後)し
なければならない。この加熱により弾性表面波素子10
の共振周波数がずれることがある。
Furthermore, when mounting the surface acoustic wave element 10 using an adhesive or the like, the surface acoustic wave element 10 must be heated (to around 100° C.). This heating causes the surface acoustic wave element 10 to
The resonant frequency may shift.

しかし、保護膜が存在するために、櫛形電極12をさら
に蒸着し、膜厚を厚くする等して、周波数を調整するこ
とができないという問題点がある。
However, due to the presence of the protective film, there is a problem in that the frequency cannot be adjusted by further depositing the comb-shaped electrode 12 to increase the thickness of the film.

さらにまた、半導体能動素子6を製作時に、接続線14
が損傷する恐れがある。
Furthermore, when manufacturing the semiconductor active device 6, the connection wire 14
may be damaged.

〔問題点を解決するための手段〕[Means for solving problems]

上記従来の問題点を解決するため本発明方法は、第1図
のように、圧電性結晶板11の表面のほぼ中央部に一対
の櫛形電極12が形成され、櫛形電極12の一部を圧電
性結晶板11の対向する側縁近傍にそれぞれ延伸させて
、短冊形の電極15を形成した弾性表面波素子10を用
いる。
In order to solve the above-mentioned conventional problems, the method of the present invention, as shown in FIG. A surface acoustic wave element 10 is used in which rectangular electrodes 15 are formed by extending them near opposite side edges of a sexual crystal plate 11.

半導体基板1の表面に形成した絶縁膜3上に、電極15
に対向して一対のパット5を形成し、パット5)間に櫛
形電極12の占有面積よりも大きい開口面を有する凹部
20を設け、弾性表面波素子10を裏返しにして、電極
15をパット5に、半田接着。
An electrode 15 is formed on the insulating film 3 formed on the surface of the semiconductor substrate 1.
A pair of pads 5 are formed facing each other, a recess 20 having an opening surface larger than the area occupied by the comb-shaped electrode 12 is provided between the pads 5), the surface acoustic wave element 10 is turned over, and the electrode 15 is placed between the pads 5). , solder adhesion.

或いは導電性接着剤で接着するようにしたものである。Alternatively, it may be bonded with a conductive adhesive.

そしてまた、半導体基板1の裏面側に、凹部20に連通
ずる貫通孔21を設けたものである。
Further, a through hole 21 communicating with the recess 20 is provided on the back side of the semiconductor substrate 1.

また、第2図に示すように、圧電性結晶板11の対向す
る側縁に、使用周波数の波長より高い段付面22を設け
、電極15を段付面22に形成するようにしたものであ
る。
Further, as shown in FIG. 2, stepped surfaces 22 having a higher wavelength than the wavelength of the frequency used are provided on the opposing side edges of the piezoelectric crystal plate 11, and the electrodes 15 are formed on the stepped surfaces 22. be.

〔作用〕[Effect]

上記本発明方法によれば、櫛形電極12.グレーティン
グ反射器13は、凹部20の開口面側に面しているので
、半辱体能動素子6の製作時に、櫛形電極12.グレー
ティング反射器13の損傷防止のための保護膜を必要と
しないし、電極パフ)12aとパット5とが直接接続し
ているので、接続線等を必要とせず、半導体能動素子6
の製作時に接続回路が損傷する恐れがない。
According to the method of the present invention, the comb-shaped electrode 12. Since the grating reflector 13 faces the opening side of the recess 20, the comb-shaped electrode 12. There is no need for a protective film to prevent damage to the grating reflector 13, and since the electrode puff 12a and the pad 5 are directly connected, there is no need for a connection line, etc., and the semiconductor active element 6
There is no risk of damage to the connected circuit during production.

また、半導体基板1の裏面側に、貫通孔21を設けであ
るので、櫛形電極12は、凹部20.貫通孔21を介し
て、半導体基板1の裏面側に開放されている。よって裏
面側より、蒸着手段等により櫛形電極12の膜厚を厚く
するこきができて、弾性表面波素子10の周波数調整が
可能となる。
Further, since the through hole 21 is provided on the back side of the semiconductor substrate 1, the comb-shaped electrode 12 is formed in the recess 20. It is open to the back surface side of the semiconductor substrate 1 via the through hole 21 . Therefore, the thickness of the comb-shaped electrode 12 can be increased from the back side using a vapor deposition means or the like, and the frequency of the surface acoustic wave element 10 can be adjusted.

さらに弾性表面波は、圧電性結晶板11の表面と表面か
ら波長の高さに等しい距離を隔て結晶内部の結晶表面近
傍部分を伝播するものである。よって、使用周波数の波
長より充分に高い段付面22を、圧電性結晶板IIに設
け、この段付面22部分を半導体基板1に接着すること
により、弾性表面波素子10の実装時、半厚体能動素子
6の製作時、或いは稼動時の温度変化に起因する熱歪が
、櫛形電極12部分に影響しない。したがって、弾性表
面波素子10の特性の信頼度が高い。
Further, the surface acoustic wave propagates between the surfaces of the piezoelectric crystal plate 11 and the portion near the crystal surface within the crystal at a distance equal to the height of the wavelength from the surface. Therefore, by providing a stepped surface 22 that is sufficiently higher than the wavelength of the frequency used on the piezoelectric crystal plate II and bonding this stepped surface 22 portion to the semiconductor substrate 1, when the surface acoustic wave element 10 is mounted, it is possible to Thermal strain caused by temperature changes during manufacturing or operation of the thick active element 6 does not affect the comb-shaped electrode 12 portion. Therefore, the reliability of the characteristics of the surface acoustic wave element 10 is high.

〔実施例〕〔Example〕

以下図を参照しながら、本発明方法を具体的に説明する
。なお、企図を通じて同一符号は同一対象物を示す。
The method of the present invention will be specifically explained below with reference to the drawings. Note that the same reference numerals refer to the same objects throughout the plan.

第1図は本発明方法の一実施例の図で、(a)は断面図
、(b)は弾性表面波素子の斜視図、(C)は弾性表面
波素子を実装した斜視図、第2図は本発明方法の他の実
施例の断面図である。
FIG. 1 is a diagram of one embodiment of the method of the present invention, in which (a) is a cross-sectional view, (b) is a perspective view of a surface acoustic wave device, (C) is a perspective view of a mounted surface acoustic wave device, and FIG. The figure is a sectional view of another embodiment of the method of the invention.

第1図(blにおいて、弾性表面波素子10は、水晶。In FIG. 1 (bl), the surface acoustic wave element 10 is a quartz crystal.

ジルコンチタン酸鉛等の圧電性結晶板11の表面の中央
部に、一対の櫛形電極12を形成し、櫛形電極12の両
側に、一対のグレーティング反射器13を形成して、構
成されたものである。
A pair of comb-shaped electrodes 12 are formed in the center of the surface of a piezoelectric crystal plate 11 made of lead zirconium titanate, etc., and a pair of grating reflectors 13 are formed on both sides of the comb-shaped electrodes 12. be.

また、それぞれの櫛形電極12の電極指の連結部の中心
部を圧電性結晶’+1i 11の縁方向に延伸して、縁
近傍に、縁に並行した短冊形の電極15を珍成しである
In addition, the central part of the connecting part of the electrode fingers of each comb-shaped electrode 12 is extended toward the edge of the piezoelectric crystal '+1i 11, and a rectangular electrode 15 parallel to the edge is formed near the edge. .

シリコン等の半導体基板lの表面に、凹部20の開口面
に相当する角形の窓を有する、Sin、膜よりなる絶縁
膜3を、スパッタリグ、或いは熱酸化等して形成し、ま
た、裏面には絶縁膜3の窓に対応した位置に、貫通孔2
1の開口面に相当する窓を有ミレ。
An insulating film 3 made of a Si film having a rectangular window corresponding to the opening surface of the recess 20 is formed on the front surface of a semiconductor substrate l made of silicon or the like by sputtering or thermal oxidation. A through hole 2 is formed at a position corresponding to the window of the insulating film 3.
There is a window corresponding to the opening surface of 1.

する、SiB□膜よりなる絶縁膜2を、スパッタリグ。Then, an insulating film 2 made of a SiB□ film is sputtered.

或いは熱酸化等して形成する。Alternatively, it is formed by thermal oxidation.

次に半導体基板1の表面を異方性エツチング処理して、
開口面が絶縁膜3の窓に等しい凹部20を設ける。また
、半導体基板1の裏面を異方性エツチング処理して、開
口面が絶縁膜2の窓に等しい、四部20に底面に連通し
た通孔21を設ける。
Next, the surface of the semiconductor substrate 1 is anisotropically etched,
A recess 20 whose opening surface is equal to the window of the insulating film 3 is provided. Further, the back surface of the semiconductor substrate 1 is anisotropically etched to provide through holes 21 in the four parts 20 whose opening surfaces are equal to the windows of the insulating film 2 and which communicate with the bottom surface.

そして、半導体基板1の表面で、凹部20の対向する側
縁部のそれぞれに、電極15に対応した短冊形のパット
5と、パット5につながった所望の導体パターン4とを
、例えばアルミニュウム、金等を蒸着或いはスパッタリ
ング等して形成する。
Then, strip-shaped pads 5 corresponding to the electrodes 15 and a desired conductor pattern 4 connected to the pads 5 are placed on each of the opposing side edges of the recess 20 on the surface of the semiconductor substrate 1, for example, using aluminum or gold. etc., by vapor deposition or sputtering.

そして、弾性表面波素子10を裏返しにして、電極15
をパット5に位置合わせして、電極15とパット5とを
半田接着、或いは導電性接着剤で接着する。
Then, the surface acoustic wave element 10 is turned over, and the electrode 15
is aligned with the pad 5, and the electrode 15 and the pad 5 are bonded by solder or conductive adhesive.

なお、半田接着2或いは導電性接着剤で接着す時に、弾
性表面波素子10が加熱され、この加熱に起因して、弾
性表面波素子10の共振周波数がずれる場合がある。
Note that the surface acoustic wave element 10 is heated when bonding with the solder bond 2 or the conductive adhesive, and the resonant frequency of the surface acoustic wave element 10 may shift due to this heating.

しかし、凹部20及び貫通孔21を介して、櫛形電極1
2は半導体基板1の裏面側に開放されているので、裏面
側より、蒸着手段等により櫛形電極12の膜厚を厚くす
るこきができ、弾性表面波素子10の周波数を調整する
ことが可能である。
However, the comb-shaped electrode 1
2 is open to the back side of the semiconductor substrate 1, so that the thickness of the comb-shaped electrode 12 can be increased from the back side using a vapor deposition method or the like, and the frequency of the surface acoustic wave element 10 can be adjusted. be.

第2図において、圧電性結晶板110対向する側縁に、
使用周波数の波長のほぼ2倍の、段付高さを存する段付
面22を設け、電極15をこの段付面22に形成し、弾
性表面波素子10を裏返しにして、電極15をパット5
に位置合わせして、電極15とパット5とを半田接着、
或いは導電性接着剤で接着している。
In FIG. 2, on the opposite side edges of the piezoelectric crystal plate 110,
A stepped surface 22 having a stepped height approximately twice the wavelength of the frequency used is provided, the electrode 15 is formed on this stepped surface 22, the surface acoustic wave element 10 is turned over, and the electrode 15 is placed on the pad 5.
Align the electrode 15 and pad 5 with solder.
Alternatively, it is bonded with a conductive adhesive.

したがって、弾性表面波素子10の実装時、半導体能動
素子6の製作時、或いは稼動時の温度変化に起因する熱
歪が、櫛形電極12部分に影響しないので、弾性表面波
素子10の特性の信頼度が高い。
Therefore, thermal strain caused by temperature changes during mounting of the surface acoustic wave device 10, manufacturing of the semiconductor active device 6, or operation does not affect the comb-shaped electrode 12, so that the characteristics of the surface acoustic wave device 10 are reliable. High degree.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明方法は、フィルタ。 As explained above, the method of the present invention uses a filter.

発振器等の電子部品を構成する弾性表面波素子と半導体
能動素子とを、同一の半導体基板上に実装。
Surface acoustic wave elements and semiconductor active elements that make up electronic components such as oscillators are mounted on the same semiconductor substrate.

製作することができ、小形で、低コストであるばかりで
なく、弾性表面波素子が損傷する恐れがなく、周波数の
調整が可能で、且つ特性の信頼度が高い等、実用上で優
れた効果がある。
Not only can it be manufactured, is small, and low cost, but it also has excellent practical effects such as no risk of damaging the surface acoustic wave element, frequency adjustment, and highly reliable characteristics. There is.

【図面の簡単な説明】 第1図は本発明方法の一実施例の図で、(a)は断面図
、(b)は弾性表面波素子の斜視図、(C)は弾性表面
波素子を実装した斜視図、第2図は本発明方法の他の実
施例の断面図、第3図は従来方法を示す斜視図である。 図において、 1は半導体基板、   2.3は絶縁膜、5はパット、
      6は半導体能動素子、10は弾性表面波素
子、 11は圧電性結晶板、12は櫛形電極、    
15は電極、20は凹部、      21は貫通孔、
(b) ¥3 目
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 shows an embodiment of the method of the present invention, in which (a) is a cross-sectional view, (b) is a perspective view of a surface acoustic wave device, and (C) is a perspective view of a surface acoustic wave device. FIG. 2 is a sectional view of another embodiment of the method of the present invention, and FIG. 3 is a perspective view of the conventional method. In the figure, 1 is a semiconductor substrate, 2.3 is an insulating film, 5 is a pad,
6 is a semiconductor active element, 10 is a surface acoustic wave element, 11 is a piezoelectric crystal plate, 12 is a comb-shaped electrode,
15 is an electrode, 20 is a recess, 21 is a through hole,
(b) ¥3

Claims (1)

【特許請求の範囲】 1、圧電性結晶板(11)の表面のほぼ中央部に一対の
櫛形電極(12)が形成され、該櫛形電極(12)の一
部を該圧電性結晶板(11)の対向する側縁近傍にそれ
ぞれ延伸させて、電極(15)を形成した弾性表面波素
子(10)を用い、 半導体基板(1)の表面に形成した絶縁膜(3)上に、
該電極(15)に対向して一対のパット(5)を形成し
、該パット(5)間に前記櫛形電極(12)の占有面積
よりも大きい開口面を有する凹部(20)を設け、該弾
性表面波素子(10)を裏返しにして、該電極(15)
を該パット(5)に接着することを特徴とする弾性表面
波素子の実装方法。 2、前記半導体基板(1)の裏面側に、前記凹部(20
)に連通する貫通孔(21)を設けたこと特徴とする特
許請求の範囲第1項に記載の弾性表面波素子の実装方法
。 3、前記圧電性結晶板(11)の対向する側縁に、使用
周波数の波長より高い段付面(22)を設け、前記電極
(15)を該段付面(22)に形成して、前記パット(
5)に接着することを特徴とする特許請求の範囲第1項
に記載の弾性表面波素子の実装方法。
[Claims] 1. A pair of comb-shaped electrodes (12) are formed approximately at the center of the surface of the piezoelectric crystal plate (11), and a part of the comb-shaped electrodes (12) is connected to the piezoelectric crystal plate (11). ) on the insulating film (3) formed on the surface of the semiconductor substrate (1), using a surface acoustic wave element (10) having electrodes (15) formed thereon by extending them near the opposite side edges of the semiconductor substrate (1).
A pair of pads (5) are formed facing the electrode (15), and a recess (20) having an opening surface larger than the area occupied by the comb-shaped electrode (12) is provided between the pads (5). Turn the surface acoustic wave element (10) upside down and insert the electrode (15)
A method for mounting a surface acoustic wave device, characterized in that a surface acoustic wave device is bonded to the pad (5). 2. The recess (20) is formed on the back side of the semiconductor substrate (1).
2. The surface acoustic wave device mounting method according to claim 1, wherein a through hole (21) communicating with the surface acoustic wave element is provided. 3. Providing stepped surfaces (22) higher than the wavelength of the operating frequency on opposite side edges of the piezoelectric crystal plate (11), and forming the electrode (15) on the stepped surfaces (22); Said putt (
5) The method for mounting a surface acoustic wave device according to claim 1, wherein the surface acoustic wave device is bonded to a surface acoustic wave device.
JP26094586A 1986-10-31 1986-10-31 Packing method for surface acoustic wave element Pending JPS63115412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26094586A JPS63115412A (en) 1986-10-31 1986-10-31 Packing method for surface acoustic wave element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26094586A JPS63115412A (en) 1986-10-31 1986-10-31 Packing method for surface acoustic wave element

Publications (1)

Publication Number Publication Date
JPS63115412A true JPS63115412A (en) 1988-05-20

Family

ID=17354956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26094586A Pending JPS63115412A (en) 1986-10-31 1986-10-31 Packing method for surface acoustic wave element

Country Status (1)

Country Link
JP (1) JPS63115412A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0229107A (en) * 1988-07-19 1990-01-31 Iida Sangyo Kk Surface acoustic wave device and its manufacture
JPWO2016114358A1 (en) * 2015-01-16 2017-08-17 株式会社村田製作所 Substrate, substrate manufacturing method, and acoustic wave device
JP2022507089A (en) * 2018-12-26 2022-01-18 中芯集成電路(寧波)有限公司上海分公司 Integrated method and integrated structure of control circuit and surface acoustic wave filter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5561125A (en) * 1978-10-31 1980-05-08 Toshiba Corp Packaging method for elastic surface wave element
JPS60230710A (en) * 1984-04-28 1985-11-16 Fujitsu Ltd Method of mounting elastic wave element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5561125A (en) * 1978-10-31 1980-05-08 Toshiba Corp Packaging method for elastic surface wave element
JPS60230710A (en) * 1984-04-28 1985-11-16 Fujitsu Ltd Method of mounting elastic wave element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0229107A (en) * 1988-07-19 1990-01-31 Iida Sangyo Kk Surface acoustic wave device and its manufacture
JPWO2016114358A1 (en) * 2015-01-16 2017-08-17 株式会社村田製作所 Substrate, substrate manufacturing method, and acoustic wave device
JP2022507089A (en) * 2018-12-26 2022-01-18 中芯集成電路(寧波)有限公司上海分公司 Integrated method and integrated structure of control circuit and surface acoustic wave filter

Similar Documents

Publication Publication Date Title
JP4212137B2 (en) Bulk acoustic wave (BAW) filter having a top including a protective acoustic mirror
JP3328102B2 (en) Surface acoustic wave device and method of manufacturing the same
JPH07112142B2 (en) Piezoelectric resonator sealing structure
US5949305A (en) Saw filter encapsulated in a ceramic package with capacitance incorporated therein
US11646712B2 (en) Bulk acoustic wave structure and bulk acoustic wave device
KR100378919B1 (en) Surface acoustic wave device having bump electrodes and method for producing the same
EP1030444A2 (en) Surface acoustic wave device and method for manufacturing the same
JP7340344B2 (en) Acoustic wave devices, filters and multiplexers
JPS63115412A (en) Packing method for surface acoustic wave element
JP7426196B2 (en) Acoustic wave devices and their manufacturing methods, filters and multiplexers
TWI766476B (en) Bulk acoustic wave device
JP3389530B2 (en) Semiconductor device
JP2005020547A (en) Surface acoustic wave device
WO2022024880A1 (en) Piezoelectric device
JP3412621B2 (en) Surface acoustic wave device
JPH05251980A (en) Surface acoustic wave device and its mount structure
JP5071164B2 (en) Electronic device and method for manufacturing electronic device
JP3647796B2 (en) Package substrate, integrated circuit device using the same, and method of manufacturing integrated circuit device
JP3426930B2 (en) Surface acoustic wave device
JP2002076828A (en) Surface acoustic wave element
JPH098595A (en) Surface acoustic wave device and manufacture therefor
TW202343699A (en) Electronic module
CN116232271A (en) Elastic wave device of composite film substrate
JP2021034746A (en) Electronic device and method of manufacturing the same, filter, and multiplexer
JP2003152130A (en) Integrated circuit device