JPS63114282A - Superconducting switching element - Google Patents

Superconducting switching element

Info

Publication number
JPS63114282A
JPS63114282A JP61260918A JP26091886A JPS63114282A JP S63114282 A JPS63114282 A JP S63114282A JP 61260918 A JP61260918 A JP 61260918A JP 26091886 A JP26091886 A JP 26091886A JP S63114282 A JPS63114282 A JP S63114282A
Authority
JP
Japan
Prior art keywords
thin film
superconducting
thin
film
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61260918A
Other languages
Japanese (ja)
Inventor
Yasutaka Tamura
泰孝 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61260918A priority Critical patent/JPS63114282A/en
Publication of JPS63114282A publication Critical patent/JPS63114282A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain a high current amplification factor, by contacting a thin superconductor film with a thin normal conductor film, and selecting the value of a transfer length so that it is less than the thickness of the thin superconductor film. CONSTITUTION:The value of a transfer length (Lt) is expressed by an expression Lt=(Rc/R(-))<1/2>, where Rc is a unit area contact resistance between a thin superconductor film 5 and a thin normal conductor film 6, and R(-) is the surface resistance of the thin normal conductor film 6. The value Lt is selected to be the thickness (d) or less of the thin superconductor film 5. When, e.g., 10<-9>OMEGAcm<2> is obtained as the contact resistance Rc and the surface resistance R(-) is 10OMEGA/square, the value of LT is 0.1 mum, which is very small. Since the Lt is very small, the current between the thin superconductor film 5 and the thin normal conductor film 6 flows in an extremely concentrated manner and a current density is small, the parameter of the thin superconductor film 5 is a superconductivity order can be made small. The superconducting characteristics of the thin superconductor film 5 can be weakened. Thus a high amplification factor can be obtained.

Description

【発明の詳細な説明】 〔概要〕 本発明は超伝導を利用した電子的スイッチング素子にお
いて、 起転1!薄膜と常伝導W/J膜とを接触させると共に、
いわゆるトランスファーレングスの値を超伝導薄膜の膜
厚以下の値に選定することにより、高い電流増幅率が得
られるようにしたものである。
[Detailed Description of the Invention] [Summary] The present invention provides an electronic switching element that uses superconductivity. While bringing the thin film into contact with the normal conducting W/J film,
By selecting the value of the so-called transfer length to be less than or equal to the thickness of the superconducting thin film, a high current amplification factor can be obtained.

〔産業上の利用分野〕[Industrial application field]

本発明は超伝導スイッチング素子に係り、特に超伝導を
利用した電子的スイッチング素子に関する。
The present invention relates to a superconducting switching device, and more particularly to an electronic switching device using superconductivity.

超伝導現象は抵抗ぜ口の理想的な導体を与えるため、低
消費電力のスイッチング回路を作る上で有利である。こ
のようなスイッチング回路を実現するには、高い電流増
幅率をもつ超伝導スイッチング素子が必要とされる。
Superconductivity provides an ideal conductor for resistor gaps, which is advantageous for creating low-power switching circuits. To realize such a switching circuit, a superconducting switching element with a high current amplification factor is required.

〔従来の技術〕[Conventional technology]

従来の超伝導スイッチング回路の構造の一例を第3図(
R略図)に示す。図中、1及び2は夫々超伝導Ti極で
、それらの間に極薄の絶縁膜3がトンネルバリアとして
介在せしめられている。
An example of the structure of a conventional superconducting switching circuit is shown in Figure 3 (
R diagram). In the figure, 1 and 2 are superconducting Ti electrodes, and an extremely thin insulating film 3 is interposed between them as a tunnel barrier.

この超伝導スイッチング素子はトンネル型のジョセフソ
ン素子で、極低温に冷却した状態において超伝導電極1
及び2間に電流を流すと、しきい値以下の電流では電圧
を発生せず超伝導状態にあり、しきい値以上の電Rぐは
電圧を発生して電圧状態ヘスイップする。
This superconducting switching element is a tunnel-type Josephson device, and the superconducting electrode 1 is cooled to an extremely low temperature.
When a current is passed between R and 2, when the current is below the threshold value, no voltage is generated and the superconducting state is maintained, and when the current is above the threshold value, a voltage is generated and the superconducting state is switched.

(発明が解決しようとする問題点) ジョセフソン素子は本質的に2端子素子であるため、方
向性がなく、電流増幅率を得るためには複数個のジョセ
フソン素子を組み合わせた回路を使用する。しかし、こ
のような回路で得られる電流増幅率は、せいぜい数倍程
度である。これはジョセフソン素子のバラツキ、雑音に
対して回路が誤動作しないように、回路設計に余裕を持
つ必要があることによる。
(Problem to be solved by the invention) Since a Josephson element is essentially a two-terminal element, it has no directionality, and in order to obtain a current amplification factor, a circuit that combines multiple Josephson elements is used. . However, the current amplification factor obtained with such a circuit is only several times higher at most. This is because it is necessary to provide a margin in the circuit design to prevent the circuit from malfunctioning due to variations in Josephson elements and noise.

このように、従来の超伝導スイッチング素子であるジョ
セフソン素子は、電流増幅率の大なる回路の実現が困難
で、このために複雑な機能を持つ回路を設計する上で不
便であるという問題点があった。
As described above, the Josephson element, which is a conventional superconducting switching element, has the problem that it is difficult to realize a circuit with a large current amplification factor, which makes it inconvenient to design a circuit with complex functions. was there.

本発明は上記の点に鑑みて創作されたもので、電流増幅
率の大なる超伝導スイッチング素子を提供することを目
的とする。
The present invention was created in view of the above points, and an object of the present invention is to provide a superconducting switching element with a large current amplification factor.

〔問題点を解決するための手段〕[Means for solving problems]

第1図(A)、(B)は夫々本発明の原理構造を示す側
面図及び平面図である。図において、5は超伝導薄膜で
、6は常伝導薄膜である。超伝導薄膜5と言伝導薄II
!J6との間には第1図(B)に斜線を付して示した絶
縁膜(例えば5fOz)3(第1図(A)では図示を省
略しである)が設けられており、絶縁膜7に穿設された
窓8を通して言伝34薄膜2の一部が超伝導簿膜5に当
接せしめられている。
FIGS. 1A and 1B are a side view and a plan view, respectively, showing the basic structure of the present invention. In the figure, 5 is a superconducting thin film and 6 is a normal conducting thin film. Superconducting thin film 5 and conducting thin film II
! An insulating film (for example, 5fOz) 3 (not shown in FIG. 1(A)) shown with diagonal lines in FIG. 1(B) is provided between J6 and the insulating film. A part of the thin film 2 of the transmission 34 is brought into contact with the superconducting film 5 through a window 8 formed in the superconducting film 7.

ここで、超伝導薄膜5と常伝導薄膜6との間の単位面8
!1接触抵抗をRC,常伝導薄膜6の面抵抗をR6とす
ると、 Lt −(πτ;γW丁 で表わされる1−tの値は、超伝導薄膜5の膜厚d以下
の値に選定されている。
Here, the unit surface 8 between the superconducting thin film 5 and the normal conducting thin film 6 is
! 1. If the contact resistance is RC and the sheet resistance of the normal conductive thin film 6 is R6, then the value of 1-t expressed by Lt - (πτ; γW) is selected to be less than or equal to the thickness d of the superconducting thin film 5. There is.

〔作用〕[Effect]

超伏s薄膜5はその両端間に超伝導電流が流され、常伝
導薄膜6はその一端より電流が供給される。常伝導薄膜
6の一端より超伝導薄膜5へ電流を流すと、この電流は
両薄膜5及び6が接触している部分のうち、極めて狭い
領域9に集中して流れる。
A superconducting current is passed between both ends of the superconducting thin film 5, and a current is supplied from one end of the normal conducting thin film 6. When a current is applied to the superconducting thin film 5 from one end of the normal conducting thin film 6, the current flows in a concentrated manner in an extremely narrow region 9 where the two thin films 5 and 6 are in contact.

上記の電流が注入される領域9の幅はいわゆるトランス
ファーレングスと称され、前記LTの式で与えられる。
The width of the region 9 into which the above-mentioned current is injected is called a transfer length, and is given by the above-mentioned equation of LT.

ここで、前記接触抵抗Rcは例えば10−9Ωdが得ら
れ、前記面抵抗R8が1oΩ/口とすると、LTの値は
0.1μ慣と極めて小さな値となる。
Here, if the contact resistance Rc is, for example, 10<-9 >[Omega]d, and the surface resistance R8 is 1 o[Omega]/mouth, then the value of LT is an extremely small value of 0.1 [mu]m.

従って、L、 Tが極めて小さく、超伝導i1!II5
と常伝導薄膜6との間の電流は極めて集中して流れ、電
流密度が小であるため、超伝導薄膜5の超伝導オーダー
パラメータを小さくすることができ、超伏34薄膜5の
超伝導特性を弱めることができる。
Therefore, L and T are extremely small and superconducting i1! II5
Since the current flows between the normal conductive thin film 6 and the superconducting thin film 6 in an extremely concentrated manner, and the current density is small, the superconducting order parameter of the superconducting thin film 5 can be made small, and the superconducting properties of the superconducting thin film 5 can be reduced. can be weakened.

なお、言伝導薄WA6と超伝導薄膜5との間に流す電流
がしきい値以上になると、超伝導it’la5は電圧状
態ヘスイッチする。
Note that when the current flowing between the conductive thin film WA6 and the superconducting thin film 5 exceeds a threshold value, the superconducting it'la5 switches to a voltage state.

〔実施例〕〔Example〕

第2図は本発明の一実施例の構造断面図を丞寸。 FIG. 2 is a cross-sectional view of the structure of one embodiment of the present invention.

同図中、11は超伝導薄膜で、ニオブ(Nb )からな
る。また、12は常伝1′?aFJで、例えば膜厚11
00nのモリブデン(Mo)より構成されている。
In the figure, 11 is a superconducting thin film made of niobium (Nb). Also, 12 is Joden 1'? For aFJ, for example, the film thickness is 11
00n molybdenum (Mo).

言伝導薄!II;412はその一部が超伝導薄膜11土
に当接しており、かつ、他の部分が超伝導d膜7上にス
パッタ等で堆積された5tOzよりなる絶縁膜13上に
当接している。また、超伝導薄膜11の両端11a、1
1bの膜厚は1μmであるのに対し、常伝導薄膜12と
の当接部分の膜厚は例えば200nmと極めて薄く形成
されており、両端11a、11b間に電流が流される。
Words are weak! II; A part of 412 is in contact with the superconducting thin film 11 soil, and the other part is in contact with the insulating film 13 made of 5 tOz deposited on the superconducting d film 7 by sputtering or the like. . Further, both ends 11a, 1 of the superconducting thin film 11
The film thickness of 1b is 1 μm, whereas the film thickness of the contact portion with normal conductive thin film 12 is formed to be extremely thin, for example, 200 nm, and a current is passed between both ends 11a and 11b.

また、言伝導薄g112は引出し電極としての超伝導薄
膜14に接続され、超伝導薄膜14を通した電流が供給
される。
Further, the conductive thin film g112 is connected to the superconducting thin film 14 as an extraction electrode, and a current is supplied through the superconducting thin film 14.

常伝導Mli12に電流を供給すると、言伝S薄WA1
2の極めて狭い領域を介して超伝導薄膜11に電流が制
御電流として注入される。これにより、超伝導薄膜11
の超伝導オーダーパラメータを小さくできるから、小な
る値の上記制御電流で端子11a、11b間に流し得る
超伝導電流の大きさを小さくし、殆どゼロにすることが
できる。そのため、常伝導簿膜12に流すべき電流は、
この電流がゼロのときに端子11a、11b間に流れ得
る超伏¥J電流の最大値の1/10以下にすることが容
易である。
When a current is supplied to normal conduction Mli12, Genden S thin WA1
A current is injected into the superconducting thin film 11 as a control current through an extremely narrow region 2. As a result, the superconducting thin film 11
Since the superconducting order parameter of can be made small, the magnitude of the superconducting current that can be passed between the terminals 11a and 11b can be reduced to almost zero with the control current having a small value. Therefore, the current that should be passed through the normal conduction membrane 12 is:
When this current is zero, it is easy to make it 1/10 or less of the maximum value of the super low current that can flow between the terminals 11a and 11b.

なお、本発明は上記の実施例に限定されるものではなく
、前記トランスファーレングスLtの値は通常1μm以
下であるが、超伝導薄膜5の膜厚d以下であればよい。
Note that the present invention is not limited to the above embodiments, and the value of the transfer length Lt is usually 1 μm or less, but may be as long as the thickness d of the superconducting thin film 5 or less.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明によれば、超伏**aと常伝導薄膜
とを接触させて極めて狭い領域に集中して電流が流れる
ようにし、超伝導薄膜の超伝導オーダーパラメータを小
さくづるようにしたので、言伝34薄膜の超伝導特性を
制御電流(常伝導薄膜を通して超伝導薄膜に流す電流)
の小なる変化によって大きく変化させることができ、従
って高い電流増幅率を得ることができ、またトランスフ
ァーレングスLtは前記接触抵抗RCと面抵抗R。
As described above, according to the present invention, a superconductor **a and a normal conductive thin film are brought into contact with each other so that current flows concentrated in an extremely narrow area, so that the superconducting order parameter of the superconducting thin film is reduced. Therefore, the superconducting properties of the Genden 34 thin film can be determined using the control current (current flowing through the normal conducting thin film to the superconducting thin film).
It is possible to make a large change with a small change in , and therefore a high current amplification factor can be obtained, and the transfer length Lt is determined by the contact resistance RC and the surface resistance R.

によって決まるので、常伝導薄膜と超伏導薄++aとの
接触部分は比較的大きな面積でもよいので、サブミクロ
ン精度の超精密加工を行なうことなく、注入電流の電流
密度を上げることができる等の特長を有するものである
Since the contact area between the normal conducting thin film and the superconducting thin film ++a can be relatively large, it is possible to increase the current density of the injected current without performing ultra-precision machining with submicron precision. It has certain characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理構造図、 第2図は本発明の一実施例を示す構造断面図、第3図は
従来の超伝導スイップング素子の一例を示す斜視図であ
る。 図において、 5.11.14は超伝導薄膜、 6.12は常伝導簿膜、 7.13は絶縁膜、 9は電流が注入される領域、 dは超伝導薄膜の膜厚である。 本発明の原理構造図 第1図 本発明の一実施例の構造断面図 第2図 第3図
FIG. 1 is a structural diagram of the principle of the present invention, FIG. 2 is a structural sectional view showing an embodiment of the present invention, and FIG. 3 is a perspective view showing an example of a conventional superconducting switching element. In the figure, 5.11.14 is a superconducting thin film, 6.12 is a normal conducting film, 7.13 is an insulating film, 9 is a region where current is injected, and d is the thickness of the superconducting thin film. Principle structural diagram of the present invention Figure 1 Structural sectional view of an embodiment of the present invention Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 その両端間に電流が流される超伝導薄膜(5)と、 該超伝導薄膜(5)に一部が当接されており、その一端
より該当接部に電流が流される常伝導薄膜(6)とより
なり、 次式 Lt=√(Rc/Ro) (ただし、Rcは該超伝導薄膜(5)と常伝導薄膜(6
)との間の単位面積接触抵抗、Roは該常伝導薄膜(6
)の面抵抗) で表わされるLtの値を、該超伝導薄膜(5)の膜厚(
d)以下の値に選定して構成したことを特徴とする超伝
導スイッチング素子。
[Claims] A superconducting thin film (5) through which a current is passed between both ends thereof, and a portion of which is in contact with the superconducting thin film (5), and a current is passed through the corresponding contact portion from one end of the superconducting thin film (5). The normal conducting thin film (6) and the following formula Lt=√(Rc/Ro) (where Rc is the superconducting thin film (5) and the normal conducting thin film (6)
) is the unit area contact resistance, Ro, of the normal conducting thin film (6
) is the sheet resistance of the superconducting thin film (5).
d) A superconducting switching element characterized by being configured with the following values selected.
JP61260918A 1986-10-31 1986-10-31 Superconducting switching element Pending JPS63114282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61260918A JPS63114282A (en) 1986-10-31 1986-10-31 Superconducting switching element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61260918A JPS63114282A (en) 1986-10-31 1986-10-31 Superconducting switching element

Publications (1)

Publication Number Publication Date
JPS63114282A true JPS63114282A (en) 1988-05-19

Family

ID=17354562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61260918A Pending JPS63114282A (en) 1986-10-31 1986-10-31 Superconducting switching element

Country Status (1)

Country Link
JP (1) JPS63114282A (en)

Similar Documents

Publication Publication Date Title
JPS6010451B2 (en) Switching circuit using Josephson effect
JPS63114282A (en) Superconducting switching element
JP3231742B2 (en) Single-electron tunnel transistor using stacked structure
JP3123164B2 (en) Superconducting device
JPH0783144B2 (en) Jyosefson device using oxide superconductor
JPS63308975A (en) Current control element
JPH01101676A (en) Superconducting transistor
JPS6288381A (en) Superconducting switching apparatus
JPS59208873A (en) Semiconductor device
JPS60793B2 (en) Logic circuit using Josephson device
JP2713304B2 (en) Semiconductor device with superconducting wiring
JP2931725B2 (en) Superconducting element
JPS63224374A (en) Superconducting element
JP2730368B2 (en) Superconducting field effect element and method for producing the same
JPS62217679A (en) Magnetic field coupling type josephson element
JP3212088B2 (en) Superconducting device
Sweeny et al. Materials and fabrication processes for Nb-Si-Nb SNAP devices
JPH09312424A (en) Superconducting transistor
JPS63311778A (en) Superconducting device
JPH01290271A (en) Josephson transistor
JPH01313977A (en) Josephson junction element
JPH0744294B2 (en) Superconducting switching element
JPH01220483A (en) Superconducting electronic device
JPS6053966B2 (en) josephson logic gate
JPS60246601A (en) Resistor for superconductive circuit