JPS6311435B2 - - Google Patents

Info

Publication number
JPS6311435B2
JPS6311435B2 JP2563081A JP2563081A JPS6311435B2 JP S6311435 B2 JPS6311435 B2 JP S6311435B2 JP 2563081 A JP2563081 A JP 2563081A JP 2563081 A JP2563081 A JP 2563081A JP S6311435 B2 JPS6311435 B2 JP S6311435B2
Authority
JP
Japan
Prior art keywords
plating
current density
bath
copper
steel wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2563081A
Other languages
Japanese (ja)
Other versions
JPS57140883A (en
Inventor
Koichi Namari
Rikuo Kono
Jiro Shinmen
Eiichiro Kawasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2563081A priority Critical patent/JPS57140883A/en
Publication of JPS57140883A publication Critical patent/JPS57140883A/en
Publication of JPS6311435B2 publication Critical patent/JPS6311435B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、溶接用鋼ワイヤの表面に密着性及び
延伸性の良好な銅めつき層を形成することがで
き、しかもめつき浴組成の面では有害度の高い薬
剤の使用量を減少乃至廃止して2次公害の防止を
図つた銅めつき方法に関するものである。 溶接用鋼ワイヤの表面には、溶接時の通電性を
高めると共に発錆を防止する目的で銅めつきを施
こすのが一般的である。 ところで溶接用鋼ワイヤの中でも、例えば0.8
〜2mmφ程度のガスシールドアーク溶接用鋼ワイ
ヤ等は、ワイヤ径の2倍程度の内径を有する3m
以上のコンジツトチユーブ(ステンレス螺旋チユ
ーブ)によつて送給装置から通電チツプまで送ら
れるが、コンジツトチユーブは溶接時複雑に曲げ
られて使用することが多い為、溶接用鋼ワイヤに
かかる送給抵抗は相当大きい。また良好な溶接作
業性を得るうえでアーク長を一定に維持すること
は極めて重要であり、その為には溶接用鋼ワイヤ
の送給性を高めるべく銅めつき表面の平滑性を向
上し、均一な通電特性を得るために送給経路内で
受ける摩擦及び伸線加工によつて鋼素地が露出し
ない様な強固な密着性が要求される。 溶接用鋼ワイヤの銅めつき方法としては従来か
らシアン化銅浴による電気めつき方法が汎用され
ており、この方法であれば比較的容易に密着性及
び表面平滑性の良好な銅めつき層を得ることがで
きる。しかしながら極めて有害な薬剤を使用する
為作業員に与える肉体的・心理的負担は極めて大
きく、しかも公害防止の為の排水処理に厖大な設
備と維持管理費が要求される。またガスシールド
溶接用鋼ワイヤの製造に当つては、5.5mmφ程度
の素ワイヤから0.8〜2mmφ(最も多いのは1.2mm
φ又は1.6mmφ)の最終製品まで伸線加工する途
中の段階で銅めつき処理するのが一般的である
が、シアン化銅浴を用いて得た銅めつき層は硬質
であるから、めつき処理後の伸線加工が比較的困
難でダイスの摩耗が著しい等の問題もある。更に
めつき速度の面からみると、シアン化銅浴による
電気めつきでは電流密度を高めるとめつき効率が
低下する傾向があるから、線材の処理速度を高め
る為には使用電流を抑えて浴長を著しく長くする
必要があり、設備の占有面積が拡大するほか有害
な薬剤の保有量及び排液量も増大する。 一方鋼板等の銅めつき法として硫酸銅浴を用い
た銅の置換めつき法が知られているが、この方法
で得ためつき層は密着性が乏しい。その為一般に
は浴中にある種の化学物質を添加したり或は浴中
の銅イオン濃度を薄くして析出速度を抑制し、緻
密な銅めつき層を形成する方法も試みられてい
る。しかしながらこの様な改善法といえども溶接
用鋼ワイヤに要求される高度の密着性を満足する
ことは困難であり、硫酸銅浴を用いた溶接用鋼ワ
イヤの銅めつき法は殆んど実用されていない。し
かしながら硫酸銅はシアン化銅に比べて毒性が極
めて小さいから、作業員に対する危険負担及び排
液処理に付随する経済的負担が少なく又2次公害
等を発生させる危険も少なく、捨て難い魅力があ
る。 本発明者等は前述の様な状況のもとで、硫酸銅
浴を用いてシアン化銅めつき法に匹敵する密着性
や生産性等を確保し得る様なめつき法の確立を期
して研究を進めてきた。本発明はかかる研究の結
果完成されたものであつて、その構成は、溶接用
鋼ワイヤを硫酸銅浴に浸漬して電気めつきを行な
う方法において、該浴の浴温を50℃以下、該浴の
硫酸濃度を65g/以下および前記ワイヤの電流
密度を50A/dm2以上にし、さらに前記ワイヤお
よび/または前記浴を移動させると共に、該ワイ
ヤと該浴との相対速度V(m/分)、電流密度C
(A/dm2)、硫酸銅の浴温T(℃)および硫酸銅
浴の硫酸濃度D(g/)の関係が次式を満足す
るようにして行なうところに要旨が存在する。 V≧1/f(C−50)2+80 但し、f=4(D−T)+180 本発明では、浴温を特定範囲にした硫酸銅浴中
で電流密度を特定範囲にした鋼ワイヤを移動させ
若しくは鋼ワイヤ移動方向に逆らつて浴液を流し
(必要ならば同一方向に流し)ながら電気めつき
することによつて、置換反応による銅析出量を抑
制し、且つ鋼ワイヤの電流密度と前記相対速度と
の関係を決めることにより、密着性の優れた銅め
つき層を効率よく形成することができる。 本発明者等が実験により確認したところでは、
鋼ワイヤの電流密度を高めるにつれてめつき層の
生成速度は高まりめつき層の密着性は向上する。
これは、電流密度が大きくなる程置換めつき量が
少なくなるからであるが、電流密度が一定値以上
になると置換めつき量はほぼ同程度になり、電流
密度を高くするだけではめつき層の密着性を十分
に向上させることができない。また、電流密度が
大きくなる程析出銅の結晶粒径が大きくなる為、
電流密度を大きくしすぎるとめつき層の密着性は
低下する。 ところがめつき工程で陰極(鋼ワイヤ)表面に
おける電解質(銅イオン)の流速を高めると、置
換めつきの質の向上と共に電気めつき部も結晶粒
の成長が抑制されて陰極表面に新たなめつき核が
生成し、めつき核の数が増加するにつれてめつき
層の密着性は飛躍的に向上する。また電解質の流
速増大にもかかわらず鋼ワイヤ表面に十分な数の
めつき核を生成させ且つ密着性の良い結晶粒度に
抑えたまま所定の厚さまで短時間で成長させる為
には、鋼ワイヤに与える電流密度を必要最小限に
抑える必要がある。ここで鋼ワイヤ表面における
電解質速度を調整する最も簡単な方法としては、
硫酸銅浴液と鋼ワイヤを相対的に移動させる方法
が考えられ、適用する電流の増減によつて電流密
度は容易に調整することができる。 また、硫酸銅浴の浴温および硫酸濃度により優
れた銅めつき層を形成することができる電流密度
の許容範囲が異なり、浴温を低くするほどまた硫
酸濃度を高くするほど電流密度を高くすることが
できる。 そこで、まず電流密度を50A/dm2以上にする
理由について述べる。 電流密度を高くするほど置換めつき量を抑える
ことができるが、第1図に示すように電流密度が
50A/dm2以上になると置換めつき量はほぼ等し
くなり、置換めつき量を減らしめつき層の密着性
を向上させるためには電流密度を50A/dm2以上
にしなければならない。 なお、第1図の置換めつき量と電流密度との関
係は、次の条件による実際の電気めつき量と理論
値による電気めつき量との差を置換めつき量とし
てあらわしたものである。 めつき条件 浸漬長 2m CuSO4・5H2O 313g/ 線 速 120m/分 H2SO4 28.4g/ 線 径 2.3mm 浴 温 40℃ また、第1図には電流密度120A/dm2の場合
の置換めつき量と浴温との関係も併せて示す。 次に、硫酸銅浴の浴温を50℃以下にするのは、
浴温が低くなる程緻密なめつき層が得られ易くな
り、浴温が50℃を越えると良好なめつき層を得る
ことができなくなるからであり、これは、置換め
つき及び電気めつきの質の低下と共に、第1図に
示す置換めつき量と浴温との関係からもわかるよ
うに、浴温を高くするにつれて密着性の劣る置換
めつき量が増加するからである。なお、浴温が低
くなると電圧を高くしなければならず、同一のめ
つき層を得るにあたつて消費電力量が多くなるの
で、浴温を常温以上にするのが好ましい。 さらに、硫酸銅浴の硫酸濃度を65g/以下に
するのは、浴の硫酸濃度を高める程許容最大電流
密度は高くなり、それに伴なつて有効浸漬長を短
かくすることができる。たとえば浴温を30℃、相
対速度を100m/分一定とした場合、濃度30g/
のときの許容最大電流密度は110A/dm2であ
るが、濃度40g/では116A/dm2、同45g/
では119A/dm2、同60g/では127A/d
m2、同95g/では144A/dm2となる。従つて
有効浸漬長を短くし、設備の小型化を図る為に
は、硫酸濃度は高い程好ましい。但し硫酸濃度が
65g/を越えると、めつき後の鋼ワイヤの延伸
性が著しく低下し、伸線時に鋼ワイヤ表面に傷が
でき易くまた伸線ダイスの摩耗も著しくなるので
硫酸濃度を65g/以下にしなければならず、伸
線性と密着性との点で最も好ましい硫酸濃度は30
〜40g/である。 最後に、硫酸銅浴と鋼ワイヤとの相対速度V
(m/分)、鋼ワイヤの電流密度C(A/dm2)、硫
酸銅浴の浴温T(℃)および硫酸銅浴の硫酸濃度
D(g/)の関係を V≧1/f(C−50)2+80 但し、f=4(D−T)+180 にした理由を述べる。 めつき浴と鋼ワイヤとの相対速度、電流密度、
硫酸銅浴の浴温および硫酸銅浴の硫酸濃度を種々
変更し、最適の電気めつき条件を見出すべく実験
を行なつた。但し相対速度は、浴中に配置した還
流ポンプによつて電解液を鋼ワイヤ走行方向と平
行に流動させ且つ鋼ワイヤ走行速度を調整するこ
とにより変化させた。また銅めつき層の密着性
は、0.10〜0.30重量%のめつきを施こした鋼ワイ
ヤを同径の線材に巻きつけた後、めつき層の剥離
状態を40倍の顕微鏡で目視観察して判断した。 その結果、前記相対速度が大きいほど結晶粒の
成長を抑制することができるが、結晶の大きさは
相対速度と電流密度との関係で決まるものである
が相対速度を小さくしすぎると結晶の成長を抑制
する効果が乏しくそのためには電流密度を抑える
必要があり、又所定厚さのめつき層を得るに要す
る浴長が長くなるので相対速度を80m/分以上に
するのが好ましい。 なお、第2図は、浴温および硫酸濃度をそれぞ
れ固定し、密着性の良好なめつき層が得られる相
対速度と電流密度との関係を示したものである。
但し使用した硫酸銅(CuSO4・5H2O)の濃度は
300〜320g/、供試ワイヤはJIS YCW2(2.3mm
φ)とした。第2図より明らかなように浴温と硫
酸濃度とをそれぞれ固定した場合の密着性の良好
なめつき層が得られる相対速度と電流密度との関
係はV≧1/f(C−50)2+80(但しfは定数)であ り、fは、浴温と硫酸濃度とにより変化すること
が明らかとなつた。このfと浴温および硫酸濃度
との関係はf=4(D−T)+180である。 以上鋼ワイヤの相対速度、電流密度、浴温、硫
酸濃度について相互の関係を説明したが、このほ
か密着性を支配する大きな要素としてめつき量が
挙げられ、めつき量の増大と共に密着性は劣化す
る傾向がある。一般に溶接用鋼ワイヤでは、めつ
き量を0.4%以上とすると、溶接金属の性能が劣
化するといわれている。本発明による電気めつき
法では最大0.10%の置換めつき分を見込んで電気
めつき量は最大0.3%とすべきである。従つてこ
の要件にかなうめつき法を確立する為には、めつ
き時間(浸漬時間)についても検討する必要があ
る。以下浸漬時間について説明する。まず次に示
す式中の各符号の意味を明記する。 W:銅析出量(g) t:鋼ワイヤの浸漬時間(秒) I:供給電流(A) e:電流効率(%) M:銅の原子量(63.57) Z:銅の原子価(2) F:比例定数(96500クーロン) G:1秒間当りの鋼ワイヤ処理量(g/秒) V:鋼ワイヤ速度(m/分) R:鋼ワイヤ径(mm) ρ:鋼ワイヤの比重(7.833) l:鋼ワイヤの浸漬長さ(m) C:電流密度(A/dm2) 1秒間当りの銅めつきの析出量 W/t=I・M/Z・F・e ……〔〕 1秒間当りの鋼ワイヤ処理量は G=(100/60V)・{π(R/2・10)2}・ρ…
…〔〕 電流密度は C=I/10・π(R/100)・l ……〔〕 めつき量(重量%)は (W/t)/G+(W/t)×100=W/t/G×100…
…〔〕 の各式から求めることができる。従つて〔〕式
に〔〕〜〔〕式を代入して整理すると〔〕
式が成立する。 めつき量(%) =W/t/G×100=0.101・l・e・C/V・R……
〔〕 また電流効率(e)を0.96%とすると、〔〕
式より〔〕式が導びかれ、更に〔〕式を変形
すると〔〕式によつて浸漬時間(t)を求める
ことができる。 めつき量(%)=0.097・l・C/V・R ……〔〕 t=60l/V=60・R/0.097・C・めつき量……〔〕 今、目的とする電気めつき量を0.3%とすると、
〔〕式より〔〕式が導びかれる。 t=185.57・R/C ……〔〕 上記の説明からも明らかな様に、本発明を実施
するに当つては、被めつき物たる鋼ワイヤの径
(R)に応じて電流密度(C)及び浸漬時間(t)を
調整することにより、めつき量を適正にコントロ
ールすることができ、その結果めつき量の面から
も密着性を劣化させない範囲で操業でき、溶接用
鋼ワイヤとして溶接部の品質も維持することがで
きる。 本発明は概略以上の様に構成されるが、要は浴
温及び硫酸濃度が特定範囲にある硫酸銅浴を使用
し電流密度を特定範囲にした鋼ワイヤの相対的移
動速度と電流密度との関係を適正に調整しつつ電
気めつきを行なうことによつて、シアン化銅浴を
用いて得た銅めつき層に比べて優るとも劣らない
密着性を有する銅めつき層を能率良く形成し得る
ことになつた。その結果シアン化銅の使用に伴な
う危険負担、排液処理及び2次公害等の諸問題を
一挙に解消し得ることになつた。しかも本発明で
得た銅めつき層はシアン化銅めつき法で得た銅め
つき層に比べて軟質であり、めつき処理後の伸線
加工が容易でダイスの摩耗も少なく優れた生産性
が得られる等、多くの利益を享受できる。 次に実施例を挙げて本発明の構成及び作用効果
を更に明確にする。 実施例 直径2.3mmの電解酸洗い直後の炭酸ガス溶接用
素ワイヤ(JIS YCW2)の表面に第1表の条件で
銅めつき処理(相対速度、電流密度および浸漬長
を変化させてめつき量の目標を0.22重量%とし
た。)を施した後、1.2mmφまで5段連続伸線して
溶接用鋼ワイヤを得た。なお、鋼ワイヤ(陰極)
と陽極間距離は約15mmである。
The present invention can form a copper plating layer with good adhesion and stretchability on the surface of a welding steel wire, and in addition, reduces or eliminates the use of highly harmful chemicals in terms of plating bath composition. This invention relates to a copper plating method that aims to prevent secondary pollution. The surface of a steel wire for welding is generally plated with copper for the purpose of increasing electrical conductivity during welding and preventing rust. By the way, among the steel wires for welding, for example, 0.8
Steel wire for gas-shielded arc welding, etc. with a diameter of ~2 mmφ has an inner diameter of about twice the wire diameter and is 3 m long.
The conduit tube (stainless steel spiral tube) described above is used to send the conduit from the feeding device to the current-carrying chip, but since the conduit tube is often bent in a complicated manner during welding, the conduit tube is used to feed the steel wire for welding. The resistance is quite large. In addition, it is extremely important to maintain a constant arc length in order to obtain good welding workability.To this end, it is necessary to improve the smoothness of the copper-plated surface in order to improve the feedability of the welding steel wire. In order to obtain uniform current conduction characteristics, strong adhesion is required to prevent the steel base from being exposed due to friction and wire drawing in the feeding path. As a method for copper plating steel wire for welding, electroplating using a copper cyanide bath has traditionally been widely used, and with this method, it is relatively easy to form a copper plating layer with good adhesion and surface smoothness. can be obtained. However, since extremely harmful chemicals are used, the physical and psychological burden on workers is extremely large, and wastewater treatment to prevent pollution requires enormous equipment and maintenance costs. In addition, when manufacturing steel wire for gas shield welding, we use raw wire of about 5.5 mmφ to 0.8 to 2 mmφ (the most common is 1.2 mm
It is common to perform copper plating during the wire drawing process to the final product (φ or 1.6 mmφ), but since the copper plating layer obtained using a copper cyanide bath is hard, There are also problems such as the wire drawing process after the piercing treatment is relatively difficult and the die is subject to significant wear. Furthermore, from the viewpoint of plating speed, in electroplating using a copper cyanide bath, the plating efficiency tends to decrease as the current density increases, so in order to increase the processing speed of wire rods, the current used should be suppressed and the bath length should be increased. It is necessary to make the length significantly longer, which increases the area occupied by the equipment and also increases the amount of harmful chemicals held and the amount of liquid discharged. On the other hand, a copper displacement plating method using a copper sulfate bath is known as a copper plating method for steel plates, etc., but the plating layer obtained by this method has poor adhesion. For this reason, attempts have generally been made to form a dense copper-plated layer by adding certain chemical substances to the bath or by reducing the concentration of copper ions in the bath to suppress the deposition rate. However, even with these improvement methods, it is difficult to satisfy the high degree of adhesion required for welding steel wire, and the copper plating method of welding steel wire using a copper sulfate bath is hardly practical. It has not been. However, copper sulfate has extremely low toxicity compared to copper cyanide, so there is less danger to workers and less economic burden associated with wastewater treatment, and there is less risk of secondary pollution, making it attractive and difficult to discard. . Under the above-mentioned circumstances, the present inventors conducted research with the aim of establishing a plating method using a copper sulfate bath that would ensure adhesion and productivity comparable to copper cyanide plating method. We have been progressing. The present invention was completed as a result of such research, and consists of a method in which steel wire for welding is immersed in a copper sulfate bath for electroplating. The sulfuric acid concentration of the bath is 65 g / or less and the current density of the wire is 50 A / dm 2 or more, and the wire and / or the bath are moved, and the relative speed of the wire and the bath is V (m / min). , current density C
(A/dm 2 ), the copper sulfate bath temperature T (° C.), and the sulfuric acid concentration D (g/) of the copper sulfate bath so that the following equation is satisfied. V≧1/f(C-50) 2 +80 However, f=4(D-T)+180 In the present invention, a steel wire with a current density in a specific range is moved in a copper sulfate bath with a bath temperature in a specific range. By electroplating while flowing the bath liquid against the direction of movement of the steel wire (if necessary, flowing it in the same direction), the amount of copper deposited due to the substitution reaction can be suppressed, and the current density of the steel wire can be controlled. By determining the relationship with the relative speed, a copper plating layer with excellent adhesion can be efficiently formed. As confirmed by the inventors through experiments,
As the current density of the steel wire increases, the formation rate of the plated layer increases and the adhesion of the plated layer improves.
This is because the amount of displacement plating decreases as the current density increases, but when the current density exceeds a certain value, the amount of displacement plating becomes approximately the same, so simply increasing the current density will cause the amount of plating to decrease. The adhesion cannot be sufficiently improved. In addition, as the current density increases, the crystal grain size of the precipitated copper increases, so
If the current density is increased too much, the adhesion of the plating layer will decrease. However, by increasing the flow rate of electrolyte (copper ions) on the cathode (steel wire) surface during the plating process, the quality of displacement plating improves and the growth of crystal grains in the electroplated area is suppressed, creating new plating nuclei on the cathode surface. is generated, and as the number of plating nuclei increases, the adhesion of the plating layer improves dramatically. In addition, in order to generate a sufficient number of plating nuclei on the surface of the steel wire despite the increase in the flow rate of the electrolyte and to grow it to a specified thickness in a short time while keeping the crystal grain size to a good level of adhesion, it is necessary to It is necessary to keep the applied current density to the minimum necessary. The easiest way to adjust the electrolyte velocity at the steel wire surface is to
A method of moving the copper sulfate bath liquid and the steel wire relative to each other can be considered, and the current density can be easily adjusted by increasing or decreasing the applied current. In addition, the allowable range of current density that can form an excellent copper plating layer varies depending on the bath temperature and sulfuric acid concentration of the copper sulfate bath, and the lower the bath temperature and the higher the sulfuric acid concentration, the higher the current density. be able to. First, the reason for setting the current density to 50 A/dm 2 or more will be described. The higher the current density, the more the amount of displacement plating can be suppressed, but as shown in Figure 1, the higher the current density
When the current density is 50 A/dm 2 or higher, the amount of displacement plating becomes almost equal, and in order to reduce the amount of displacement plating and improve the adhesion of the plating layer, the current density must be set to 50 A/dm 2 or higher. The relationship between the amount of displacement plating and the current density in Figure 1 is expressed as the amount of displacement plating, which is the difference between the actual amount of electroplating and the amount of electroplating based on the theoretical value under the following conditions. . Plating conditions Immersion length 2m CuSO 4・5H 2 O 313g/ Line speed 120m/min H 2 SO 4 28.4g/ Wire diameter 2.3mm Bath temperature 40°C Figure 1 shows the current density of 120A/ dm2 . The relationship between displacement plating amount and bath temperature is also shown. Next, the temperature of the copper sulfate bath should be kept below 50℃.
This is because the lower the bath temperature, the easier it is to obtain a dense plated layer, and if the bath temperature exceeds 50°C, it is impossible to obtain a good plated layer. This is because the quality of displacement plating and electroplating is This is because, as the bath temperature decreases, the amount of displacement plating, which has poor adhesion, increases as the bath temperature increases, as can be seen from the relationship between the amount of displacement plating and the bath temperature shown in FIG. Note that as the bath temperature becomes lower, the voltage must be increased and the amount of power consumed increases to obtain the same plated layer, so it is preferable to keep the bath temperature above room temperature. Furthermore, the reason why the sulfuric acid concentration in the copper sulfate bath is set to 65 g/or less is that the higher the sulfuric acid concentration in the bath, the higher the allowable maximum current density becomes, and accordingly the effective immersion length can be shortened. For example, if the bath temperature is 30℃ and the relative speed is constant at 100m/min, the concentration is 30g/min.
The maximum allowable current density is 110A/dm 2 at a concentration of 40g/dm2, but at a concentration of 40g/dm2 it is 116A/dm2, and at a concentration of 45g/dm2.
119A/dm 2 , 127A/d at 60g/
m 2 and 95 g/m 2 , it becomes 144 A/dm 2 . Therefore, in order to shorten the effective immersion length and downsize the equipment, it is preferable that the sulfuric acid concentration be as high as possible. However, the sulfuric acid concentration
If it exceeds 65g/, the drawability of the steel wire after plating will drop significantly, the steel wire surface will be easily scratched during wire drawing, and the wire drawing die will wear out significantly, so the sulfuric acid concentration must be kept below 65g/. The most preferable sulfuric acid concentration in terms of wire drawability and adhesion is 30.
~40g/. Finally, the relative velocity V between the copper sulfate bath and the steel wire
(m/min), the current density C (A/dm 2 ) of the steel wire, the bath temperature T (°C) of the copper sulfate bath, and the sulfuric acid concentration D (g/) of the copper sulfate bath, as V≧1/f ( C-50) 2 +80 However, the reason for setting f=4(D-T)+180 will be explained. Relative speed between plating bath and steel wire, current density,
Experiments were conducted to find the optimal electroplating conditions by varying the bath temperature of the copper sulfate bath and the sulfuric acid concentration of the copper sulfate bath. However, the relative velocity was changed by flowing the electrolyte parallel to the steel wire running direction using a reflux pump placed in the bath and adjusting the steel wire running speed. The adhesion of the copper plating layer was determined by wrapping a steel wire coated with 0.10 to 0.30% by weight around a wire rod of the same diameter, and then visually observing the peeling state of the plating layer using a 40x microscope. I decided that. As a result, the growth of crystal grains can be suppressed as the relative velocity increases, but the size of the crystal is determined by the relationship between the relative velocity and current density, but if the relative velocity is too small, the growth of crystal grains will be suppressed. It is preferable to set the relative speed to 80 m/min or more because the current density has to be suppressed and the bath length required to obtain a plated layer of a predetermined thickness is long. Incidentally, FIG. 2 shows the relationship between the relative speed and current density at which a plated layer with good adhesion can be obtained with the bath temperature and sulfuric acid concentration fixed respectively.
However, the concentration of copper sulfate (CuSO 4 5H 2 O) used was
300~320g/, test wire is JIS YCW2 (2.3mm
φ). As is clear from Figure 2, when the bath temperature and sulfuric acid concentration are fixed, the relationship between the relative speed and current density that allows a plated layer with good adhesion to be obtained is V≧1/f(C-50) 2 +80 (where f is a constant), and it became clear that f changes depending on the bath temperature and sulfuric acid concentration. The relationship between this f and the bath temperature and sulfuric acid concentration is f=4(DT)+180. The relationship between the relative speed of steel wire, current density, bath temperature, and sulfuric acid concentration has been explained above, but in addition to this, the amount of plating is mentioned as a major factor that controls adhesion, and as the amount of plating increases, the adhesion It tends to deteriorate. In general, it is said that in steel wire for welding, if the plating amount is 0.4% or more, the performance of the weld metal will deteriorate. In the electroplating method according to the present invention, the amount of electroplating should be at most 0.3%, allowing for a maximum of 0.10% displacement plating. Therefore, in order to establish a plating method that meets these requirements, it is necessary to consider the plating time (immersion time). The immersion time will be explained below. First, the meaning of each symbol in the formula shown below will be specified. W: Copper precipitation amount (g) t: Steel wire immersion time (seconds) I: Supply current (A) e: Current efficiency (%) M: Copper atomic weight (63.57) Z: Copper valence (2) F : Proportionality constant (96500 coulombs) G: Steel wire throughput per second (g/sec) V: Steel wire speed (m/min) R: Steel wire diameter (mm) ρ: Specific gravity of steel wire (7.833) l : Immersion length of steel wire (m) C: Current density (A/dm 2 ) Amount of copper plating deposited per second W/t=I・M/Z・F・e ...[] The amount of steel wire processed is G=(100/60V)・{π(R/2・10) 2 }・ρ…
…[] The current density is C=I/10・π(R/100)・l …[] The plating amount (weight%) is (W/t)/G+(W/t)×100=W/t /G×100…
...[] It can be obtained from each formula. Therefore, if we substitute the expressions [] to [] into the expression [] and rearrange it, we get
The formula holds true. Plating amount (%) =W/t/G×100=0.101・l・e・C/V・R……
[] Also, if the current efficiency (e) is 0.96%, []
From the formula, the formula [] is derived, and by further transforming the formula, the immersion time (t) can be determined from the formula []. Plating amount (%) = 0.097・l・C/V・R……[] t=60l/V=60・R/0.097・C・plating amount……[] Now, the desired electroplating amount If it is 0.3%, then
The formula [] is derived from the formula []. t=185.57・R/C...[] As is clear from the above explanation, in carrying out the present invention, the current density (C ) and immersion time (t), the amount of plating can be properly controlled, and as a result, it is possible to operate within a range that does not deteriorate adhesion in terms of the amount of plating, and welding can be used as a steel wire for welding. The quality of the parts can also be maintained. The present invention is generally constructed as described above, but the key point is to use a copper sulfate bath with bath temperature and sulfuric acid concentration in a specific range, and to calculate the relative moving speed and current density of a steel wire in a specific range of current density. By performing electroplating while properly adjusting the relationship, it is possible to efficiently form a copper plating layer with adhesion superior to that obtained using a copper cyanide bath. I decided to get it. As a result, various problems associated with the use of copper cyanide, such as risk burden, wastewater treatment, and secondary pollution, can be solved all at once. Moreover, the copper-plated layer obtained by the present invention is softer than the copper-plated layer obtained by the cyanide copper plating method, and wire drawing processing after plating is easy, with less die wear and excellent production. You can enjoy many benefits such as increased sex. Next, examples will be given to further clarify the structure and effects of the present invention. Example Copper plating was applied to the surface of carbon dioxide gas welding bare wire (JIS YCW2) with a diameter of 2.3 mm immediately after electrolytic pickling under the conditions shown in Table 1 (the plating amount was varied by varying the relative speed, current density, and immersion length). The target concentration was 0.22% by weight), and then continuous wire drawing was performed in 5 stages to 1.2 mmφ to obtain a steel wire for welding. In addition, steel wire (cathode)
The distance between the electrode and the anode is approximately 15 mm.

【表】【table】

〔電力量計算方法〕[Electric energy calculation method]

2.3mmφ鋼ワイヤの1m当りの重量32.54g/mと
し、1時間当りの生産量を線速(液速度は線速に
対し非常に遅いため第1表に示す相対速度は線速
をそのまま記載した)から求めた。 即ち、1時間当りの生産量 =32.54/1000×線速(m/分)×60 (Kg/Hr) 一方電力量は、供給電流×負荷電圧の値を、上
記1時間当りの生産量で割つた値を示す。 〔送給抵抗測定方法〕 市販の溶接ワイヤ送給装置に20Kgスプール巻ワ
イヤをセツトし、送給コンジツトケーブルの出口
付近に300mmφのループを形成させると共に、溶
接トーチ先端に1Kgの負荷抵抗を与え、ワイヤを
毎分8mで送給しながらワイヤ送給に必要な力を
測定した。従つて、表中の値は、先端部に負荷さ
せた1Kgの抵抗を含む値である。
The weight per meter of 2.3 mmφ steel wire is 32.54 g/m, and the production amount per hour is the linear speed (liquid speed is very slow compared to the linear speed, so the relative speeds shown in Table 1 are the linear speeds as they are). ). In other words, production amount per hour = 32.54/1000 x linear velocity (m/min) x 60 (Kg/Hr) On the other hand, electric energy is calculated by dividing the value of supply current x load voltage by the above production amount per hour. Indicates the value. [Feeding resistance measurement method] A 20kg spooled wire was set in a commercially available welding wire feeding device, a 300mmφ loop was formed near the outlet of the feeding conduit cable, and a 1kg load resistance was applied to the tip of the welding torch. The force required for wire feeding was measured while feeding the wire at 8 m/min. Therefore, the values in the table include the 1 kg resistance loaded at the tip.

【表】 第2表に示すめつき量は、電流密度と浸漬時間
より計算される理論的なめつき量より多い値を示
す。これは置換反応によるめつき量が存在するた
めである。比較例1は電流密度が低すぎる為密着
性が劣り且つ1.2mmφ伸線後の溶接用ワイヤとし
ての送給抵抗も高い値を示す。一方実施例2〜5
は電流密度及び相対速度の増加により密着性、送
給抵抗とも良好である。比較例2は、相対速度に
対して電流密度を高くしすぎた為、電気めつきそ
のものの密着性が劣化したものである。 比較例3は相対速度が遅すぎる為密着性、送給
性とも不良である。これに対し実施例5〜7は、
相対速度の上昇と共に電流密度を高くしても良好
なめつきが得られる例を示す。 実施例8〜10と、それに対応する比較例4〜6
は各々相対速度が240〜280m/分での良好な密着
性が得られる電流密度の上限付近の例を示す。こ
の様に電流密度が高くなりすぎても密着性は不良
となるが、硫酸濃度の増加と共に許容される最大
電流密度は高くなる。又実施例11の硫酸濃度70
g/の場合は、電流密度300A/dm2と非常に
高い値でも密着性は良好であるが前述したよう
に、めつき後の伸線加工性の劣化が著しく、めつ
き後特に連続伸線加工を施す様な工程には適さな
い。 実施例12〜14と比較例7〜9は、浴温の影響を
明示するものであり、浴温20℃の実施例12は相対
速度250m/分・電流密度240A/dm2で良好な密
着性、送給抵抗を示すが、浴温を40、50、60℃と
上げた比較例7〜9ではより低い電流密度でも良
好なめつき層を得ることはできない。浴温40、50
℃の時の相対速度240〜270m/分付近での許容さ
れる最大電流密度付近の比較を実施例13、14と比
較例7、8に対比する。 比較例9は浴温を60℃と上げすぎたため、もは
や良好なめつき層を得ることはできないことを示
す。
[Table] The plating amounts shown in Table 2 are greater than the theoretical plating amounts calculated from the current density and immersion time. This is because there is an amount of plating due to a substitution reaction. In Comparative Example 1, the current density was too low, so the adhesion was poor, and the feeding resistance as a welding wire after drawing to 1.2 mmφ also showed a high value. On the other hand, Examples 2 to 5
has good adhesion and feeding resistance due to the increase in current density and relative velocity. In Comparative Example 2, the current density was too high relative to the relative speed, so the adhesion of the electroplating itself deteriorated. Comparative Example 3 has poor adhesion and feeding properties because the relative speed is too slow. On the other hand, in Examples 5 to 7,
An example is shown in which good plating can be obtained even when the current density is increased as the relative speed increases. Examples 8 to 10 and corresponding comparative examples 4 to 6
1 and 2 show examples near the upper limit of the current density at which good adhesion can be obtained at relative speeds of 240 to 280 m/min. In this way, even if the current density becomes too high, the adhesion becomes poor, but as the sulfuric acid concentration increases, the maximum allowable current density increases. Also, the sulfuric acid concentration of Example 11 was 70
In the case of g/, the adhesion is good even at a very high current density of 300 A/dm 2 , but as mentioned above, the wire drawability after plating deteriorates significantly, and it is difficult to draw the wire after plating, especially after continuous wire drawing. Not suitable for processes that require processing. Examples 12 to 14 and Comparative Examples 7 to 9 clearly demonstrate the influence of bath temperature, and Example 12 with a bath temperature of 20°C has good adhesion at a relative speed of 250 m/min and a current density of 240 A/dm 2. , feeding resistance, but in Comparative Examples 7 to 9 in which the bath temperature was raised to 40, 50, and 60°C, a good plated layer could not be obtained even at a lower current density. Bath temperature 40, 50
Examples 13 and 14 and Comparative Examples 7 and 8 are compared in the vicinity of the allowable maximum current density at a relative speed of 240 to 270 m/min at .degree. Comparative Example 9 shows that because the bath temperature was raised too high to 60°C, it was no longer possible to obtain a good plated layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、電流密度、浴温とめつき量との関係
を示すグラフ、第2図は、銅メツキ層の密着性に
与える相対速度と電流密度の関係を示すグラフで
ある。
FIG. 1 is a graph showing the relationship between current density, bath temperature and plating amount, and FIG. 2 is a graph showing the relationship between current density and relative speed which affects the adhesion of the copper plating layer.

Claims (1)

【特許請求の範囲】 1 溶接用鋼ワイヤを硫酸銅浴に浸漬して電気め
つきを行なう方法において、該浴の浴温を50℃以
下、該浴の硫酸濃度を65g/以下および前記ワ
イヤの電流密度を50A/dm2以上にし、さらに前
記ワイヤおよび/または前記浴を移動させると共
に、該ワイヤと該浴との相対速度V(m/分)、電
流密度C(A/dm2)、硫酸銅の浴温T(℃)およ
び硫酸銅浴の硫酸濃度D(g/)の関係が次式
を満足するようにして行なう溶接用鋼ワイヤの硫
酸銅電気めつき方法。 V≧1/f(C−50)2+80 但し、f=4(D−T)+180
[Claims] 1. A method of electroplating by immersing a steel wire for welding in a copper sulfate bath, in which the temperature of the bath is 50°C or less, the sulfuric acid concentration of the bath is 65 g/or less, and the wire is The current density is set to 50 A/dm 2 or more, the wire and/or the bath are moved, and the relative speed V (m/min) between the wire and the bath, the current density C (A/dm 2 ), and the sulfuric acid are adjusted. A method for electroplating copper sulfate on steel wire for welding in such a manner that the relationship between the copper bath temperature T (° C.) and the sulfuric acid concentration D (g/) of the copper sulfate bath satisfies the following equation. V≧1/f(C-50) 2 +80 However, f=4(D-T)+180
JP2563081A 1981-02-23 1981-02-23 Electroplating method for wire for welding with copper sulfate Granted JPS57140883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2563081A JPS57140883A (en) 1981-02-23 1981-02-23 Electroplating method for wire for welding with copper sulfate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2563081A JPS57140883A (en) 1981-02-23 1981-02-23 Electroplating method for wire for welding with copper sulfate

Publications (2)

Publication Number Publication Date
JPS57140883A JPS57140883A (en) 1982-08-31
JPS6311435B2 true JPS6311435B2 (en) 1988-03-14

Family

ID=12171180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2563081A Granted JPS57140883A (en) 1981-02-23 1981-02-23 Electroplating method for wire for welding with copper sulfate

Country Status (1)

Country Link
JP (1) JPS57140883A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199287A (en) * 1986-02-28 1987-09-02 Nippon Steel Weld Prod & Eng Co Ltd Copper plated steel wire for arc welding and its production
JP2542266B2 (en) * 1989-10-03 1996-10-09 日鐵溶接工業株式会社 Copper plated steel wire for gas shield arc welding

Also Published As

Publication number Publication date
JPS57140883A (en) 1982-08-31

Similar Documents

Publication Publication Date Title
US5679232A (en) Process for making wire
KR100241635B1 (en) How to apply copper layer to steel wire
US4313802A (en) Method of plating steel strip with nickel-zinc alloy
US6123788A (en) Copper wire and process for making copper wire
US5071713A (en) Metal fibers obtained by bundled drawing
US4740666A (en) Electrical discharge machining electrode
JP5402517B2 (en) Copper material for plating, method for producing copper material for plating, and method for producing copper plated material
KR20140051734A (en) Wire electrode for electro discharge machining and thesame methode
KR100740188B1 (en) Electrode for machining a piece by electro-erosion and its process for production
JPS6311435B2 (en)
JP2001225228A5 (en)
CN102172994A (en) Metal composite wire, preparation method thereof and metal wire
US4101390A (en) Process for producing a lead dioxide coated anode from a lead electrolyte which contains dissolved bismuth
US2392871A (en) Chromium plating
US2288762A (en) Zinc coated ferrous article
CA1066650A (en) Electroplating aluminium stock
US4189356A (en) Method for plating copper on steel rods
EP0335989B1 (en) Insoluble anode made of lead alloy
US3947344A (en) Inert anode
JPS5871391A (en) Method for electroplating steel wire for welding in copper sulfate bath
JPS624479B2 (en)
JPH0571677B2 (en)
KR100481950B1 (en) An electrode wire production method for a graphite coating discharge processing
JP7276521B2 (en) thermal spray wire
JP2529557B2 (en) Lead alloy insoluble anode