JPH01220483A - Superconducting electronic device - Google Patents

Superconducting electronic device

Info

Publication number
JPH01220483A
JPH01220483A JP63044377A JP4437788A JPH01220483A JP H01220483 A JPH01220483 A JP H01220483A JP 63044377 A JP63044377 A JP 63044377A JP 4437788 A JP4437788 A JP 4437788A JP H01220483 A JPH01220483 A JP H01220483A
Authority
JP
Japan
Prior art keywords
superconducting
superconductive
terminal
current
transition temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63044377A
Other languages
Japanese (ja)
Inventor
Takahiro Nakayama
隆博 中山
Masahiro Kasai
葛西 昌弘
Toshiyuki Ono
俊之 大野
Yuzo Kozono
小園 裕三
Masanobu Hanazono
雅信 華園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63044377A priority Critical patent/JPH01220483A/en
Publication of JPH01220483A publication Critical patent/JPH01220483A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To implement diode operation between superconductive materials, by bonding a plurality of superconductive materials having different superconductive transition temperature, and making a current flow at a specified temperature. CONSTITUTION:A superconductive material 1 having a superconducting transition temperature TA and a superconductive material 1 having a superconducting transition temperature TB are bonded, and a terminal a3 and a terminal b4 are provided. A current is made to flow from the terminal a3 to the terminal b4 through a superconductive element in this structure at temperature TA<T< TB. Then, the superconductive material 2 indicates a normal conductive state, and the superconductive element indicates a high resistance. When a current is made to flow from the terminal b4 to the terminal a3, the wave function of electrons in the superconducting state is inputted into the superconductive material 2 from the superconductive material 1. As a result, the superconductive material that is formed in a sufficiently thin pattern becomes the superconducting state, and almost no resistance is provided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子デバイスに係り、特にダイオード的な動
作に好適な素子、及びトランジスタ的な動作に好適な素
子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to electronic devices, and particularly to an element suitable for diode-like operation and an element suitable for transistor-like operation.

(従来の技術〕 超伝導状態電子の波動関数が他領域にしみ出すことに関
することの報告があり、ジョセフソン素子として実用さ
れている。又、固体物理110 Q 、22゜Nα2.
p47に記載のように、半導体と共に用いてトランジス
タ的動作をするデバイスが考案されている。
(Prior art) It has been reported that the wave function of superconducting electrons leaks into other regions, and it has been put to practical use as a Josephson device.Also, Solid State Physics 110 Q, 22°Nα2.
As described in p. 47, devices have been devised that operate like transistors when used in conjunction with semiconductors.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の報告は、超伝導材料同志を接合したダイオード的
、トランジスタ的動作をする構造について考案していな
かった。
Previous reports did not consider a structure in which superconducting materials are bonded together to operate like a diode or transistor.

本発明の目的は超伝導材料を用いたダイオード的、トラ
ンジスタ的動作をする電子デバイスを提供することにあ
る。
An object of the present invention is to provide an electronic device using a superconducting material that operates like a diode or transistor.

〔課題を解決するための手段〕[Means to solve the problem]

超伝導転移温度TAの超伝導材料Aと、超伝導転移温度
Taの超伝導材料Bを接合し、TA〈T<TBなる温度
Tで動作させることによりダイオード的動作が実現され
る。
A diode-like operation is realized by joining a superconducting material A having a superconducting transition temperature TA and a superconducting material B having a superconducting transition temperature Ta and operating them at a temperature T such that TA<T<TB.

又、上記構造において材料B中に別端子から電流を流す
ことによって材料A及びBを通り抜ける電流値を制御す
ることが可能であり、トランジスタ的動作が実現される
Further, in the above structure, by flowing a current into material B from a separate terminal, it is possible to control the value of the current passing through materials A and B, and transistor-like operation is realized.

〔作用〕[Effect]

第1図にダイオード的動作をするデバイスの構造を示す
。符号1で示す超伝導転移温度1゛^の超伝導材料Aと
、符号2で示す例えば100Å以下程度の厚さの超伝導
転移温度Taの超伝導材料Bを接合し、符号3で示す端
子a、符号4で示す端子すを設ける。TA< T < 
T Bなる温度Tにおいては、aからb方向に電流を流
す場合(fl!子がbからa方向に流れる場合)には、
材料Bは常伝導状態であり、素子は高抵抗を示す。bか
らa方向に電流を流す場合(電子がaからb方向に流れ
る場合)には、材料Aから超伝導状態の電子の波動関数
が材料Bにしみ出し、その結果、十分な薄さに形成され
た材料Bは超伝導状態となり、はとんど抵抗を持たなく
なる。この素子の動作は、第2図に示した測定回路によ
ると、電圧Vに対して電流Iは第3図に示した様になる
。O< V < V Nにおいて、回路を流れる電流1
は外部抵抗Roでのみ決まり、I=V/Roである。電
圧を上げることにより電流値が大きくなりすぎる即ちV
>VN。
FIG. 1 shows the structure of a device that operates like a diode. A superconducting material A with a superconducting transition temperature of 1゛^, denoted by the symbol 1, and a superconducting material B having a superconducting transition temperature of Ta with a thickness of about 100 Å or less, denoted by the symbol 2, are joined together, and a terminal a, denoted by the symbol 3, is formed. , a terminal indicated by reference numeral 4 is provided. TA<T<
At a temperature T of T B, when a current flows from a to b direction (fl! child flows from b to a direction),
Material B is in a normal conducting state and the device exhibits high resistance. When a current flows from b to a direction (electrons flow from a to b direction), the wave function of superconducting electrons from material A seeps into material B, resulting in a sufficiently thin layer. Material B becomes superconductive and has almost no resistance. According to the measuring circuit shown in FIG. 2, the operation of this element is such that the current I with respect to the voltage V is as shown in FIG. 3. For O < V < V N, the current flowing through the circuit 1
is determined only by the external resistance Ro, and I=V/Ro. By increasing the voltage, the current value becomes too large, that is, V
>VN.

I > I Nになると、材料Aの超伝導はこわれ、常
伝導となり、結局回路に流れる電流はI =V/(Ro
+ (材料Aの抵抗)+(材料Bの抵抗))となる、1
!圧が負の領域では、材料Bは常に常伝導であるため、
回路に流れる電流は、I = V / (R。
When I > I N, the superconductivity of material A is broken and it becomes normal conduction, and the current flowing through the circuit is I = V/(Ro
+ (Resistance of material A) + (Resistance of material B)), 1
! In the negative pressure region, material B is always a normal conductor, so
The current flowing in the circuit is I = V / (R.

+(材料Bの抵抗))である。又、第3図には記してい
ないが、電流値がINより小さくなると、正方向と同様
に、材料Aの常伝導転移が小じるため、それより低い電
圧における電流値は、I=V/ (Ro+ (Aの抵抗
)+(Bの抵抗))となる。
+(resistance of material B)). Also, although not shown in Figure 3, when the current value becomes smaller than IN, the normal conduction transition of material A decreases as in the positive direction, so the current value at lower voltages is I = V. / (Ro+ (Resistance of A) + (Resistance of B)).

次に、第4図に、トランジスタ的動作をするデバイスの
構造を示す。第1図に示したデバイス構造に加えて、材
料B中に電流を流す端子C(符号5)、端子d(符号6
)を付したものである。端子Cと端子6間に電流を流す
ことによって、波動関数のもれ出しによって材料B中に
生じる超電導領域の広さを変えることによって、端子a
と端子す間の抵抗値を変化させることができる。即ち、
第5図に示した回路を用いると、端子Cと端子6間の電
流Iciによって、端子aと端子す間の電流Iabを第
6図に示した様に変えることができる。
Next, FIG. 4 shows the structure of a device that operates like a transistor. In addition to the device structure shown in FIG.
) is attached. By passing a current between terminals C and 6, the width of the superconducting region generated in material B due to the leakage of the wave function is changed.
The resistance value between the terminal and the terminal can be changed. That is,
When the circuit shown in FIG. 5 is used, the current Iab between the terminals a and 2 can be changed as shown in FIG. 6 by the current Ici between the terminals C and 6.

〔実施例〕〔Example〕

以下、本発明の一実施例を第7図により説明する。第7
図の超伝導素子は第4図の素子において。
An embodiment of the present invention will be described below with reference to FIG. 7th
The superconducting device shown in the figure is the same as the device shown in FIG.

端子すとdを共用化したもので、動作としては第4図の
素子と同じである。第7図の回路は増幅回路の一種であ
って、バイアス電圧Vbsasを用いることによって、
第8図に示したようにゼロVからVblasまでの領域
で、入力電圧Vtnputに対してV o u i□、
の単調増加的制御が可能である。
The terminals 1 and d are shared, and the operation is the same as that of the device shown in FIG. The circuit shown in FIG. 7 is a type of amplifier circuit, and by using the bias voltage Vbsas,
As shown in FIG. 8, in the region from zero V to Vblas, V o u i□,
Monotonically increasing control is possible.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ダイオード及びトランジスタ的動作を
する超伝導素子が得られる。
According to the present invention, a superconducting element that operates like a diode and a transistor can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はダイオード的動作をする素子の構造を示す概略
図、第2図は第1図素子の動作測定回路図、第3図は第
2図測定回路により得られる動作特性図である。 第4図はトランジスタ的動作をする素子の構造を示す概
略図、第5同は第4図素子の動作測定回路図、第6図は
、第5図測定回路により得られる動作特性図である。 第7図は第4図素子の3端子化したものを用いた増幅回
路図であり、第8図は第7図の回路の動作特性図である
。 1・・・超伝導材料A、2・・・超伝導材料B、3・・
・端子第1囚 第2日 り 躬4−図 (11す28り
FIG. 1 is a schematic diagram showing the structure of an element that operates like a diode, FIG. 2 is a circuit diagram for measuring the operation of the element in FIG. 1, and FIG. 3 is a diagram of operating characteristics obtained by the measuring circuit in FIG. 2. FIG. 4 is a schematic diagram showing the structure of an element that operates like a transistor, FIG. 5 is a circuit diagram for measuring the operation of the element in FIG. 4, and FIG. 6 is a diagram of operating characteristics obtained by the measuring circuit in FIG. FIG. 7 is a diagram of an amplifier circuit using a three-terminal version of the element shown in FIG. 4, and FIG. 8 is a diagram showing the operating characteristics of the circuit shown in FIG. 1...Superconducting material A, 2...Superconducting material B, 3...
・Terminal 1st Prisoner 2nd Day Trip 4-Figure (11th and 28th

Claims (1)

【特許請求の範囲】 1、超伝導転移温度T_Aの超伝導材料Aと、超伝導転
移温度T_Bの超伝導材料Bとを接合した構造を有し、
T_A<T<T_Bなる温度Tにおいて、電流が材料A
から材料B方向へ流れる場合と材料Bから材料A方向へ
流れる場合とでは、構造全体として異なつた抵抗値を持
つことを特徴とする電子デバイス。 2、特許請求の範囲第1項において、前記超伝導材料と
して超伝導セラミックスを用いることを特徴とする電子
デバイス。 3、超伝導転移温度T_Aの超伝導材料Aと、超伝導転
移温度T_Bの超伝導材料Bとを接合した構造を有し、
T_A<T<T_Bなる温度Tにおいて、材料AとBを
通つて抜ける電流の大小を、別端子を用いて導入され且
つ材料Bを通り抜ける電流の大小によつて制御すること
を特徴とする電子デバイス。 4、特許請求の範囲第3項において、超伝導材料として
超伝導セラミックスを用いることを特徴とする電子デバ
イス。
[Claims] 1. It has a structure in which a superconducting material A having a superconducting transition temperature T_A and a superconducting material B having a superconducting transition temperature T_B are joined,
At a temperature T such that T_A<T<T_B, the current flows through the material A.
An electronic device characterized in that the entire structure has different resistance values when flowing from material B toward material B and when flowing from material B toward material A. 2. An electronic device according to claim 1, characterized in that superconducting ceramics are used as the superconducting material. 3. It has a structure in which a superconducting material A having a superconducting transition temperature T_A and a superconducting material B having a superconducting transition temperature T_B are joined,
An electronic device characterized in that, at a temperature T such that T_A<T<T_B, the magnitude of the current passing through materials A and B is controlled by the magnitude of the current introduced using separate terminals and passing through material B. . 4. An electronic device according to claim 3, characterized in that superconducting ceramics are used as the superconducting material.
JP63044377A 1988-02-29 1988-02-29 Superconducting electronic device Pending JPH01220483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63044377A JPH01220483A (en) 1988-02-29 1988-02-29 Superconducting electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63044377A JPH01220483A (en) 1988-02-29 1988-02-29 Superconducting electronic device

Publications (1)

Publication Number Publication Date
JPH01220483A true JPH01220483A (en) 1989-09-04

Family

ID=12689813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63044377A Pending JPH01220483A (en) 1988-02-29 1988-02-29 Superconducting electronic device

Country Status (1)

Country Link
JP (1) JPH01220483A (en)

Similar Documents

Publication Publication Date Title
JPH01220483A (en) Superconducting electronic device
JPS63308975A (en) Current control element
JPH01101676A (en) Superconducting transistor
US3916432A (en) Superconductive microstrip exhibiting negative differential resistivity
JPS63224374A (en) Superconducting element
JP2867956B2 (en) Superconducting transistor
JP3026482B2 (en) Superconducting element, method of manufacturing and operating method
JPS5933985B2 (en) semiconductor equipment
JP3221037B2 (en) Current modulator
JP2768276B2 (en) Oxide superconducting junction element
JPH065937A (en) Nonlinear characteristic element
JPH0294677A (en) Superconducting schottky junction structure and superconducting device
Pridham Solid-State Circuits: Electrical Engineering Divison
JPS63283177A (en) Superconducting transistor
JPH01290271A (en) Josephson transistor
JPS6053966B2 (en) josephson logic gate
JPH0590652A (en) Superconducting device
JPH02199880A (en) Superconducting switch
JPS63211688A (en) Superconducting transistor
JPH05226712A (en) Superconductive element
JPH0232571A (en) Superconductor control device
JPH04116875A (en) Superconducting element and its manufacture
JPS62217679A (en) Magnetic field coupling type josephson element
JPS63311778A (en) Superconducting device
JPS63239878A (en) Superconducting transistor