JPS63114771A - Variable rigid material of building housing - Google Patents

Variable rigid material of building housing

Info

Publication number
JPS63114771A
JPS63114771A JP25879586A JP25879586A JPS63114771A JP S63114771 A JPS63114771 A JP S63114771A JP 25879586 A JP25879586 A JP 25879586A JP 25879586 A JP25879586 A JP 25879586A JP S63114771 A JPS63114771 A JP S63114771A
Authority
JP
Japan
Prior art keywords
piece
building
pieces
rigidity
variable rigidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25879586A
Other languages
Japanese (ja)
Other versions
JPH0370072B2 (en
Inventor
俊一 山田
小堀 鐸二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP25879586A priority Critical patent/JPS63114771A/en
Priority to US07/096,012 priority patent/US4890430A/en
Publication of JPS63114771A publication Critical patent/JPS63114771A/en
Priority to US07/400,691 priority patent/US4922667A/en
Publication of JPH0370072B2 publication Critical patent/JPH0370072B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は制置構造の建物架構に用いられる軸方向引張
力に対する可変剛性材に関する。もので、建物に入力す
る地震、風等の外力に応じて部材の剛性を変化させ、地
震等に対処させるものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention relates to a variable stiffness member with respect to axial tensile force used in a building frame of a restraining structure. This system changes the rigidity of members in response to external forces such as earthquakes and wind that enter the building, allowing it to cope with earthquakes and the like.

〔従来の技術〕[Conventional technology]

従来、高層建築や重畳構造物等の耐震設計においては地
震時の地盤の動きや建物の応答を計算し、安全性をチェ
ックする動的設計が行われている。
Conventionally, in the seismic design of high-rise buildings and superimposed structures, dynamic design is performed to check safety by calculating the ground movement and building response during an earthquake.

耐震の方法としては建物と基礎の間に積層ゴム支承やダ
ンパーを介在させた免震構法あるいは載置構法、建物構
成部材のうち、非主要部材の破壊により地震二坏ルギー
を消費させる方法、壁あるいは柱等にスリットを設け、
建物を最適の剛性に調整する方法等がある。
Earthquake resistance methods include seismic isolation construction or mounting construction methods in which laminated rubber bearings or dampers are interposed between the building and the foundation, methods that consume earthquake energy by destroying non-main building components, and walls. Or make a slit in the pillar etc.
There are methods to adjust the rigidity of a building to its optimum level.

ところで、現行の耐震設計手法により設計された建物の
地震時における安全性の確認は、構造物の塑性化を伴な
う履歴特性による吸収エネルギーが構造物に作用する地
震エネルギーを上回るという基本思想によるが、これに
は履歴ループ特性に対する信頼性の問題がある。
By the way, confirmation of the safety of buildings designed using current seismic design methods in the event of an earthquake is based on the basic idea that the energy absorbed by the hysteresis characteristics associated with plasticization of the structure exceeds the seismic energy acting on the structure. However, this has the problem of reliability regarding the history loop characteristics.

また、従来の方法はいずれも地震や風等の自然外力に対
し、受身の耐震構造を与えるものであり、建物が特定の
固有振動数を有するため地震という不確定な入力に対し
、共振現象を避けて通ることはできない。
In addition, all conventional methods provide a passive seismic structure against natural external forces such as earthquakes and wind, and because buildings have a specific natural frequency, they do not allow resonance phenomena to occur against uncertain inputs such as earthquakes. You can't avoid it.

これに対し、出願人は特願昭61−112026号にお
いて、上述のような受身の耐震方法でなく、感知した地
震動に基づく応答予測システムの判断のものに建物自体
の剛性を変化させ、共振領域外または共振の少ない状態
とし、建物および建物内の機器、居住者等の安全を図っ
た制電方法を提案している。
In contrast, in Japanese Patent Application No. 61-112026, the applicant changed the rigidity of the building itself to a method determined by a response prediction system based on the detected seismic motion, rather than using the passive seismic resistance method described above. We are proposing a power suppression method that ensures the safety of buildings, equipment inside buildings, occupants, etc. by creating a state with less resonance.

上記の制電方法では柱、はり、プレース、壁並びにそれ
らの接合部の全部もしくは一部、または建物と基礎ある
いは隣接する建物との間に、コンピューターの指令によ
り連結状態が変化する制御装置を設け、次のようにして
、建物の制電な行なう。
In the above electricity suppression method, a control device is installed in all or part of the pillars, beams, places, walls, and their joints, or between the building and the foundation or adjacent building, so that the connection state can be changed by computer commands. , perform power reduction in the building as follows.

■ 地震の発生を建物を中心に狭域および広域に配置し
た地震感知装置により感知し、観測データを有線、無線
の通信網によりコンピューターに伝達する。広域の地震
感知装置は既設の地震観測点における地震計あるいは専
用に設置したものをマイクロ回線あるいは電話回線等で
結ぶ。また狭域の地震感知装置は建物の周辺あるいは周
辺地盤内に設けた地震計や、建物基部や建物内に設置し
た振動センサーからなり、風力等の影響は建物内の振動
センサーで感知する。
■ The occurrence of an earthquake is detected by earthquake sensing devices placed in both narrow and wide areas around buildings, and the observation data is transmitted to a computer via wired and wireless communication networks. Wide-area earthquake sensing equipment connects seismometers at existing earthquake observation points or specially installed equipment using micro-wires or telephone lines. In addition, narrow-area earthquake sensing devices consist of seismometers installed around buildings or in the surrounding ground, and vibration sensors installed at the base of buildings or inside buildings, and the effects of wind force etc. are detected by vibration sensors inside buildings.

■ 感知した地震について、コンピューターにより地震
の規模の判断、周波数特性の分析、応答量の予測等を行
ない、建物の振動を制御すべきか否か、また制御すべき
場合の制御量について、共振をかわし、地震応答量の少
ない最適剛性(固有振動数)を与えるものとして判断を
下す。
■ For detected earthquakes, a computer determines the scale of the earthquake, analyzes its frequency characteristics, predicts the amount of response, etc., and determines whether or not building vibration should be controlled, and if so, the control amount to avoid resonance. , a judgment is made based on the one that provides the optimum stiffness (natural frequency) with a small amount of seismic response.

■ コンピューターの指令を建物の各部の制御装置に伝
え、建物の剛性をコンピューターの予測に基づく最適剛
性となるよう制御装置を作動させる。連結状態の調整は
固定状態と連結解除状態を油圧機構、電磁石等によりオ
ン。
■ The computer's commands are transmitted to the control devices in each part of the building, and the control devices operate so that the building's stiffness reaches the optimal stiffness based on the computer's predictions. The connection state can be adjusted between the fixed state and the disconnected state using hydraulic mechanisms, electromagnets, etc.

オフで調整するものや、固定状態、連結解除状態の外、
緊張力の導入や任意の位置での固定を油圧機構あるいは
特殊合金等を用いて調整するもの等が考えられる。
Those that are adjusted in the off state, the fixed state, the uncoupled state,
It is conceivable to use a hydraulic mechanism or a special alloy to adjust the introduction of tension force and fixation at an arbitrary position.

また、建物内に配した振動センサーにより、建物各部に
おける応答量並びに制御を行った場合の実際の振動が検
知でき、これをフィードバックして、制御量の修正等を
行なうことができる。
In addition, vibration sensors placed inside the building can detect the amount of response in each part of the building and the actual vibration when control is performed, and this can be fed back to correct the control amount.

〔発明の目的〕[Purpose of the invention]

この発明の建物架構の可変剛性材は、上述のような制電
方法において、プレース、あるいは柱等に使用し、軸方
向の引張剛性を変化させ、地震等に対処できるようにし
たものである。なお、この発明は上述の制電方法への使
用にのみ限定するものではなく、上記方法の改良方法に
使用したり、あるいは単に剛性を変化させるために使用
することも可能である。
The variable rigidity material of the building frame of the present invention is used in places, columns, etc. in the above-mentioned anti-static method to change the tensile rigidity in the axial direction so as to be able to cope with earthquakes and the like. Note that the present invention is not limited to use in the above-mentioned anti-static method, but can also be used to improve the above-mentioned method, or simply to change the rigidity.

〔発明の構成〕[Structure of the invention]

この発明の可変剛性材は建物架構において、軸方向の引
張力に対して抵抗部材となったり、無抵抗部材となった
りするもので、牙1図(a)。
The variable rigidity material of the present invention serves as a resistance member or a non-resistance member against tensile force in the axial direction in a building frame.

(b)に示すように、2以上のピースla、lbからな
り、その端部な突き合わせた状態で、拘束材3によりピ
ースla、lbどうしを拘束し、引張力に抵抗させたり
、ピースla、lbの拘束を解除して引張力に対し無抵
抗とすることができる。
As shown in (b), the pieces la and lb are made up of two or more pieces la and lb, and with their ends butted against each other, the pieces la and lb are restrained by a restraining material 3 to resist tensile force, and the pieces la and lb are It is possible to release the restraint of lb and make it non-resistant to the tensile force.

拘束材3は一方のピース1aに設けられ、サーボモータ
ーあるいはパルスモータ−等の駆動装置により作動する
。拘束方法としては拘束材3を拘束材3に設けたボール
ねじ6によってボルト5に沿ってピース1a軸方向と直
角な方向に平行移動させ、対向するピースla、lbの
端部に設けた係止用突部2a 、 2bに同時に係合さ
せたり、係合を解除したりする方法等が考えられる。ま
た、ピースla 、lbどうしが離れても軸心がずれな
いように、棒鋼等、ピースla、lbに比べ引張剛性が
十分小さい連結材4でピースla、lbを連結しておく
ことが望ましい。その場合連結材4は可変剛性材1に対
し、偏心しないように部材の相対する2面に設ける等す
る。
The restraint member 3 is provided on one piece 1a and is operated by a drive device such as a servo motor or a pulse motor. The restraint method is to move the restraint member 3 parallel to the direction perpendicular to the axial direction of the piece 1a along the bolt 5 using a ball screw 6 provided on the restraint member 3, and to lock it at the ends of the opposing pieces la and lb. Possible methods include engaging or disengaging the protrusions 2a and 2b at the same time. Further, it is desirable to connect the pieces la and lb using a connecting material 4, such as a steel bar, whose tensile rigidity is sufficiently lower than that of the pieces la and lb so that the axes do not shift even if the pieces la and lb are separated. In that case, the connecting members 4 are provided on two opposing faces of the variable rigidity member 1 so as not to be eccentric.

サーボモーター等の駆動装置の作動はコンピューターの
制御プログラムによって行なうことができる。すなわち
、地震等の振動外力に応じ、コンピューターで、剛性を
制御することができ、建物各部での部材の剛性、連結状
態等を変化させて、建物全体としての固有周期を変化さ
せるなどして共振をかわすことができる。
A drive device such as a servo motor can be operated by a computer control program. In other words, rigidity can be controlled using a computer in response to vibrational external forces such as earthquakes, and resonance can be achieved by changing the natural period of the building as a whole by changing the rigidity and connection state of members in each part of the building. can dodge.

〔実 施 例〕〔Example〕

次に、図示した実施例について説明する。 Next, the illustrated embodiment will be described.

第2図(a)〜(d)はこの発明の一実施例を示したも
ので、1つの構造部材なピースla、lbに分割し、棒
鋼等の引張剛性の小さい連結材4により結んである。図
中、7a、7bは連結材4をピースla、lbの両側面
に取り付けるための取付フランジである。
FIGS. 2(a) to 2(d) show an embodiment of the present invention, in which one structural member is divided into pieces 1a and 1b, and connected by a connecting member 4 with low tensile rigidity such as a steel bar. . In the figure, 7a and 7b are mounting flanges for attaching the connecting member 4 to both sides of the pieces la and lb.

ピースla、lbのそれぞれには部材断面のもつ抵抗力
を伝えられる係止用突起2a、2bがそれぞれ相対する
2面から出ている。これらピースla、lbの係止用突
起2a、2bに同時に係合することができる拘束材3が
それぞれの面にあり、可変剛性材1の材軸と直角な方向
に移動して、係止用突起2a、2bと接触したり離れた
りする。接触するときには拘束材3がそれぞれの係止用
突起2a、2bK引損って軸方向の引張力に抵抗でき、
離れたときには拘束材3で引張力に抵抗することができ
ず、連結材3のみの抵抗となる。なお、連結材3は引張
剛性が可変剛性材1本体のピースla、lbの引張剛性
に比べ十分小さいものとする。
Each of the pieces la and lb has locking protrusions 2a and 2b protruding from two opposing surfaces, respectively, to which the resistance force of the cross section of the member can be transmitted. A restraining member 3 that can simultaneously engage with the locking protrusions 2a and 2b of these pieces la and lb is provided on each surface, and is movable in a direction perpendicular to the material axis of the variable rigidity member 1. It comes into contact with and separates from the protrusions 2a and 2b. When they come into contact, the restraining material 3 is able to resist the tensile force in the axial direction by pulling the respective locking protrusions 2a and 2bK,
When separated, the restraining material 3 cannot resist the tensile force, and only the connecting material 3 provides resistance. Note that the tensile rigidity of the connecting member 3 is sufficiently smaller than that of the pieces la and lb of the main body of the variable rigidity member 1.

拘束材3の移動はボールねじ6のナツト部分を拘束材3
に固定し、ボルト5を回転させることにより行なう。こ
の実施例ではボルト5を一方のピース1aの部材断面中
心に設け、コンピューター制御されるそ一ター8の回転
によりギヤ9a、9bを介して回している。ボルト5は
ピース1aに固定した支持台10およびサポート11に
より回転可能に支持され、ピース1aを挾んで2面に設
けたそれぞれの拘束材3について互いに逆ねじになって
いる。これにより、1台のモーター80回転で2つの拘
束材3が同時に対称の動きをする。拘束材3はボルト5
に関して対称の形状とすれば安定性が良い。また、この
実施例では拘束材3のピース1a側にスライダー12を
設け、ピース1aを貫通する棒状のガイド部材13に沿
って摺動させ、拘束材3が回転しないようにしてある。
To move the restraint material 3, move the nut part of the ball screw 6 to the restraint material 3.
This is done by rotating the bolt 5. In this embodiment, a bolt 5 is provided at the center of the cross section of one piece 1a, and is rotated via gears 9a and 9b by the rotation of a computer-controlled rotor 8. The bolt 5 is rotatably supported by a support stand 10 and a support 11 fixed to the piece 1a, and the respective restraining members 3 provided on two sides sandwiching the piece 1a have opposite threads. As a result, the two restraining members 3 move symmetrically at the same time with one motor rotating 80 times. Restraint material 3 is bolt 5
Stability is good if the shape is symmetrical. Further, in this embodiment, a slider 12 is provided on the piece 1a side of the restraint material 3, and is slid along a rod-shaped guide member 13 that passes through the piece 1a, so that the restraint material 3 is prevented from rotating.

矛3図および牙4図はそれぞれ駆動機構についての変形
例を示したもので、牙6図の例はそ一ターぎをボルト5
の軸線上に配し、支持台10に固定した場合、第4図は
支持台を設けず、ボルト5のサポート11′を直接ピー
ス1aに取り付けた場合である。図中14は拘束材3の
移動を制限するストッパーである。
Figures 3 and 4 show modified examples of the drive mechanism, and the example shown in figure 6 has a bolt 5.
FIG. 4 shows the case where the support 11' of the bolt 5 is directly attached to the piece 1a without providing a support. In the figure, 14 is a stopper that restricts the movement of the restraint material 3.

第5図(a)〜(d)は他の実施例として、駆動機構な
ピース1aの側方に設けた場合を示したものである。す
なわち、拘束材3を平行移動させるためのボルト5およ
びボールねじ6のナツトなピース1aおよび拘束材3の
側方に設け、反対側にはガイド部材13′および拘束材
3に固定したスライダー12′を設けたもので、モータ
ー8はピース1aの側方に突出させたブラケット15に
よって支持し、ギヤ9a、9bを介してボルト5を回転
させる。牙5図(a)〜(d)において、ボールねじ6
およびモーター8をピース1aの両側方に設けて、モー
ター8を同期させて、拘束材3を作動させる方法もある
FIGS. 5(a) to 5(d) show another embodiment in which the driving mechanism is provided on the side of the piece 1a. That is, there is a bolt 5 and a tight piece 1a of a ball screw 6 for moving the restraint member 3 in parallel, and a slider 12' provided on the side of the restraint member 3, and a guide member 13' and a slider 12' fixed to the restraint member 3 on the opposite side. The motor 8 is supported by a bracket 15 projecting to the side of the piece 1a, and rotates the bolt 5 via gears 9a and 9b. In Figs. 5 (a) to (d), the ball screw 6
Another method is to provide the motors 8 on both sides of the piece 1a and synchronize the motors 8 to operate the restraining material 3.

牙6図は建物架構のプレースに適用した場合の例を示し
たもので、拘束材3によって可変剛部材1のピースla
、lbが拘束されているときは通常のプレースと同様、
軸方向の圧縮力。
Figure 6 shows an example of application to the place of a building frame, where the piece la of the variable rigidity member 1 is restrained by the restraining material 3.
, when lb is restrained, like a normal place,
Axial compressive force.

引張力に抵抗できる構造であるのに対し、拘束材3を離
した状態では引張力には抵抗できない構造となり、建物
全体の剛性も変わってくる。
While the structure is capable of resisting tensile force, when the restraining material 3 is released, the structure becomes unable to resist tensile force, and the rigidity of the entire building changes.

牙7図(a) 、 (b)は建物最下層の軸力用柱16
の両側に地震用柱として、この発明の可変剛部材1を用
いた場合の例で、牙7図(a)の両方拘束状態に対し、
牙7図(b)のように一方の拘束を解除あるいは拘束解
除状態から拘束状態へ移行させる等して、地震等に応じ
て剛性を変化させることができる。図中17はプレース
または耐震壁である。
Figures 7 (a) and (b) show the axial force column 16 on the lowest floor of the building.
This is an example of the case where the variable rigidity member 1 of the present invention is used as an earthquake pillar on both sides of the
The rigidity can be changed in response to an earthquake or the like by releasing one of the restraints or shifting from the restraint-released state to the restraint state as shown in FIG. 7(b). In the figure, 17 is a place or a shear wall.

牙8図および第9図は軸方向の引張力に関して剛性を可
変とするとともに軸方向の圧縮力に関しても剛性を可変
としてプレースに適用した場合の実施例を示したもので
ある。すなわち、可変剛性材1′のピース1 b’とピ
ースIC′(第8図)またはピース1 a/とピース1
b′(第9図)をビン2】で連結し、一方のピースから
延びる拘束材nにより、他方のピースの回転を拘束また
は解放して圧縮力に抵抗(拘束時)させたり、圧縮力に
対し無抵抗(拘束解除時)とすることができる。第8図
の例は可変剛性材1′を3つのピース1 a’ I 1
 b’ t 1 e’で構成し、ピース1 a/とピー
ス1 b/の間で引張力に対し可変剛性となるよう拘束
材3が面内で平行移動し、またピースIWとピースIC
’の間で引張力に対し可変剛性となるよう面内での回転
が可能なビン21を設けてある。これに対し、第9図の
例では可変剛性材1′を2つのピース1a′、1b′で
構成し、引張力に関する拘束材3は面外方向に移動する
ようにし、圧縮力に関するビン21部分をルーズボール
としてある。
Figures 8 and 9 show an embodiment in which the rigidity is variable with respect to the tensile force in the axial direction, and the rigidity is variable with respect to the compressive force in the axial direction, and is applied to a place. That is, piece 1 b' and piece IC' (Fig. 8) of variable rigidity member 1' or piece 1 a/ and piece 1
b' (Fig. 9) are connected with a bottle 2], and a restraining member n extending from one piece restrains or releases the rotation of the other piece to resist (when restrained) the compressive force, or to resist the compressive force. It is possible to have no resistance (when the restraint is released). In the example shown in Fig. 8, the variable stiffness material 1' is made up of three pieces 1 a' I 1
b' t 1 e', the restraining material 3 moves in parallel in the plane between piece 1 a/ and piece 1 b/ so as to have variable rigidity against the tensile force, and piece IW and piece IC
A bottle 21 is provided that can rotate within a plane so as to have variable rigidity against a tensile force between 1 and 2. On the other hand, in the example shown in FIG. 9, the variable rigidity member 1' is composed of two pieces 1a' and 1b', the restraining member 3 related to tensile force is moved in an out-of-plane direction, and the portion 21 related to compressive force is made to move in the out-of-plane direction. is considered a loose ball.

牙10図(a) 、 (b)は可変剛性材1′を同じく
軸力用柱として用いた場合であり、牙10図(a)は2
本とも圧縮力にも引張力にも抵抗させている状態、牙1
0図は図中左側の軸力用柱については引張力には抵抗で
きるが圧縮力には抵抗しない状態、右側については圧縮
力については抵抗できるが引張力には抵抗しない状態を
示したもので、個々の地震に応じて、それぞれの柱およ
び建物全体の剛性を変えることができる。
Fig. 10 (a) and (b) show the case where the variable rigidity material 1' is also used as a pillar for axial force, and Fig. 10 (a) shows the case where the variable rigidity material 1' is used as a column for axial force.
The state where the book is resisting both compressive force and tensile force, Fang 1
Figure 0 shows a state in which the axial force column on the left side of the figure can resist tensile force but not compressive force, and a condition in which the right side column can resist compressive force but not tensile force. , the stiffness of each column and the entire building can be changed depending on the individual earthquake.

〔発明の効果〕〔Effect of the invention〕

■ 部材を構成するピースどうじを連結したり、連結を
解除することができ、軸方向の引張力に対し、部材の剛
性を変えることができる。
■ Pieces that make up a member can be connected or disconnected, and the rigidity of the member can be changed in response to tensile force in the axial direction.

■ コンピューター等で、建物架構に用いた可変剛性材
の剛性変化を制御することにより、個々の地震特性に応
じて建物の固有周期を変動させ、共振現象による建物の
大きな変形を抑制することができる。
■ By controlling changes in the rigidity of variable-rigidity materials used in building frames using computers, etc., it is possible to vary the building's natural period according to individual seismic characteristics and suppress large deformations of the building due to resonance phenomena. .

■ コンピューターを用いた制電方法に利用することに
より、共振がなく、揺れの少ない快適な居住空間が形成
される。
■ By using a computer-based anti-static method, a comfortable living space with no resonance and less shaking can be created.

【図面の簡単な説明】[Brief explanation of the drawing]

牙1図(a) 、 (b)はそれぞれこの発明の基本構
造を示す拘束状態および拘束解除状態の縦断面図、第2
図(a)〜(d)はそれぞれこの発明の一実施例を示す
平面図、正面図、I−I断面図、および■−n断面図、
之・6図および牙4図はそれぞれ、駆動機構の変形例を
示す縦断面図、第5図(a)〜(d)は他の実施例を示
す平面図、正面図、l−11断面図、およびIV−IV
断面図、矛6図はプレースへの適用を示す正面図、牙7
図(a) 、 (b)は建物下端の軸力用柱に適用した
場合の正面図、第8図および牙9図は軸方向の引張力お
よび圧縮力の双方に対して剛性を可変とした場合におい
てのプレースへの適用例を示す正面図、第10図(a)
。 (b)は同じく軸力用柱に適用した場合の正面図である
。 1・・・・・・可変剛性材、la、lb・・・・・・ピ
ース、2a、2b・・・・・・係止用突部、3・・・・
・・拘束材、4・・・・・・連結材、5・・・・・・ボ
ルト、6・・・・・・ボールねじ、7a 、7b・・・
・・・取付フランジ、8・・・・・・モーター、9a、
9b・・・・・・ギヤ、10・・・・・・支持台、11
・・・・・・サポート、12・・・・・・スライダー、
13・・・・・・ガイド部材、14・・・・・・ストッ
パー、15・・・・・・ブラケット、16・・・・・・
軸力用柱、17・・・・・・プレースまたは耐震壁、2
1・・・ビン、η・・・・・・拘束材 第6図 第7図 (a)          (b) 第8図     第9図 第10図
Figures 1 (a) and 1 (b) are longitudinal cross-sectional views in a restrained state and a restrained state showing the basic structure of the present invention, respectively.
Figures (a) to (d) are a plan view, a front view, an II sectional view, and a ■-n sectional view, respectively, showing one embodiment of the present invention.
Figures 6 and 4 are longitudinal cross-sectional views showing modified examples of the drive mechanism, respectively, and Figures 5 (a) to (d) are plan views, front views, and 1-11 cross-sectional views showing other embodiments. , and IV-IV
Cross-sectional view, Fang 6 is a front view showing application to place, Fang 7
Figures (a) and (b) are front views when applied to an axial force column at the bottom of a building, and Figures 8 and 9 show that the rigidity is variable for both tensile force and compressive force in the axial direction. Front view showing an example of application to a place in a case, FIG. 10(a)
. (b) is a front view when similarly applied to an axial force column. 1...Variable rigidity material, la, lb...piece, 2a, 2b...locking protrusion, 3...
...Restraint material, 4...Connection material, 5...Bolt, 6...Ball screw, 7a, 7b...
...Mounting flange, 8...Motor, 9a,
9b...Gear, 10...Support stand, 11
...Support, 12...Slider,
13... Guide member, 14... Stopper, 15... Bracket, 16...
Axial force column, 17...Place or shear wall, 2
1...Bin, η...Restraint material Fig. 6 Fig. 7 (a) (b) Fig. 8 Fig. 9 Fig. 10

Claims (6)

【特許請求の範囲】[Claims] (1)2以上のピースからなる長尺部材であつて、駆動
装置の作動により、前記ピースの対向する連結端部に同
時に係合および係合解除可能な拘束材を前記対向するピ
ースの一方に設けたことを特徴とする建物架構の可変剛
性材。
(1) An elongated member consisting of two or more pieces, in which a restraining member that can simultaneously engage and disengage from opposing connecting ends of the pieces is attached to one of the opposing pieces by the operation of a drive device. A variable rigidity member for a building frame characterized by the provision of a variable rigidity member.
(2)ピースの連結端部には拘束材が係合する係止用突
部を設けてある特許請求の範囲第1項記載の建物架構の
可変剛性材。
(2) The variable rigidity member for a building frame according to claim 1, wherein the connecting end of the piece is provided with a locking protrusion that engages with a restraining member.
(3)係止用突部は各ピースの対向する2面に設けてあ
る特許請求の範囲第1項または第2項記載の建物架構の
可変剛性材。
(3) The variable rigidity member for a building frame according to claim 1 or 2, wherein the locking protrusions are provided on two opposing surfaces of each piece.
(4)拘束材は駆動装置の作動によりピース軸方向と直
角な方向に可動である特許請求の範囲第1項記載の建物
架構の可変剛性材。
(4) The variable rigidity member for a building frame according to claim 1, wherein the restraint member is movable in a direction perpendicular to the axial direction of the piece by the operation of a drive device.
(5)対向するピースの端部どうしは引張剛性が前記ピ
ースに比べ十分小さいピース軸方向の連結材で連結して
ある特許請求の範囲第1項記載の建物架構の可変剛性材
(5) The variable rigidity member for a building frame according to claim 1, wherein the ends of the opposing pieces are connected by a connecting member in the axial direction of the piece whose tensile rigidity is sufficiently smaller than that of the piece.
(6)連結材は棒鋼である特許請求の範囲第5項記載の
建物架構の可変剛性材。
(6) The variable rigidity member for a building frame according to claim 5, wherein the connecting member is a steel bar.
JP25879586A 1986-09-12 1986-10-30 Variable rigid material of building housing Granted JPS63114771A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP25879586A JPS63114771A (en) 1986-10-30 1986-10-30 Variable rigid material of building housing
US07/096,012 US4890430A (en) 1986-09-12 1987-09-10 Device and method for protecting a building against earthquake tremors
US07/400,691 US4922667A (en) 1986-09-12 1989-08-30 Device and method for protecting a building against earthquake tremors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25879586A JPS63114771A (en) 1986-10-30 1986-10-30 Variable rigid material of building housing

Publications (2)

Publication Number Publication Date
JPS63114771A true JPS63114771A (en) 1988-05-19
JPH0370072B2 JPH0370072B2 (en) 1991-11-06

Family

ID=17325173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25879586A Granted JPS63114771A (en) 1986-09-12 1986-10-30 Variable rigid material of building housing

Country Status (1)

Country Link
JP (1) JPS63114771A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08260566A (en) * 1995-03-17 1996-10-08 Yoshio Kiguchi Construction method for diagonal member and face member in square forty-five degrees

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61100754U (en) * 1984-12-10 1986-06-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61100754U (en) * 1984-12-10 1986-06-27

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08260566A (en) * 1995-03-17 1996-10-08 Yoshio Kiguchi Construction method for diagonal member and face member in square forty-five degrees

Also Published As

Publication number Publication date
JPH0370072B2 (en) 1991-11-06

Similar Documents

Publication Publication Date Title
US9732516B2 (en) Object, such as a building, provided with a system for preventing damage from earthquakes to the object
JPH0522028B2 (en)
JPS63114771A (en) Variable rigid material of building housing
JPS62268479A (en) Earthquakeproof method of building
JPH09296625A (en) Building structure having earthquake-resistant construction
JPH11200660A (en) Vibration control structure for construction
JPH01203571A (en) Variable rigidity construction of building frame
JPH01263333A (en) Variable bending rigidity device for structure
JPS63293283A (en) Vibration generating and dampening apparatus of high construction
JPS63114770A (en) Axial variable rigid material
JPS63130839A (en) Rigid material variable in axial direction
JPH0572489B2 (en)
JPH01131741A (en) Variable rigid brace
JPH0515851B2 (en)
JPS62268478A (en) Earthquakeproof method of building
JPS6370734A (en) Axially variable rigid material of building housing
RU2049890C1 (en) Kinetic support for earthquakeproof building or construction
JPH031686B2 (en)
JP2001065189A (en) Stud-type vibration control device
JP2001090352A (en) Aseismatic remodeling method of dwelling, and aseismatic dwelling
JPH01137075A (en) Earthquakeproof partition wall
JPH0438870B2 (en)
JP2957291B2 (en) Damping device
JPH01146079A (en) Variable rigid device for building framing
JPH05287933A (en) Damping control of steel structure