JPS63114305A - Frequency multiplier - Google Patents

Frequency multiplier

Info

Publication number
JPS63114305A
JPS63114305A JP25925786A JP25925786A JPS63114305A JP S63114305 A JPS63114305 A JP S63114305A JP 25925786 A JP25925786 A JP 25925786A JP 25925786 A JP25925786 A JP 25925786A JP S63114305 A JPS63114305 A JP S63114305A
Authority
JP
Japan
Prior art keywords
fet
fundamental wave
input
power
input circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25925786A
Other languages
Japanese (ja)
Inventor
Masanori Iwatsuki
岩附 政典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP25925786A priority Critical patent/JPS63114305A/en
Publication of JPS63114305A publication Critical patent/JPS63114305A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Microwave Amplifiers (AREA)

Abstract

PURPOSE:To prevent multiplication efficiency from being lowered even with a small input power by connecting a drain of a GaAs field effect transistor (TR) FET to ground and adjusting the size, shape of the input circuit provided to a gate size and the arrangement of a fundamental wave trap provided to the source. CONSTITUTION:A fundamental wave trap 13 reflecting entirely the fundamental wave is connected to the source S of the FET 12 and it is arranged at a position maximizing the input reflection coefficient, the size and shape of the input circuit 11 are adjusted so as not to oscillate the FET 12, part of the reflected power is reflected in the gate in the input circuit 11 to increase the input power. Thus, even with a small input power, the multiplier whose multiplication efficiency is not decreased is obtained.

Description

【発明の詳細な説明】 〔概要〕 周波数逓倍器において、GaAs FETのドレインを
接地し、ゲート側に設けた入力回路の寸法、形状及びソ
ース側に設けた基本波トラップの配置位置を調整するこ
とにより、出力側に現れた基本波成分を入力端に帰還し
て再度、逓倍させることにより入力電力が小さい時でも
逓倍効率が低下しない様にしたものである。
[Detailed Description of the Invention] [Summary] In a frequency multiplier, the drain of a GaAs FET is grounded, and the dimensions and shape of the input circuit provided on the gate side and the placement position of the fundamental wave trap provided on the source side are adjusted. Therefore, the fundamental wave component appearing on the output side is fed back to the input end and multiplied again, thereby preventing the multiplication efficiency from decreasing even when the input power is small.

〔産業上の利用分野〕[Industrial application field]

本発明は周波数逓倍器5例えばGaAs FETを用い
たマイクロ波帯で使用する周波数逓倍器の改良に関する
ものである。
The present invention relates to an improvement of a frequency multiplier used in a microwave band using a frequency multiplier 5 such as a GaAs FET.

周波数が3〜12GHz程度のマイクロ波帯で使用する
周波数逓倍器の非線型素子として従来はダイオードが用
いられていた。しかし、ダイオードは動作の安定性や逓
倍効率が悪い等の欠点がある為、最近はGaAs FE
T(以下、 FETと省略する)が用いられて上記の欠
点が改善されたが、入力電力が少ない時でも逓倍効率が
低下しないことが要望されている。
Diodes have conventionally been used as nonlinear elements in frequency multipliers used in microwave bands with frequencies of about 3 to 12 GHz. However, diodes have drawbacks such as poor operation stability and multiplication efficiency, so recently GaAs FE
Although the above drawbacks have been improved by using T (hereinafter abbreviated as FET), it is desired that the multiplication efficiency does not decrease even when the input power is low.

〔従来の技術〕[Conventional technology]

第5図は従来例の構成図、第4図の点線の部分は逓倍特
性図を示す。以下、2逓倍器を例にして動作説明をする
FIG. 5 is a block diagram of a conventional example, and the dotted line portion in FIG. 4 shows a multiplication characteristic diagram. The operation will be explained below using a doubler as an example.

先ず、周波Brの基本波はサーキュレータ1及びスタブ
2と伝送線路3で構成された入力整合回路を介して、ソ
ース接地され、ゲートバイアス電圧がOv又はピンチオ
フ電圧付近に設定されたFET4に加えられる。
First, a fundamental wave of frequency Br is applied via an input matching circuit composed of a circulator 1, a stub 2, and a transmission line 3 to a FET 4 whose source is grounded and whose gate bias voltage is set to Ov or near the pinch-off voltage.

そこで、FETの非線型成分に依って基本波成分と高調
波成分が出力側で得られるが、λg/4の長さのスタブ
6、伝送路5で構成された基本波l・ランプで基本波成
分はドレイン側に戻されて再び2逓倍されると共に、伝
送路7、スタブ8で構成された出力整合回路で2逓倍波
成分のみが取り出されて出力される。
Therefore, the fundamental wave component and the harmonic component are obtained on the output side depending on the nonlinear component of the FET, but the fundamental wave component and the harmonic wave component are generated by the fundamental wave L and the lamp, which are composed of the stub 6 with a length of λg/4 and the transmission line 5. The component is returned to the drain side and doubled again, and only the doubled wave component is extracted and outputted by an output matching circuit composed of a transmission line 7 and a stub 8.

尚、入力整合回路は周波数fにおいてFETの入力側と
信号源との共役整合を取り、出力整合回路は周波数2f
においてFETの出力側と負荷との共役整合を取ってい
る。又、9,10はゲートバイアス電源及びドレイン電
源である。
The input matching circuit performs conjugate matching between the input side of the FET and the signal source at frequency f, and the output matching circuit performs conjugate matching at frequency 2f.
The output side of the FET and the load are conjugate matched. Further, 9 and 10 are a gate bias power supply and a drain power supply.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ここで、ソース接地の場合は基本波を加えることによっ
て流れるFETのドレイン電流の歪成分から必要な高調
波成分を取出しているので、基本波電力が小さくなると
FETは直線動作に近くなって2逓倍波電力は小さくな
る。
In the case of a common source, the necessary harmonic components are extracted from the distortion components of the flowing FET drain current by adding the fundamental wave, so when the fundamental wave power decreases, the FET becomes close to linear operation and doubles. The wave power becomes smaller.

即ち、入力電力をある程度大きくしなければ効率の良い
逓倍が行えず、第4図点線の様に入力電力が小さくなる
程、逓倍効率(2i!倍波電力/基零波電力)が低下す
ると云う問題点がある。
In other words, efficient multiplication cannot be performed unless the input power is increased to a certain extent, and as the input power becomes smaller, as shown by the dotted line in Figure 4, the multiplication efficiency (2i! harmonic power/fundamental zero wave power) decreases. There is a problem.

〔問題点を解決する為の手段〕[Means for solving problems]

上記の問題点は第1図の本発明の原理ブロック図に示す
周波数逓倍回路により解決される。
The above-mentioned problems are solved by the frequency multiplier circuit shown in the block diagram of the principle of the present invention shown in FIG.

11はドレインDに接地された電界効果トランジスタ1
2のゲートGに接続された入力回路であり、13はソー
スSに接続された基本波を全反射させる基本波トラップ
である。
11 is a field effect transistor 1 whose drain D is grounded.
2 is an input circuit connected to the gate G, and 13 is a fundamental wave trap connected to the source S that totally reflects the fundamental wave.

そして、該基本波トラップを入力反射係数が最大となる
様な位置に配置すると共に、該入力回路の寸法、形状を
該電界効果トランジスタが発振しない様に調整した。
The fundamental wave trap was placed at a position where the input reflection coefficient was maximized, and the dimensions and shape of the input circuit were adjusted so that the field effect transistor would not oscillate.

〔作用〕[Effect]

本発明はFET 12のドレインを接地し、ソースと基
本波トラップ13との間隔を調整することにより基本波
の反射電力P2を入力電力P1よりも大きくすることが
できる。そこで、この反射電力P2の一部を入力回路1
1でゲート側に反射させて入力電力を増加させる様にし
た。これのより詳細な説・明は下記に示す。
In the present invention, the reflected power P2 of the fundamental wave can be made larger than the input power P1 by grounding the drain of the FET 12 and adjusting the distance between the source and the fundamental wave trap 13. Therefore, a part of this reflected power P2 is transferred to the input circuit 1.
1 to increase the input power by reflecting it to the gate side. A more detailed explanation of this is provided below.

公知の様に、ドレイン接地したFETの場合、出力反射
係数rLのスミスチャートと入力反射係数r’ inの
絶対値が1となるl’ inの軌跡(安定円と云う)と
を古くと第2図(blに示す様に2つの円が交叉する。
As is well known, in the case of a FET with a grounded drain, the Smith chart of the output reflection coefficient rL and the locus of l' in where the absolute value of the input reflection coefficient r' in is 1 (referred to as a stability circle) are As shown in the figure (bl), the two circles intersect.

これに反して、ソース接地の場合はFETの特性により
スミスチャートの円と安定円とは交叉したり、交叉しな
かったりする。
On the other hand, when the source is grounded, the Smith chart circle and the stable circle may or may not intersect depending on the characteristics of the FET.

従って、後者の方が必要な場合にはFETを選択するこ
とが必要となる。
Therefore, if the latter is required, it is necessary to select an FET.

尚、スミスチャートの円周上はlr Ll = 1であ
り。
Incidentally, on the circumference of the Smith chart, lr Ll = 1.

安定円の円周上はl[’ 1nl= 1 、円内はlr
 inl> 1 、円外ハlr’ inl< i テ、
反射係数rはPz/P+ t?示されるが、FLl  
rlnは第2図(a)に示す様な点の反射係数である。
On the circumference of the stable circle, l[' 1nl= 1, inside the circle, lr
inl> 1, outer circle lr'inl< i te,
The reflection coefficient r is Pz/P+t? As shown, FLl
rln is the reflection coefficient at a point as shown in FIG. 2(a).

さて、逓倍動作の場合、基本周波数で考えると基本波ト
ラップで全反射するのでlr’tl−tとなる(スミス
チャートの円周上)。
Now, in the case of a multiplication operation, considering the fundamental frequency, it is totally reflected by the fundamental wave trap, so it becomes lr'tl-t (on the circumference of the Smith chart).

ことができるが、上記の様にFLlが1だから安定円内
の内側にあるスミスチャートの円周部分Aの所にtri
nr最大値が最大値となる所が存在する。
However, as mentioned above, since FLl is 1, tri is placed at circumferential part A of the Smith chart, which is inside the stability circle.
There are places where the nr maximum value is the maximum value.

次に、入力回路は長さ11のスタブ、l□の伝送ライン
で構成されているので、ゲートから信号源側をみた反射
係数をF、とすると発振条件は、lr羽r’in%−1
・・・・ (1)LF3 +、4r’ i n = 2
nπ ・・・・(2)ここで、n=0.±1.±2・で
、i8.乙r’inはrS+  Flnの位相を示す。
Next, since the input circuit consists of a stub with a length of 11 and a transmission line with a length of l□, if the reflection coefficient when looking from the gate to the signal source side is F, then the oscillation condition is lr wing r'in%-1
... (1) LF3 +, 4r' i n = 2
nπ...(2) Here, n=0. ±1. ±2·, i8. Otr'in indicates the phase of rS+Fln.

今、lr tnl> 1だからll+1!、2の選び方
に依って(11式、(2)式を満足する可能性があるが
、これを避ける為には11により(1)の条件を満足し
ない様にするか、12により(2)の条件を満足しない
様にすればよい。
Now, lr tnl> 1, so ll+1! , depending on how you choose 2, there is a possibility that equations (11 and (2) will be satisfied), but to avoid this, either use 11 to avoid satisfying condition (1), or use 12 to satisfy equation (2). All you have to do is make sure that the conditions are not satisfied.

但し、r、をあまり小さくすると入力電力p、が小さく
なって逓倍効率の向上が小さくなるので実際のr’s(
即ち、l、と22)は逓倍器の逓倍効率と安定性の兼ね
合いで実験的に決める。
However, if r is too small, the input power p will be small and the improvement in multiplication efficiency will be small, so the actual r's(
That is, l and 22) are determined experimentally based on the balance between the multiplication efficiency and stability of the multiplier.

即ち、FETのドレインを接地してFETの非直線性を
利用すると共に入力回路及び基本波トラップを調整して
実際の入力電力を増加させるので、入力電力が小さい時
でも逓倍効率が低下しない。
That is, since the drain of the FET is grounded to utilize the nonlinearity of the FET and the input circuit and fundamental wave trap are adjusted to increase the actual input power, the multiplication efficiency does not decrease even when the input power is small.

〔実施例〕〔Example〕

第3図は本発明の実施例の構成図を示す。尚、企図を通
じて同一符号は同一対象物を示す。以下。
FIG. 3 shows a block diagram of an embodiment of the present invention. Note that the same reference numerals refer to the same objects throughout the plan. below.

2逓倍器として第3図により説明する。This will be explained as a doubler with reference to FIG.

入力回路、出力整合回路及び基本波トラップはマイクロ
ストリップラインで構成し、特に基本波トラップ13は
λg/4のオープンスタブ132で実現しているので、
2逓倍波に対してはλg/2となりオープンスタブの影
響はない。
The input circuit, output matching circuit, and fundamental wave trap are composed of microstrip lines, and in particular, the fundamental wave trap 13 is realized by an open stub 132 of λg/4.
For the double wave, it is λg/2 and there is no effect of the open stub.

尚、112.131. 7は伝送路、111.8はスタ
ブ、lはサーキュレータを示す。又、 FETはパッケ
ージタイプ、チンブタイブ共にソースが接地される構造
となっている為、そのままではドレイン接地ができない
ので、バイアス電源14.15に負電圧を加えてリバー
スチャネル形のドレイン接地として動作させている。
In addition, 112.131. 7 is a transmission path, 111.8 is a stub, and l is a circulator. Also, since both package type and chip type FETs have a structure in which the source is grounded, the drain cannot be grounded as it is, so a negative voltage is applied to the bias power supply 14 and 15 to operate it as a reverse channel type drain grounded. There is.

次に、第4図の実線は本発明の逓倍特性で入力電力が小
さい部分で逓倍効率が向上している。
Next, the solid line in FIG. 4 shows the multiplication characteristics of the present invention, and the multiplication efficiency is improved in the portion where the input power is small.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明した様に本発明によれば、入力電力が小
さい所でも逓倍効率が低下しない逓倍器が得られると云
う効果がある。
As described in detail above, according to the present invention, there is an advantage that a multiplier can be obtained in which the multiplication efficiency does not decrease even when the input power is small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理ブロック図 第2図は第1図の動作説明図、 第3図は本発明の実施例の構成図、 第4図は逓倍特性図、 第5図は従来例の構成図を示す。 図において、 11は入力回路、 12は電界効果トランジスタ、 13は基本波トラップを示す。 本発明の潴、′(里プロ・・ノフ図 第  1  図 :     : r″s   口   II 第1図の動イ′F駁、B月図 第  2  図 N」核 μLと2訃謔 ジトイヒG月n゛ハ迂ご汐11,1つ才職tC−IO−
50 万7水塚1「刀  clB匁 通信特性図 34 図 従来例り構成灰 邦 5 m −2:
Figure 1 is a block diagram of the principle of the present invention. Figure 2 is an explanatory diagram of the operation of Figure 1. Figure 3 is a configuration diagram of an embodiment of the present invention. Figure 4 is a multiplication characteristic diagram. Figure 5 is a diagram of the conventional example. A configuration diagram is shown. In the figure, 11 is an input circuit, 12 is a field effect transistor, and 13 is a fundamental wave trap. The present invention's 潴,'(ripro-nof diagram Figure 1: : r''s mouth II The movement of Figure 1 'F', B Figure Figure 2 Figure N'nucleus μL and 2. n゛ha detour 11, one talented job tC-IO-
500,070 Mizuzuka 1 "Sword clB momme communication characteristics diagram 34 Figure conventional example configuration Haiku 5 m -2:

Claims (1)

【特許請求の範囲】 ドレインDが接地された電界効果トランジスタ(12)
のゲートGに入力回路(11)を、ソースSに基本波を
全反射させる基本波トラップ(13)をそれぞれ接続し
、 該基本波トラップを入力反射係数が最大になる様な位置
に配置すると共に、 該入力回路の寸法、形状を該電界効果トランジスタが発
振しない様にしたことを特徴とする周波数逓倍器。
[Claims] Field effect transistor (12) whose drain D is grounded
The input circuit (11) is connected to the gate G of . A frequency multiplier, characterized in that the size and shape of the input circuit are such that the field effect transistor does not oscillate.
JP25925786A 1986-10-30 1986-10-30 Frequency multiplier Pending JPS63114305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25925786A JPS63114305A (en) 1986-10-30 1986-10-30 Frequency multiplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25925786A JPS63114305A (en) 1986-10-30 1986-10-30 Frequency multiplier

Publications (1)

Publication Number Publication Date
JPS63114305A true JPS63114305A (en) 1988-05-19

Family

ID=17331590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25925786A Pending JPS63114305A (en) 1986-10-30 1986-10-30 Frequency multiplier

Country Status (1)

Country Link
JP (1) JPS63114305A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223849A (en) * 2004-02-09 2005-08-18 Sony Ericsson Mobilecommunications Japan Inc Distortion compensation apparatus and power amplifier with distortion compensation function
JP2017098664A (en) * 2015-11-19 2017-06-01 三菱電機株式会社 Frequency multiplier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223849A (en) * 2004-02-09 2005-08-18 Sony Ericsson Mobilecommunications Japan Inc Distortion compensation apparatus and power amplifier with distortion compensation function
JP2017098664A (en) * 2015-11-19 2017-06-01 三菱電機株式会社 Frequency multiplier
US9882551B2 (en) 2015-11-19 2018-01-30 Mitsubishi Electric Corporation Frequency multiplier

Similar Documents

Publication Publication Date Title
US3939430A (en) Integrated circuit, image and sum enhanced balanced mixer
US6259332B1 (en) Microwave oscillator for obtaining the low phase noise characteristic
JPH0732335B2 (en) High frequency amplifier
US5886595A (en) Odd order MESFET frequency multiplier
US7129804B2 (en) Reflection loss suppression circuit
JP2625431B2 (en) Frequency doubling oscillator operating at ultrahigh frequency
JP2646594B2 (en) Tuned oscillator
US6239663B1 (en) High-frequency oscillator using FETs and transmission lines
US6066997A (en) Frequency multiplier with fundamental wave reflection
WO2002023711A1 (en) Power oscillator
US4654887A (en) Radio frequency mixer
US5434522A (en) Frequency doubler circuit having a diode quad with a grounded port
JPS63114305A (en) Frequency multiplier
US4189682A (en) Microwave FET power circuit
JP3169972B2 (en) Waveguide-microstrip line converter
JPH0832376A (en) Microwave semiconductor amplifier
JPS6223211A (en) Dielectric resonator controlled oscillation multiplier
JPH0376604B2 (en)
JP2857997B2 (en) Frequency multiplier
US4484163A (en) Arrangement for biasing high-frequency active components
JPH1093349A (en) Frequency multiplier
JP2653088B2 (en) Frequency multiplier
JPS60178710A (en) Power amplifier
JPS59200504A (en) Frequency multiplier
JPH0535923B2 (en)