JPS6311445B2 - - Google Patents
Info
- Publication number
- JPS6311445B2 JPS6311445B2 JP1172779A JP1172779A JPS6311445B2 JP S6311445 B2 JPS6311445 B2 JP S6311445B2 JP 1172779 A JP1172779 A JP 1172779A JP 1172779 A JP1172779 A JP 1172779A JP S6311445 B2 JPS6311445 B2 JP S6311445B2
- Authority
- JP
- Japan
- Prior art keywords
- yarn
- cross
- fiber
- fibers
- speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000835 fiber Substances 0.000 claims description 89
- 229920000728 polyester Polymers 0.000 claims description 38
- 238000009987 spinning Methods 0.000 claims description 31
- 238000001816 cooling Methods 0.000 claims description 21
- 238000010438 heat treatment Methods 0.000 claims description 18
- 230000001788 irregular Effects 0.000 claims description 17
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- MMINFSMURORWKH-UHFFFAOYSA-N 3,6-dioxabicyclo[6.2.2]dodeca-1(10),8,11-triene-2,7-dione Chemical group O=C1OCCOC(=O)C2=CC=C1C=C2 MMINFSMURORWKH-UHFFFAOYSA-N 0.000 claims description 4
- 229920006240 drawn fiber Polymers 0.000 claims description 4
- 238000004043 dyeing Methods 0.000 description 26
- 238000000034 method Methods 0.000 description 14
- 239000000975 dye Substances 0.000 description 11
- 238000002474 experimental method Methods 0.000 description 7
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 6
- 238000002788 crimping Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000012510 hollow fiber Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000002074 melt spinning Methods 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000011550 stock solution Substances 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 239000000981 basic dye Substances 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- -1 carbomethoxy Chemical group 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000010036 direct spinning Methods 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000003595 mist Substances 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- LLHSEQCZSNZLRI-UHFFFAOYSA-M sodium;3,5-bis(methoxycarbonyl)benzenesulfonate Chemical compound [Na+].COC(=O)C1=CC(C(=O)OC)=CC(S([O-])(=O)=O)=C1 LLHSEQCZSNZLRI-UHFFFAOYSA-M 0.000 description 2
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- HRYZWHHZPQKTII-UHFFFAOYSA-N chloroethane Chemical compound CCCl HRYZWHHZPQKTII-UHFFFAOYSA-N 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- VSSAZBXXNIABDN-UHFFFAOYSA-N cyclohexylmethanol Chemical compound OCC1CCCCC1 VSSAZBXXNIABDN-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- BTVWZWFKMIUSGS-UHFFFAOYSA-N dimethylethyleneglycol Natural products CC(C)(O)CO BTVWZWFKMIUSGS-UHFFFAOYSA-N 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 150000002148 esters Chemical group 0.000 description 1
- 229960003750 ethyl chloride Drugs 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- BXBNXJFMFWHUGT-UHFFFAOYSA-M potassium;2,5-bis(2-hydroxyethoxy)benzenesulfonate Chemical compound [K+].OCCOC1=CC=C(OCCO)C(S([O-])(=O)=O)=C1 BXBNXJFMFWHUGT-UHFFFAOYSA-M 0.000 description 1
- KQRNIQMUAQETRL-UHFFFAOYSA-M potassium;2,5-bis(methoxycarbonyl)benzenesulfonate Chemical compound [K+].COC(=O)C1=CC=C(C(=O)OC)C(S([O-])(=O)=O)=C1 KQRNIQMUAQETRL-UHFFFAOYSA-M 0.000 description 1
- FJIZBDJKYXYPAE-UHFFFAOYSA-M potassium;3,5-bis(methoxycarbonyl)benzenesulfonate Chemical compound [K+].COC(=O)C1=CC(C(=O)OC)=CC(S([O-])(=O)=O)=C1 FJIZBDJKYXYPAE-UHFFFAOYSA-M 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229940077386 sodium benzenesulfonate Drugs 0.000 description 1
- MZSDGDXXBZSFTG-UHFFFAOYSA-M sodium;benzenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C1=CC=CC=C1 MZSDGDXXBZSFTG-UHFFFAOYSA-M 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Artificial Filaments (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Description
本発明は優れた易染性(高度の染色性)を有す
る異形断面ポリエステル繊維(中空ポリエステル
繊維を含む)の製造法に関するものであり、特に
衣料用、カーペツト用その他の染色性と嵩高性が
要求される用途分野に供して有用な異形断面ポリ
エステル繊維を合理化された手段で生産性及び操
業性良く製造する方法に関する。
従来から金属塩スルホネート基を含有するエチ
レンテレフタレート単位主体のポリエステル繊維
は塩基性染料可染性であり、高度の染色性を要求
される衣料用、カーペツト用として用いられてい
ることは公知である。しかしこの種の塩基性染料
可染性ポリエステル繊維はスルホネート基含量を
例えばテレフタル酸に対して5〜10モル%以上の
ように高くしないと100℃常圧(ボイル)染色で
は濃色に染着されず、又、スルホネート基含量を
高くすればするほど重合体の製造コストが高くな
り、重合及び紡糸も困難となるため、従来は濃染
を得るためには、比較的低いスルホネート基含量
(テレフタル酸に対し0.5〜4モル%程度)のポリ
エステルを溶融紡糸し、延伸して得られた繊維を
高温・高圧で染色するか又は100℃常圧でキヤリ
ヤー染色する方法がとられていた。しかしながら
高温・高圧染色はこの種のポリエステル繊維にと
つては苛酷であり、繊維の機械的物性の低下は避
けられずしかも染色コストも高くつく欠点があ
る。又、キヤリヤー染色は廃液の無公害化処理を
行わなければならないというコストアツプ要因を
含んでおり、あまり好ましくない。かかる問題を
解消するため高速紡糸により高配向未延伸糸を
得、これを特定の延伸条件で延伸することによつ
て通常の100℃ボイル染色によつて濃染可能にす
る方法が特開昭50―89632号公報に示されている。
又、カーペツト用、衣料用とも特に高嵩高性を要
求される用途分野では、繊維の横断面形状をトリ
ローバルとか中空で代表されるような異形断面に
することにより嵩高性を付与することが広く行な
われている。しかるに前記した塩基性染料可染性
ポリエステル繊維は延伸時に繊維表面に“ひびわ
れ”が多数発生し、これがしばしば延伸工程、機
械巻縮付与工程、染色工程、紡績工程等で毛羽或
は断糸を惹起する。そして異形断面繊維の場合に
は特にこの傾向が増大する。この“ひびわれ”の
原因は未だ解明されていないが、この種のポリエ
ステル繊維特有のものと思われ、特に紡糸した未
延伸繊維を延伸に供するまでの所謂未延伸糸の放
置時間が長いほど前記毛羽或は断糸が増加するこ
とが明らかとなつた。この問題を解決するために
1000m/min前後の紡糸速度で紡糸して得た未延
伸糸を一旦巻き取ることなく直ちに延伸する直接
紡糸延伸法を採用すると前記“ひびわれ”問題は
ある程度解消されるが、延伸に供される未延伸糸
の複屈折率Δnが低いため、通常の100℃ボイル染
色で濃染性を得ることはできない。この直接紡糸
延伸法において紡糸速度を3000m/min程度の高
速とし高配向の未延伸にすると通常の100℃ボイ
ル染色で濃染性でかつ前記ひびわれのないポリエ
ステル繊維を得ることができるが、この場合には
高速紡糸及び高速延伸のため設備が大がかりとな
り、又、ローラー上での糸条のスリツプによる糸
斑の発生等の問題がある。
本発明者等は上記の如き欠点、問題点をすべて
解消しかつ低コストで衣料用、カーペツト用など
の用途分野に供して有用な塩基性染料に濃染でか
つ嵩高性を有するポリエステル繊維を製造する方
法について鋭意研究を重ねた結果、ついに所期の
目的を達する本発明をなすに至つた。
即ち本発明は、金属スルホネート基を含有する
エチレンテレフタレート単位主体のポリエステル
を非円形紡糸孔を有する紡糸口金を通して溶融紡
出し、紡出糸条を紡糸口金直下で冷却気流によつ
て一旦冷却し、次いで糸条を引取装置に到達する
までの間に設けた80℃以上の加熱帯域中を通過さ
せて温度勾配下で空気との摩擦力によつて延伸し
一挙に延伸繊維とする際に、糸条引取速度V
(m/min)及び糸条引取速度と冷却気流の流速
Vq(m/sec)との関係が下記(1)〜(5)式を同時に
満足するようにして紡糸することを特徴とする優
れた易染性を有する断面変形比Sが5000/√以
上である異形断面ポリエステル繊維の製造法。
2000≦V≦6000 ……(1)
Vq≧−2.75(V×10-3)+8.5 ……(2)
Vq≧0.09(V×10-3)2
−0.81(V×10-3)+2.3 ……(3)
Vq≦−0.17(V×10-3)+3.6 ……(4)
Vq≦3.2 ……(5)
〔ただし、Sは繊維横断面における輪郭線の長
さ(cm)を繊維横断面の断面積(cm2)で除した値
として定義される断面変形比(cm-1)、dは単糸
デニールを示す。〕
本発明における金属スルホネート基を含有する
エチレンテレフタレート単位主体のポリエステル
は、繰り返し単位の少なくとも80モル%がエチレ
ンテレフタレートからなるポリエステルを製造す
る際、式
The present invention relates to a method for producing irregular cross-section polyester fibers (including hollow polyester fibers) that have excellent dyeability (high degree of dyeability), particularly for use in clothing, carpets, and other applications requiring dyeability and bulk. The present invention relates to a method for producing polyester fibers of irregular cross-section useful in various fields of application using streamlined means with good productivity and operability. It has been known that polyester fibers mainly composed of ethylene terephthalate units containing metal salt sulfonate groups are dyeable with basic dyes and are used for clothing and carpets that require high dyeability. However, this type of basic dye-dyeable polyester fiber cannot be dyed in a deep color when dyed at 100°C under normal pressure (boil) unless the sulfonate group content is increased to 5 to 10 mol% or more based on terephthalic acid. Furthermore, the higher the sulfonate group content, the higher the production cost of the polymer, and the more difficult polymerization and spinning become. The method used was to melt-spun polyester (approximately 0.5 to 4 mol%) and dye the resulting fibers at high temperature and pressure, or to carryer dye at 100° C. and normal pressure. However, high-temperature and high-pressure dyeing is harsh for this type of polyester fiber, and there are disadvantages in that the mechanical properties of the fiber inevitably deteriorate, and the dyeing cost is also high. Further, carrier dyeing involves a cost-increasing factor in that the waste liquid must be treated to make it non-polluting, and is therefore not very preferable. In order to solve this problem, a method was proposed in 1973 that produced highly oriented undrawn yarn by high-speed spinning and stretched it under specific stretching conditions, thereby making it possible to dye it deeply by ordinary boiling dyeing at 100°C. - Shown in Publication No. 89632.
In addition, for carpets and clothing applications where particularly high bulkiness is required, it is widely practiced to impart bulkiness by making the cross-sectional shape of the fibers irregular, such as trilobal or hollow fibers. It is. However, when the basic dye-dyeable polyester fiber described above is drawn, many "cracks" occur on the fiber surface, which often causes fuzz or yarn breakage during the drawing process, mechanical crimping process, dyeing process, spinning process, etc. do. This tendency is especially increased in the case of irregular cross-section fibers. The cause of this "cracking" has not yet been elucidated, but it is thought to be unique to this type of polyester fiber.In particular, the longer the time the so-called undrawn yarn is left until the spun undrawn fiber is subjected to drawing, the more the fuzz will increase. It has also become clear that thread breakage increases. to solve this problem
If a direct spinning/drawing method is adopted in which the undrawn yarn obtained by spinning at a spinning speed of around 1000 m/min is immediately stretched without being wound up, the above-mentioned "cracking" problem can be solved to some extent, but the Because the drawn yarn has a low birefringence Δn, it is not possible to obtain deep dyeing properties with normal 100°C boil dyeing. In this direct spinning/drawing method, if the spinning speed is set to a high speed of about 3000 m/min and the spinning is highly oriented and undrawn, it is possible to obtain a polyester fiber with strong dyeability and no cracks by normal 100°C boil dyeing. The high-speed spinning and high-speed drawing require large-scale equipment, and there are also problems such as yarn unevenness due to yarn slipping on the rollers. The present inventors have solved all of the above-mentioned drawbacks and problems, and have produced polyester fibers that are deep dyed with basic dyes and have high bulk properties and are useful for applications such as clothing and carpets at low cost. As a result of extensive research into methods for achieving this goal, we have finally achieved the present invention, which achieves the desired objective. That is, in the present invention, a polyester mainly composed of ethylene terephthalate units containing a metal sulfonate group is melt-spun through a spinneret having a non-circular spinning hole, the spun yarn is once cooled by a cooling air flow directly under the spinneret, and then Before the yarn reaches the drawing device, it passes through a heating zone of 80°C or higher, and is drawn under a temperature gradient by the frictional force with the air, making it into drawn fibers all at once. Pickup speed V
(m/min), yarn take-up speed, and cooling air flow speed
The yarn is spun so that the relationship with Vq (m/sec) satisfies the following formulas (1) to (5) at the same time.It has excellent dyeability and has a cross-sectional deformation ratio S of 5000/√ or more. A method for producing polyester fibers with irregular cross sections. 2000≦V≦6000 ...(1) Vq≧-2.75 (V×10 -3 ) +8.5 ...(2) Vq≧0.09 (V×10 -3 ) 2 −0.81 (V×10 -3 )+2 .3 ……(3) Vq≦−0.17 (V×10 -3 )+3.6 ……(4) Vq≦3.2 ……(5) [However, S is the length of the contour line in the fiber cross section (cm ) divided by the cross-sectional area of the fiber cross-section (cm 2 ) (cm −1 ), d indicates the single yarn denier. ] In the present invention, the polyester mainly composed of ethylene terephthalate units containing a metal sulfonate group has the formula:
【式】(但し、式中Zは3価の芳
香族または脂肪族炭化水素基であり、またRは
[Formula] (wherein Z is a trivalent aromatic or aliphatic hydrocarbon group, and R is
【式】低級アルキル、[Formula] lower alkyl,
【式】【formula】
【式】低級アルキル、―(CH2)nOH,―
O―(CH2)n―〔O(CH3)n〕m―OHおよ
び[Formula] lower alkyl, -(CH 2 )nOH, - O-(CH 2 )n-[O(CH 3 )n]m-OH and
【式】よりなる群より選ば
れるものであり、nおよびmは1より大なる整
数、Mは金属である)で示される如き金属塩スル
ホネート基を含むジカルボン酸またはジオールを
イソフタル酸、アジピン酸、p―オキシ安息香酸
等の2官能性酸またはその誘導体の少なくとも1
種および/またはジエチレングリコール、プロピ
レングリコール、1,4―ブタンジオール、1,
4―ヒドロキシメチルシクロヘキサン等の2価ア
ルコールの存在下または不存在下に共重合させる
ことにより、あるいはそのようにして得られたポ
リマーを繰り返し単位の少なくとも80モル%がエ
チレンテレフタレートからなるポリエステルにブ
レンドすることによつて製造される。
本発明に使用して特に好適な前記式で示される
金属塩スルホネート基を含むジカルボン酸または
ジオールとしては3,5―ジ(カルボメトキシ)
ベンゼンスルホン酸ナトリウム、3,5―ジ(カ
ルボメトキシ)ベンゼンスルホン酸カリウム、
1,8―ジ(カルボメトキシ)ナフタリン―3―
スルホン酸ナトリウム、2,5―ジ(カルボメト
キシ)ベンゼンスルホン酸カリウム、2,5―ビ
ス(ヒドロキシエトキシ)ベンゼンスルホン酸カ
リウム等を挙げることができる。原料ポリエステ
ル中のスルホネート基含有エステル単位は0.5モ
ル%以上とすることが必要であり、好ましくは
1.5モル%以上5モル%以下とする。原料ポリエ
ステルの固有粘度(フエノール/テトラクロルエ
タン=6/4の混合溶媒中30℃で測定)は、0.35
〜0.55、特に0.37〜0.52の範囲とすることが望ま
しい。又、更に一段と濃染性を得るためには、ポ
リオキシアルキレングリコール又はその機能的誘
導体をブレンド又は共重合したポリエステルを使
用するのが好ましい。
本発明における異形断面ポリエステル繊維は、
断面変形比Sが5000/√以上を満足するもので
ある。
〔ただし、(5)式中、Sは繊維横断面における輪
郭線の長さ(cm)を繊維横断面の断面積(cm2)で
除した値として定義される断面変形比(cm-1)、
dは単糸デニールを示す。〕
しかして繊維横断面に中空部が存在するような
中空繊維(異形中空繊維、円形中空繊維等)の場
合における上記繊維横断面における輪郭線の長さ
は、外周輪郭線と中空部の内周輪郭線の合計長さ
として算出するものとする。又、特に高度の嵩高
性を得るためには断面変形比Sは5200/√以上
とするのが好ましい。例えば第1図aで示す中空
断面繊維の断面変形比Sは5000/√であり、第
1図bで示すトリローバル繊維の断面変形比Sは
6950/√であり、第1図cで示す円形中実断面
繊維の断面変形比Sは約4000/√である。円形
中実断面繊維或いは断面変形比Sが5000/√未
満の異形断面繊維は嵩高性が低く、カーペツト用
或いは衣料用で嵩高性を要求される分野には不適
当である。又、断面変形比の大なる繊維ほど嵩高
性は大でかつ未延伸糸の複屈折率Δnも大きく、
従つて染色性も向上する方向にある。かかる異形
断面糸の紡糸口金としては従来公知の異形断面糸
製造用紡糸口金が使用できる。即ち繊維の横断面
の形状が中空、偏平、三角、四角、五角等の多角
形、多孔中空、U字形、その他これらの各種変形
型等となるような非円形紡糸孔を穿設した紡糸口
金が使用できる。
溶融紡糸はかかる紡糸口金を用いて常法に従つ
て行う。紡糸口金から溶融紡出された糸条は次い
で冷却気流、液体ミスト等の適宜の冷却媒体を用
いて冷却される。冷却媒体として液体のミストを
使用すると冷却効率が増大するので、特に太デニ
ール糸のの場合に有利である。又、冷却効果が大
きいほど未延伸糸の複屈折率が増大するので、染
色性も向上する。
かくして一旦冷却された糸条を、次いで80℃以
上の加熱帯域中を通過させ、温度勾配下で空気と
の摩擦力によつて延伸し一挙に延伸繊維とする。
加熱帯域を形成するものとしては特に限定され
ず、糸条を加熱する手段であればいずれでもよい
が、特に引取速度が速い場合は非接触タイプが好
ましい。但し糸条を加熱するに必要な熱量は接触
タイプの方が少なくてすみ、接触タイプの糸条加
熱手段を用いる場合は表面の材質に摩擦係数が低
くかつ耐摩耗性の高いものを選択するのがよい。
加熱帯域の温度は80℃以上、特に115℃以上でか
つ糸条の融点以下の温度とするのがよい。
加熱の手段としては電気加熱、火焔による加
熱、加熱空気、加熱蒸気等が採用できる。なお糸
条に同伴される空気による糸条の乱れ、加熱効率
の低下を防止するため、加熱帯域に導入する直前
で糸条の同伴流を分離するのが好ましい。
加熱帯域に導入される直前の温度は特に限定は
されないが同伴流分離装置などに接触することに
より糸条の溶断が生じない温度までには充分に冷
却されている必要があり、特に糸条の二次転移温
度以下の温度にまで冷却されているのがよい。糸
条はこの加熱帯域中で温度勾配下で延伸される。
この延伸は、糸条と糸条を取りまく雰囲気(空
気)との摩擦力によつて生じる力によつて行なわ
れる。
かくして延伸された糸条は次いでオイリングロ
ーラーにより油剤を付与された後紡糸口金の鉛直
下方に設けられた引取ローラーにより引き取られ
る。糸条を引取る装置としては糸条走行速度を規
制し得るものであればいずれでもよく、通常はゴ
デツトロールと称する引取りローラーが用いられ
るが、ステープルフアイバーとして使用する分野
では糸条速度を規制しつつ糸条を所定の長さに切
断するように設計されたトウカツターを引取装置
として用いることができる。この場合は糸条の総
デニールが1000デニール以上であると非常に有効
となる。
本発明においては前記加熱帯域中で糸条を延伸
するには2000m/min以上、好ましくは3000m/
min以上の引取速度が必要となる。嵩高性を付与
する場合、繊維に巻縮を付与することが要求され
るが、通常は、延伸された繊維を引取装置で引取
るまでの任意の段階で機械巻縮付与を行う必要が
あるが、従来2000m/min以上の高速で満足すべ
き機械巻縮を付与することは極めて困難であつ
た。ところが本発明者等は前記(1)〜(5)式を同時に
満足する紡糸条件を採用することにより、機械巻
縮付与手段なしに巻縮付与が可能となり、更には
高度な立体巻縮を有するカーペツト用、衣料用と
して特に好適な嵩高性繊維が得られることを見出
した。なお、その場合、引き取られた糸条又はス
テープルフアイバーを熱処理することにより効果
は一段と顕著になる。
次に前記(1)〜(5)式の各式のもつ意味について説
明する。
(1)式について:
糸条引取速度が6000m/min以下でないと加熱
帯域に到達するまでの糸条走行速度が3000m/
minを越えるようになり、紡糸口金直下での糸切
れが増加する。加熱帯域に到達するまでの糸条走
行速度が3000m/minを越えると糸切れが増加す
る原因については未だ充分解明されていないが、
一般的には非円形紡糸孔を有する紡糸口金を用い
て紡糸する場合、加熱帯域に到達するまでの糸条
走行速度が3000m/minを越えると配向結晶化が
著しく進行するようになり、この配向結晶化が糸
切れの原因ではないかと考えられる。かかる理由
から、糸条引取速度は6000m/min以下とする必
要がある。
(2)式について:
(2)式は衣料用あるいはカーペツト用として要求
される強伸度物性を満足する糸条を得るための要
件である。即ち、糸条引取速度Vが低いほど冷却
気流の流速Vqを大きくしないと本発明の方式に
よつて十分満足すべき強伸度物性を有する繊維を
得ることができないのである。
(3)式について:
(3)式は嵩高性の良好な立体巻縮を有する繊維を
得るための要件である。即ち、(3)式は1/
ρ′(ρ′は単繊維を160℃乾熱で60秒間自由収縮処理
した際に発現するらせん状巻縮10個当りの平均ら
せん半径(mm)と定義する)が1.0以上となる条
件である。1/ρ′≧1を満足する繊維は、三次元
立体巻縮を有する嵩高性に優れた繊維である。更
に良好な嵩高性繊維を得るためには次式で示す要
件を満足することが推奨される。
Vq≧0.125(V×10-3)2
−1.25(V×10-3)+3.75 ……(6)
(6)式は1/ρ(ρは引き取つた糸条の単繊維を
取り出しフリーにした時に発現するらせん状巻縮
10個当りの平均らせん半径(mm)と定義する)が
1.0以上となる条件である。この場合は引き取ら
れた糸条あるいは切断されたステープルフアイバ
ーを熱処理しなくても嵩高性に富んだ立体巻縮繊
維を得ることができるため、潜在巻縮発現のため
の熱処理工程を省略できるメリツトがある。
(4)〜(5)式について:
(4)〜(5)式は冷却気流に起因する糸揺れにより単
糸同士が融着し糸切れを発生することを防止する
ための要件である。非円形紡糸孔から吐出される
異形断面繊維は同一繊度の円形中実繊維にくらべ
単位体積当りの表面積が大きいため、冷却気流抵
抗が大きく、従つて糸揺れが起こり易い、そのた
め冷却気流速度が大き過ぎると糸揺れが激しくな
り、単糸同士が融着し断糸の増大をもたらす。
本発明者等は種々検討を重ねた結果、(4)〜(5)式
を満足する紡糸条件を採用することが冷却気流に
よる単糸同士の融着および断糸紡糸上有効である
ことを見出した。第2図は縦軸に冷却気流の流速
Vq(m/sec)を、横軸に紡糸引取速度V(m/
min)をとり、前記本発明の(1)〜(4)式および(6)式
に関しそれぞれ等号で示される場合についての直
線および曲線を表示したものであり、第2図の斜
線で囲まれた領域が前記(1)式乃至(4)を同時に満足
する本発明の紡糸条件である。
本発明における異形断面ポリエステル繊維の単
繊維デニールは用途によつて異なるが、一般の衣
料用には1〜5デニールのものが、またカーペツ
ト用には5〜25デニールのものが用いられる。
本発明によつて製造される異形断面ポリエステ
ル繊維を短繊維として使用するには特に紡糸・延
伸のみでは巻縮特性が不足する場合は紡績性を良
好ならしめるために機械巻縮を付与することが必
要となるが、本発明の糸条引取工程に連続して機
械巻縮工程を設けてもよいし、一旦糸条を引取つ
た後巻取るかトウ缶に収納したのちトウを引き揃
えてより低速で機械巻縮を与えてもよい。又、長
繊維として使用する際には仮撚、エヤージエツト
加工などを連続的にあるいは非連続的に施しても
よい。
本発明により製造される繊維の第1の特徴は表
面に「ひひわれ」を有しないことであるが、その
他に高荷重下(約1g/d)での巻縮のへたりが
少なく耐久性が高いという特徴をも有する。
本発明により合理化された手段で衣料用あるい
はカーペツト用の高嵩高性、高染色性の異形断面
ポリエステル繊維を得ることが可能になり、かく
して得られた繊維はその表面に「ひびわれ」が存
在しないし、後工程での操業性も従来のものに比
較して格段と優れている。
本発明の効果をより具体的に示すため、以下に
実施例を示すが、実施例中の染着率は染色しよう
とする繊維に対し染料が5(重量)%になるよう
な染色液を作つて染色した場合の染色前の染色原
液と染色後の染色残液の染料濃度を比色法により
測定して算出するものであり、染色残液が完全に
透明となれば染着率100%、染色残液の染色原液
に対する比色濃度が半分であれば染着率50%、染
色残液と染色原液の比色濃度が同じであれば染着
率0%として表わした値である。
実施例 1
ジメチルテレフタレートとエチレングリコール
のエステル交換重縮合の際、3,5―ジ(カルボ
メトキシ)ベンゼンスルホン酸ナトリウムをジメ
チルテレフタレートに対して2モル%添加し、固
有粘度IVが0.50(フエノール/テトラクロルエタ
ン=6/4の混合溶媒中、30℃で測定)の共重合
ポリエステルを得た。
このポリエステルを溶融し、Y形及びC形の形
状を有するがスリツトの寸法(巾、長さ)の異な
る紡糸孔を各々50個有する紡糸口金より290℃の
紡糸温度で吐出し、口金直下で流速1.0m/secの
冷却気流を糸条に対しほぼ直交して吹き当て、紡
糸口金の下3mのところに位置する長さ80cmの環
状電熱ヒーター(雰囲気温度310℃)の中心部分
を通過させて空気との摩擦力によつて延伸した後
3700m/minの速度で引き取り、単糸デニール
20dで横断面形状及び断面変形比の異なる8種の
異形断面ポリエステル繊維を製造した。横断面形
状は第3図のイ〜チに示したとおりである。
これらの8種の繊維の物性を第1表に示した。isophthalic acid, adipic acid, At least one difunctional acid such as p-oxybenzoic acid or a derivative thereof
seeds and/or diethylene glycol, propylene glycol, 1,4-butanediol, 1,
By copolymerization in the presence or absence of a dihydric alcohol such as 4-hydroxymethylcyclohexane, or by blending the polymer thus obtained into a polyester in which at least 80 mol% of the repeating units consist of ethylene terephthalate. Manufactured by As the dicarboxylic acid or diol containing a metal salt sulfonate group represented by the above formula which is particularly suitable for use in the present invention, 3,5-di(carbomethoxy)
Sodium benzenesulfonate, potassium 3,5-di(carbomethoxy)benzenesulfonate,
1,8-di(carbomethoxy)naphthalene-3-
Examples include sodium sulfonate, potassium 2,5-di(carbomethoxy)benzenesulfonate, potassium 2,5-bis(hydroxyethoxy)benzenesulfonate, and the like. It is necessary that the sulfonate group-containing ester unit in the raw material polyester be 0.5 mol% or more, preferably
1.5 mol% or more and 5 mol% or less. The intrinsic viscosity of the raw material polyester (measured at 30°C in a mixed solvent of phenol/tetrachloroethane = 6/4) is 0.35.
A range of ~0.55, particularly 0.37-0.52 is desirable. Furthermore, in order to obtain even deeper dyeing properties, it is preferable to use a polyester blended or copolymerized with polyoxyalkylene glycol or a functional derivative thereof. The irregular cross-section polyester fiber in the present invention is
The cross-sectional deformation ratio S satisfies 5000/√ or more. [However, in formula (5), S is the cross-sectional deformation ratio (cm -1 ) defined as the value obtained by dividing the length (cm) of the contour line in the fiber cross-section by the cross-sectional area (cm 2 ) of the fiber cross-section ,
d indicates the single yarn denier. ] However, in the case of hollow fibers that have a hollow part in the cross section of the fiber (deformed hollow fibers, circular hollow fibers, etc.), the length of the contour line in the fiber cross section is the length of the outer peripheral contour line and the inner circumference of the hollow part. It shall be calculated as the total length of the contour line. Further, in order to obtain particularly high bulkiness, it is preferable that the cross-sectional deformation ratio S is 5200/√ or more. For example, the cross-sectional deformation ratio S of the hollow cross-section fiber shown in Figure 1a is 5000/√, and the cross-sectional deformation ratio S of the trilobal fiber shown in Figure 1b is
6950/√, and the cross-sectional deformation ratio S of the circular solid cross-section fiber shown in FIG. 1c is about 4000/√. Circular solid cross-section fibers or irregular cross-section fibers with a cross-sectional deformation ratio S of less than 5000/√ have low bulk and are unsuitable for carpets or clothing, which require bulk. In addition, the larger the cross-sectional deformation ratio of the fiber, the larger the bulkiness and the larger the birefringence Δn of the undrawn yarn.
Therefore, the dyeability is also likely to improve. As a spinneret for such a yarn with an irregular cross section, a conventionally known spinneret for producing yarn with an irregular cross section can be used. In other words, a spinneret with a non-circular spinning hole in which the cross-sectional shape of the fiber is hollow, flat, triangular, square, polygonal, such as pentagonal, hollow, porous, U-shaped, and various other variations thereof, is used. Can be used. Melt spinning is carried out in a conventional manner using such a spinneret. The yarn melt-spun from the spinneret is then cooled using a suitable cooling medium such as a cooling air stream or liquid mist. The use of liquid mist as a cooling medium increases cooling efficiency and is particularly advantageous for thick denier yarns. Furthermore, the greater the cooling effect, the greater the birefringence of the undrawn yarn, and thus the dyeability is improved. The yarn thus cooled once is then passed through a heating zone at 80° C. or higher and drawn under a temperature gradient by the frictional force with the air to form drawn fibers all at once.
There are no particular limitations on what forms the heating zone, and any means for heating the yarn may be used, but a non-contact type is particularly preferred when the take-up speed is high. However, the amount of heat required to heat the yarn is less with the contact type, so when using a contact type yarn heating means, it is important to select a surface material with a low coefficient of friction and high wear resistance. Good.
The temperature of the heating zone is preferably 80°C or higher, particularly 115°C or higher, and lower than the melting point of the yarn. As the heating means, electric heating, flame heating, heated air, heated steam, etc. can be used. Note that in order to prevent the yarn from being disturbed by the air entrained in the yarn and a decrease in heating efficiency, it is preferable to separate the entrained flow of the yarn immediately before introducing it into the heating zone. The temperature immediately before the yarn is introduced into the heating zone is not particularly limited, but it must be sufficiently cooled to a temperature that will not cause the yarn to melt when it comes into contact with an entrained flow separation device. It is preferable that the temperature is lower than the second-order transition temperature. The yarn is drawn in this heating zone under a temperature gradient.
This stretching is performed by a force generated by frictional force between the yarn and the atmosphere (air) surrounding the yarn. The thus drawn yarn is then applied with an oil agent by an oiling roller and then taken off by a take-off roller provided vertically below the spinneret. Any device that can regulate the yarn running speed may be used as a device for taking up the yarn, and a take-up roller called a godet roll is usually used, but in the field where it is used as a staple fiber, the yarn speed cannot be regulated. A tow cutter designed to simultaneously cut the yarn to a predetermined length can be used as the take-off device. In this case, it is very effective if the total denier of the yarn is 1000 denier or more. In the present invention, in order to draw the yarn in the heating zone, the drawing speed is 2000 m/min or more, preferably 3000 m/min or more.
A withdrawal speed of min or higher is required. When imparting bulkiness, it is required to crimp the fiber, but normally it is necessary to mechanically crimp the drawn fiber at any stage before it is taken up by a pulling device. Conventionally, it has been extremely difficult to provide satisfactory mechanical crimping at high speeds of 2000 m/min or higher. However, by adopting spinning conditions that simultaneously satisfy the above formulas (1) to (5), the present inventors have made it possible to apply crimp without a mechanical crimp-applying means, and also have a high degree of three-dimensional crimp. It has been found that bulky fibers particularly suitable for carpets and clothing can be obtained. In this case, the effect becomes even more pronounced by heat-treating the drawn yarn or staple fiber. Next, the meaning of each of the above formulas (1) to (5) will be explained. Regarding formula (1): If the yarn take-up speed is not less than 6000 m/min, the yarn running speed until reaching the heating zone will be 3000 m/min.
min, and yarn breakage directly under the spinneret increases. The reason why yarn breakage increases when the yarn running speed exceeds 3000 m/min before reaching the heating zone is not yet fully understood, but
In general, when spinning using a spinneret with a non-circular spinning hole, if the yarn traveling speed before reaching the heating zone exceeds 3000 m/min, oriented crystallization will progress significantly, and this It is thought that crystallization is the cause of thread breakage. For this reason, the yarn take-up speed needs to be 6000 m/min or less. Regarding formula (2): Formula (2) is a requirement for obtaining a yarn that satisfies the strength, elongation, and physical properties required for clothing or carpet use. That is, unless the flow rate Vq of the cooling air stream is increased as the yarn take-up speed V is lower, it is not possible to obtain fibers having sufficiently satisfactory strength and elongation physical properties by the method of the present invention. Regarding formula (3): Formula (3) is a requirement for obtaining a fiber having good bulk and three-dimensional crimp. In other words, equation (3) is 1/
ρ′ (ρ′ is defined as the average helical radius (mm) per 10 helical crimps that occurs when a single fiber is subjected to free shrinkage treatment at 160°C dry heat for 60 seconds) is 1.0 or more. . A fiber that satisfies 1/ρ'≧1 is a fiber that has three-dimensional crimp and is excellent in bulk. In order to obtain even better bulky fibers, it is recommended that the requirements expressed by the following formula be satisfied. Vq≧0.125 (V×10 -3 ) 2 −1.25 (V×10 -3 ) + 3.75 ……(6) Equation (6) is 1/ρ (ρ is the single fiber of the taken yarn and the free Spiral curling that occurs when
The average helical radius (mm) per 10 pieces is
The condition is 1.0 or more. In this case, it is possible to obtain three-dimensionally crimped fibers with high bulkiness without heat-treating the pulled yarn or cut staple fibers, so the advantage is that the heat treatment step for developing latent crimping can be omitted. be. Regarding equations (4) and (5): Equations (4) and (5) are requirements for preventing single yarns from fusing together and causing yarn breakage due to yarn shaking caused by cooling air currents. The irregular cross-section fibers discharged from non-circular spinning holes have a larger surface area per unit volume than circular solid fibers of the same fineness, so they have a large cooling airflow resistance and are therefore prone to yarn shaking, which results in a high cooling airflow velocity. If it is too long, the yarn will swing violently, and the single yarns will fuse together, resulting in an increase in yarn breakage. As a result of various studies, the present inventors have found that adopting spinning conditions that satisfy equations (4) to (5) is effective in fusing single yarns together and breaking yarns by cooling air flow. Ta. In Figure 2, the vertical axis shows the flow velocity of the cooling air flow.
Vq (m/sec) is plotted on the horizontal axis, and spinning take-off speed V (m/sec) is plotted on the horizontal axis.
min), and displays the straight lines and curves for the cases indicated by equal signs with respect to equations (1) to (4) and (6) of the present invention, respectively, and is surrounded by diagonal lines in Figure 2. The above range is the spinning condition of the present invention that satisfies the above formulas (1) to (4) at the same time. The single fiber denier of the irregular cross-section polyester fibers used in the present invention varies depending on the use, but 1 to 5 deniers are used for general clothing, and 5 to 25 deniers are used for carpets. In order to use the irregular cross-section polyester fibers produced by the present invention as short fibers, it is necessary to apply mechanical crimp to improve spinnability, especially when the crimp properties are insufficient by spinning and drawing alone. Although necessary, a mechanical crimping step may be provided consecutively to the yarn take-up step of the present invention, or the yarn may be wound after being taken or stored in a tow can, and then the tows may be pulled together and crimped at a lower speed. Mechanical crimping may be applied. Furthermore, when used as long fibers, false twisting, air jet processing, etc. may be applied continuously or discontinuously. The first characteristic of the fibers produced according to the present invention is that they do not have any "scratches" on the surface, but they also have less sag when crimped under high loads (approximately 1 g/d) and are durable. It also has the characteristic of being expensive. The present invention makes it possible to obtain polyester fibers of irregular cross-section with high bulkiness and high dyeability for use in clothing or carpets by a streamlined method, and the fibers thus obtained have no "cracks" on their surfaces. The operability in post-processing is also much better than conventional ones. In order to more specifically demonstrate the effects of the present invention, examples are shown below.The dyeing rate in the examples is such that a dyeing solution was prepared such that the dye amounted to 5% (by weight) of the fiber to be dyed. It is calculated by measuring the dye concentration of the dye stock solution before dyeing and the residual dyeing solution after dyeing using a colorimetric method.If the dyeing solution becomes completely transparent, the dyeing rate is 100%. If the colorimetric concentration of the residual dye solution is half that of the dye stock solution, the dyeing rate is 50%, and if the colorimetric concentration of the dye residual solution and the dye stock solution are the same, the dyeing rate is 0%. Example 1 During transesterification polycondensation of dimethyl terephthalate and ethylene glycol, 2 mol% of sodium 3,5-di(carbomethoxy)benzenesulfonate was added to dimethyl terephthalate, and the intrinsic viscosity IV was 0.50 (phenol/tetra A copolymerized polyester (measured at 30°C in a mixed solvent of chloroethane = 6/4) was obtained. This polyester is melted and discharged at a spinning temperature of 290°C from a spinneret each having 50 spinning holes each having a Y-shape and a C-shape with different slit dimensions (width and length), and the flow rate is directly below the spinneret. A cooling air flow of 1.0 m/sec is blown almost orthogonally to the yarn, and the air is passed through the center of an 80 cm long annular electric heater (ambient temperature 310°C) located 3 m below the spinneret. After stretching due to frictional force with
Single yarn denier drawn at a speed of 3700m/min
Eight different cross-sectional polyester fibers with different cross-sectional shapes and cross-sectional deformation ratios were produced at 20 d. The cross-sectional shape is as shown in FIG. The physical properties of these eight types of fibers are shown in Table 1.
【表】【table】
【表】
た場合の値
第1表に示す如く本発明によつて繊維表面にひ
びわれがなく、染着率及び嵩高性が優れた異形断
面ポリエステル繊維を製造し得ることがわかる。
そして特に断面変形比Sが5000/√以上の場合
でないと嵩高性及び染着率が一段と優れた嵩高繊
維が得られないことがわかる。
比較例 1
比較のために実施例1と同一の共重合ポリエス
テルを、実施例1と同一の紡糸口金を使用して通
常の溶融紡糸方式により溶融紡出し、冷却空気を
吹き当てて冷却した後1000m/minの紡糸速度で
一旦巻き取り、しかる後かくして得た未延伸糸を
105℃で3.1倍に延伸して単糸デニール20dの異形
断面ポリエステル繊維を製造した。かくして得た
繊維の断面形状は第3図のイ〜チに示したものと
それぞれほぼ同一であつた。そしてこれらの繊維
表面を顕微鏡で観察したところ、いずれも表面に
ひびわれが生じており、断面変形比の大きい第3
図のニ及びチに相当する繊維ではこの傾向が特に
顕著であつた。又、これら比較のために製造した
異形断面繊維の染着率はいずれも50%以下と低か
つた。
実施例 2
固有粘度IVが0.42(測定法は実施例1と同じ)
である以外は実施例1と同一の共重合ポリエステ
ルを、外径1.2mm、内径1.0mm、ブリツジ巾0.2mmの
C形スリツト形状の紡糸孔を円環状に620個穿設
した紡糸口金より紡糸温度275℃で吐出し、紡出
糸条を紡糸口金直下で紡出糸条の全周面から冷却
気流で一旦冷却し、次いで実施例1と同一の環状
電熱ヒーターの中心部を通過させて空気との摩擦
力により延伸した後引き取つて単糸デニール3d
の異形断面ポリエステル繊維を製造した。
本例では糸条の引取速度及び冷却気流の流速を
第2表に示す如く種々変化させた。又、ポリマー
吐出量を引取速度に応じて変えることにより完成
糸の単糸デニールが3dになるように調整した。
引取手段としては所定の周速で回転するトウカツ
ターを使用し、カツトされたステープル綿を必要
により熱処理した。
本例における紡糸延伸状態、完全糸の機械的性
状、巻縮性能(本文に定義した1/ρ及び1/
ρ′で示す)及び染着率(染料及び染色方法は実施
例1と同じ)を第2表に示した。Table 1 shows that the present invention makes it possible to produce irregular cross-section polyester fibers with no cracks on the fiber surface and excellent dyeing rate and bulkiness.
In particular, it can be seen that unless the cross-sectional deformation ratio S is 5000/√ or more, bulky fibers with even better bulkiness and dyeing rate cannot be obtained. Comparative Example 1 For comparison, the same copolymerized polyester as in Example 1 was melt-spun using the same spinneret as in Example 1 by a normal melt-spinning method, cooled by blowing cooling air, and then spun for 1000 m. The undrawn yarn thus obtained was wound once at a spinning speed of /min.
Polyester fibers with irregular cross-sections having a single yarn denier of 20 d were produced by drawing the fibers at 105° C. by a factor of 3.1. The cross-sectional shapes of the fibers thus obtained were almost the same as those shown in Fig. 3, respectively. When the surfaces of these fibers were observed under a microscope, cracks were found on the surfaces of all of them, and the 3rd layer had a large cross-sectional deformation ratio.
This tendency was particularly remarkable for the fibers corresponding to D and H in the figure. Furthermore, the dyeing rates of the irregular cross-section fibers produced for comparison were all low, at 50% or less. Example 2 Intrinsic viscosity IV is 0.42 (measurement method is the same as Example 1)
The same copolymerized polyester as in Example 1 was spun using a spinneret in which 620 C-shaped slit-shaped spinning holes with an outer diameter of 1.2 mm, an inner diameter of 1.0 mm, and a bridge width of 0.2 mm were bored in an annular manner at different temperatures. The spun yarn was discharged at 275°C, and the spun yarn was cooled by a cooling air flow from the entire circumference of the spun yarn just below the spinneret, and then passed through the center of the same annular electric heater as in Example 1 to be cooled with air. After being stretched by the frictional force, the single yarn denier is 3D.
A polyester fiber with a modified cross section was produced. In this example, the yarn take-up speed and the cooling air flow speed were varied as shown in Table 2. In addition, the single yarn denier of the finished yarn was adjusted to 3d by changing the amount of polymer discharged depending on the take-up speed.
A tow cutter rotating at a predetermined circumferential speed was used as a take-up means, and the cut staple cotton was heat-treated if necessary. In this example, the spinning and drawing state, the mechanical properties of the complete yarn, and the crimp performance (1/ρ and 1/
ρ') and dyeing rate (dye and dyeing method are the same as in Example 1) are shown in Table 2.
【表】【table】
【表】
第2表に示す如く本発明によつて繊維表面にひ
びわれがなく、染着率及び巻縮性能の優れた中空
ポリエステル繊維を製造し得ることがわかる。そ
して特に本文に記載した(1)〜(5)式を同時に満足す
る条件で紡糸する場合(実験No.10,11,13,14,
17,18,19,20,22及び25)には紡糸延伸状態が
良好でかつ巻縮性能も一段と優れた繊維が得られ
ることがわかる。
なお、第2図中に本例の各実験No.を記載し、本
発明の紡糸条件を満たす場合と満たさない場合の
関係を示した。
実験No.9の場合には糸条の引取速度が低く、か
つ冷却気流の風速が不足のため延伸糸とならず未
延伸糸状の繊維となつた。実験No.15,21,23及び
26の場合は冷却気流の流速が過大のため糸揺れが
大きく、紡出糸条同士の融着による糸切れ及びこ
れに起因する紡糸口金直下での単糸切れが多発し
た。実験No.12,16及び24の場合は冷却気流の流速
が不足のため、充分な巻縮を有する繊維が得られ
ず、嵩高性の劣るものしか得られない。実験No.27
の場合は糸条の引取速度が6000m/minを越える
ために糸切れが多発した。
比較のために本例と同一のポリエステル重合体
を、本例と同一の紡糸口金を使用して通常の溶融
紡糸方式により溶融紡出し、冷却気流を紡出糸条
の外周方向から吹き当てて冷却した後1300m/
minの紡糸速度で一旦巻き取り、しかる後かくし
て得た未延伸糸をトウ状で熱水中を通過させなが
ら常法により延伸倍率2.6倍で延伸して単糸デニ
ール3dの中空ポリエステル繊維を製造した。か
くして得た繊維はその表面にひびわれが多数発生
しており、染着率は23%と低かつた。
実施例 3
3,5―ジ(カルボメトキシ)ベンゼンスルホ
ン酸ナトリウムの添加量がジメチルテレフタレー
トに対して0.7モル%であること、及び固有粘度
IVが0.42(測定法は実施例1と同じ)であること
及び紡糸温度が275℃であること以外は実施例1
の実験No.8と全く同一条件で紡糸延伸して、単糸
デニール20d、断面変形S(cm-1)=7425/√の
中空ポリエステル繊維を製造した。
一方比較のために本例と同一のポリエステルを
本例と同一の紡糸口金から溶融紡出し、本例と同
様にして冷却した後通常の紡糸方式に従つて
1200m/minの引取速度で一旦巻き取り、次いで
かくして得た未延伸糸を常法により110℃で3.0倍
の延伸倍率で延伸して単糸デニール20d、断面変
形比S(cm-1)=7150/√の中空ポリエステル繊
維を製造した。
繊維表面のひびわれは本発明によるもの及び比
較例のものとも殆んど発生していなかつたが、C.
I.Basic Red36により120℃キヤリヤーなしで90
分間染色した場合の染着率は、本発明によるもの
が82%であつたのに対し、比較例のものは42%と
低く、又繊維の嵩高性も本発明によるものは比較
例のものより数段優れており、本発明の卓越性を
如実に示した。[Table] As shown in Table 2, it can be seen that according to the present invention, hollow polyester fibers with no cracks on the fiber surface and excellent dyeing rate and crimp performance can be produced. Especially when spinning under conditions that simultaneously satisfy equations (1) to (5) described in the main text (Experiment Nos. 10, 11, 13, 14,
It can be seen that in Examples 17, 18, 19, 20, 22, and 25), fibers with good spinning and drawing conditions and even better crimp performance can be obtained. In addition, each experiment number of this example is described in FIG. 2, and the relationship between cases where the spinning conditions of the present invention are satisfied and cases where they are not satisfied is shown. In the case of Experiment No. 9, the yarn take-up speed was low and the cooling air flow velocity was insufficient, so the yarn did not become a drawn yarn but an undrawn yarn-like fiber. Experiment No. 15, 21, 23 and
In the case of No. 26, the flow rate of the cooling air current was too high, causing large yarn shaking, resulting in frequent yarn breakage due to fusion of the spun yarns and resulting single yarn breakage directly under the spinneret. In Experiment Nos. 12, 16, and 24, the flow rate of the cooling air stream was insufficient, so fibers with sufficient crimp could not be obtained, and only fibers with poor bulkiness were obtained. Experiment No.27
In the case of , yarn breakage occurred frequently because the yarn take-up speed exceeded 6000 m/min. For comparison, the same polyester polymer as in this example was melt-spun using the same spinneret as in this example by a normal melt-spinning method, and the spun yarn was cooled by blowing a cooling air stream from the outer circumferential direction. 1300m after
It was once wound up at a spinning speed of min, and then the undrawn yarn thus obtained was passed through hot water in the form of a tow and drawn in a conventional manner at a draw ratio of 2.6 times to produce a single-filament denier 3D hollow polyester fiber. . The fiber thus obtained had many cracks on its surface, and the dyeing rate was as low as 23%. Example 3 The amount of sodium 3,5-di(carbomethoxy)benzenesulfonate added is 0.7 mol% relative to dimethyl terephthalate, and the intrinsic viscosity
Example 1 except that the IV is 0.42 (the measurement method is the same as in Example 1) and the spinning temperature is 275°C.
A hollow polyester fiber with a single fiber denier of 20 d and a cross-sectional deformation S (cm -1 ) = 7425/√ was produced by spinning and drawing under exactly the same conditions as in Experiment No. 8. On the other hand, for comparison, the same polyester as in this example was melt-spun from the same spinneret as in this example, cooled in the same manner as in this example, and then spun according to the usual spinning method.
It is once wound up at a take-up speed of 1200 m/min, and then the undrawn yarn thus obtained is stretched by a conventional method at 110°C with a draw ratio of 3.0 times to obtain a single yarn denier of 20 d and cross-sectional deformation ratio S (cm -1 ) = 7150. /√ hollow polyester fibers were produced. There were almost no cracks on the fiber surface in both the fibers according to the present invention and the comparative example, but C.
I.Basic Red36 120℃90 without carrier
The dyeing rate when dyed for minutes was 82% for the fibers according to the present invention, while it was lower at 42% for the fibers of the comparative examples.Furthermore, the bulkiness of the fibers of the fibers according to the present invention was lower than that of the comparative examples. This was several orders of magnitude better, clearly demonstrating the excellence of the present invention.
第1図は本発明の断面変形比Sを説明するため
の各種繊維の横断面図、第2図は本発明の好適紡
糸条件の領域を示すグラフ(尚、図中の番号は実
施例2の実験No.を示す)、第3図は本発明の実施
例1で得られた繊維の横断面形状を示す概略図で
ある。
FIG. 1 is a cross-sectional view of various fibers for explaining the cross-sectional deformation ratio S of the present invention, and FIG. FIG. 3 is a schematic diagram showing the cross-sectional shape of the fiber obtained in Example 1 of the present invention.
Claims (1)
フタレート単位主体のポリエステルを非円形紡糸
孔を有する紡糸口金を通して溶融紡出し、紡出糸
条を紡糸口金直下で冷却気流によつて一旦冷却
し、次いで糸条を引取装置に到達するまでの間に
設けた80℃以上の加熱帯域中を通過させて温度勾
配下で空気との摩擦力によつて延伸し一挙に延伸
繊維とする際に、糸条引取速度V(m/min)及
び糸条引取速度と冷却気流の流速Vq(m/sec)
との関係が下記(1)〜(5)式を同時に満足するように
して紡糸することを特徴とする優れた易染性を有
する断面変形比Sが5000/√以上である異形断
面ポリエステル繊維の製造法。 2000≦V≦6000 ……(1) Vq≧−2.75(V×10-3)+8.5 ……(2) Vq≧0.09(V×10-3)2 −0.81(V×10-3)+2.3 ……(3) Vq≦−0.17(V×10-3)+3.6 ……(4) Vq≦3.2 ……(5) 〔ただし、Sは繊維横断面における輪郭線の長
さ(cm)を繊維横断面の断面積(cm2)で除した値
として定義される断面変形比(cm-1)、dは単糸
デニールを示す。〕[Scope of Claims] 1 A polyester mainly composed of ethylene terephthalate units containing metal sulfonate groups is melt-spun through a spinneret having a non-circular spinning hole, and the spun yarn is once cooled by a cooling air stream directly below the spinneret. Then, the yarn is passed through a heating zone of 80°C or higher provided before reaching the drawing device, and is drawn under a temperature gradient by the frictional force with the air to form drawn fibers all at once. Yarn take-up speed V (m/min) and yarn take-up speed and cooling air flow velocity Vq (m/sec)
A polyester fiber with an irregular cross section having excellent dyeability and a cross-sectional deformation ratio S of 5000/√ or more, which is spun in a manner that satisfies the following equations (1) to (5) at the same time. Manufacturing method. 2000≦V≦6000 ...(1) Vq≧-2.75 (V×10 -3 ) +8.5 ...(2) Vq≧0.09 (V×10 -3 ) 2 −0.81 (V×10 -3 )+2 .3 ……(3) Vq≦−0.17 (V×10 -3 )+3.6 ……(4) Vq≦3.2 ……(5) [However, S is the length of the contour line in the fiber cross section (cm ) divided by the cross-sectional area of the fiber cross-section (cm 2 ) (cm −1 ), d indicates the single yarn denier. ]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1172779A JPS55103309A (en) | 1979-02-02 | 1979-02-02 | Production of modified cross-section fiber with high dyeability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1172779A JPS55103309A (en) | 1979-02-02 | 1979-02-02 | Production of modified cross-section fiber with high dyeability |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55103309A JPS55103309A (en) | 1980-08-07 |
JPS6311445B2 true JPS6311445B2 (en) | 1988-03-14 |
Family
ID=11786057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1172779A Granted JPS55103309A (en) | 1979-02-02 | 1979-02-02 | Production of modified cross-section fiber with high dyeability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS55103309A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230033196A (en) | 2021-08-30 | 2023-03-08 | (주)티디엘 | Chip-type all-solid-state battery that can be formed on a PCB substrate and manufacturing method thereof |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4444710A (en) * | 1982-02-19 | 1984-04-24 | E. I. Du Pont De Nemours And Company | Process for increasing void volume of hollow filaments |
US4492731A (en) * | 1982-11-22 | 1985-01-08 | E. I. Du Pont De Nemours And Company | Trilobal filaments exhibiting high bulk and sparkle |
JPS61225313A (en) * | 1985-03-29 | 1986-10-07 | Toray Ind Inc | Production of polyester yarn |
JPS61178436U (en) * | 1985-04-26 | 1986-11-07 | ||
JPS62104917A (en) * | 1985-10-28 | 1987-05-15 | Teijin Ltd | Modified polyester fiber |
-
1979
- 1979-02-02 JP JP1172779A patent/JPS55103309A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230033196A (en) | 2021-08-30 | 2023-03-08 | (주)티디엘 | Chip-type all-solid-state battery that can be formed on a PCB substrate and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPS55103309A (en) | 1980-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3011086B1 (en) | Process for the preparation of a fiber, a fiber and a yarn made from such a fiber | |
US8153253B2 (en) | Conjugate fiber-containing yarn | |
AU653207B2 (en) | Preparing polyester fine filaments | |
CN107988635B (en) | Full-dull polyester-polyester composite yarn and preparation method thereof | |
US6723265B1 (en) | Method for producing polyester-based combined filament yarn | |
JPS6311445B2 (en) | ||
JPS62243824A (en) | Production of ultrafine polyester filament yarn | |
EP0207489A2 (en) | Highly-shrinkable polyester fiber, process for preparation thereof, blended polyester yarn and process for preparation thereof | |
JPS5953736A (en) | Polyester tire cord and production thereof | |
JP3167677B2 (en) | Polyester irregular cross section fiber | |
JPS6088121A (en) | High speed production of sufficiently stretched polyester yarn | |
JP3583248B2 (en) | Splittable conjugate fiber comprising polyester and polyamide and method for producing the same | |
JPS59204919A (en) | Production of polyester fiber having fine size | |
JPH0931749A (en) | Production of polyester fiber | |
JPS6147817A (en) | Production of polyester yarn | |
JPS584091B2 (en) | Polyester fiber manufacturing method | |
JPH0813244A (en) | Polyester flat cross-section yarn having turning part and its production | |
JPS61194218A (en) | Production of polyester fiber | |
JPS6215321A (en) | Production of modified cross-section combined filament polyester yarn | |
WO2024185439A1 (en) | Polyester composite fiber, polyester false-twist textured yarn, and production methods therefor | |
JPH07300732A (en) | Production of polyester combined filament yarn | |
JPH0214014A (en) | Production of fine sized polyester yarn | |
JP7332307B2 (en) | Method for producing highly hollow polyester fiber | |
JP4056288B2 (en) | Method for producing polyester ultrafine multifilament yarn | |
JPS5842286B2 (en) | Fine denim polyester fiber and its manufacturing method |