JPS63113388A - Scintillator material - Google Patents

Scintillator material

Info

Publication number
JPS63113388A
JPS63113388A JP61305254A JP30525486A JPS63113388A JP S63113388 A JPS63113388 A JP S63113388A JP 61305254 A JP61305254 A JP 61305254A JP 30525486 A JP30525486 A JP 30525486A JP S63113388 A JPS63113388 A JP S63113388A
Authority
JP
Japan
Prior art keywords
density
scintillator
rare earth
scintillator material
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61305254A
Other languages
Japanese (ja)
Other versions
JPH0516756B2 (en
Inventor
Yasuo Tsukuda
佃 康夫
Shiyouki Yamada
山田 敞馗
Atsushi Suzuki
敦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Healthcare Manufacturing Ltd
Proterial Ltd
Original Assignee
Hitachi Ltd
Hitachi Metals Ltd
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Metals Ltd, Hitachi Medical Corp filed Critical Hitachi Ltd
Publication of JPS63113388A publication Critical patent/JPS63113388A/en
Publication of JPH0516756B2 publication Critical patent/JPH0516756B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To achieve a higher emission output, by using a rare earth oxysulfide powder containing a sintering assistant added as the material to sinter it by the hot hydrostatic pressing method. CONSTITUTION:A sintering assistant is added to a rare earth oxysulfide powder and the mixture is sintered by the hot hydrostatic pressing method to obtain a scintillator material as a light transmitting and highly dense sintered compact. The addition of the sintering assistant is preferably 0.001-10wt%. The rare earth oxysulfide is as given, for example, by the composition formula (Gd(1-x-y) PrxCey)2O2S:(F) or (Cl) with 3X10<-6=x<=0.2, 1X10<-6=y<=5X10<-3>.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、医療機器、科学分析装置等に組み込まれて使
用される放射線検出用シンチレータ材料に関するもので
あり、特に、X線CT用シンチレータとして使用するの
に適した、希土類オキシ硫化物を主成分とするシンチレ
ータ材料に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a scintillator material for radiation detection that is used by being incorporated into medical equipment, scientific analysis equipment, etc., and in particular, as a scintillator material for X-ray CT. The present invention relates to rare earth oxysulfide-based scintillator materials suitable for use.

〔従来の技術〕[Conventional technology]

従来、シンチレーション検出器としては、キセノン (
X e)電離箱が用いられていた。  Xe電離箱は実
用性の点では高い評価が与えられているが、高価な低振
動スキャンナーを必要とし、また連続使用時に不安定に
なるという問題点があった。
Conventionally, scintillation detectors use xenon (
X e) An ionization chamber was used. Although the Xe ionization chamber has been highly evaluated in terms of practicality, it requires an expensive low-vibration scanner and has the problem of becoming unstable during continuous use.

このため、近年、単結晶のシンチレータ材料や、シンチ
レータ材料粉末を樹脂中に分散・固化した樹脂・粉末複
合体、さらには透光性シンチレータ焼結体などのいわゆ
る固体検出素子を用いたものが出現しており、特に高精
度かつ高速のシンチレーション検出が可能な最近の検出
器には、これら固体検出素子が主として使用されている
For this reason, in recent years, devices using so-called solid-state detection elements such as single crystal scintillator materials, resin/powder composites in which scintillator material powder is dispersed and solidified in resin, and even translucent scintillator sintered bodies have appeared. In particular, these solid-state detection elements are mainly used in recent detectors that are capable of high-accuracy and high-speed scintillation detection.

第2図は、単結晶シンチレータ材料を用いた固体検出素
子の概略も1成説明図である。
FIG. 2 is a schematic illustration of a solid-state detection element using a single-crystal scintillator material.

図において、1は、例えばBGOなどの単結晶からなる
シンチレータ部材であり、入射1aはシンチレータ部材
1を透過して7オトダイオード2に達し、検出される極
めて簡単な構成となっている。
In the figure, reference numeral 1 denotes a scintillator member made of a single crystal such as BGO, and the incident light 1a is transmitted through the scintillator member 1, reaches an otodiode 2, and has an extremely simple configuration in which it is detected.

しかしながら、従来上り使用されているBGO、CWO
、Nal−T1.  CaF2lEu 。
However, BGO and CWO, which are conventionally used for uplink,
, Nal-T1. CaF2lEu.

C3l−TIなどの単結晶シンチレータ材料には、いず
れも問題のあることが指摘されている。
It has been pointed out that all single crystal scintillator materials such as C3l-TI have problems.

すなわち、BGOは発光効率が低く高価であること、C
W O(CdW 04 )は高価で毒性が強く、またへ
き開性のため加工にも難点があること、NaI・T1’
およびC5I−TIは吸湿し易く残光が比較的大きいこ
と、CaF2・Euはシリコン7すトダイオード等との
彼氏マツチングが悪いこと、などの問題点がある。
In other words, BGO has low luminous efficiency and is expensive;
WO (CdW 04 ) is expensive, highly toxic, and difficult to process due to its cleavability;
Also, C5I-TI has problems such as easy moisture absorption and relatively large afterglow, and CaF2.Eu has poor matching with silicon diodes and the like.

特に、上記のごとき構成の固体検出素子においては、発
光を受ける7オトダイオードの増幅作用が僅少であるが
ためにシンチレータ材料の発光出力が重要な意味をもっ
ている。このため、上記単結晶などに比べ、より発光効
率の良いシンチレータ材料、例えばオキシ硫化物などの
微粉を樹脂中に分散させ固化した樹脂・粉末複合体と7
オトダイオードを組み合わせた素子も提案されている(
特開昭57−7861号公報)。
In particular, in the solid-state detection element having the above configuration, the light emitting output of the scintillator material has an important meaning because the amplification effect of the seven otodiodes that receive light is slight. For this reason, compared to the above-mentioned single crystal, etc., a scintillator material with higher luminous efficiency, such as a resin/powder composite made by dispersing fine powder such as oxysulfide in a resin and solidifying it, is used.
Elements that combine otodiodes have also been proposed (
JP-A-57-7861).

第3図は、tel(脂・粉末複合体を用いた固体検出素
子の概略構成説明図である。
FIG. 3 is an explanatory diagram of a schematic configuration of a solid state detection element using tel (fat/powder composite).

図において、3はtjg脂・粉末複合体であり、例えば
、Gd2O2Sなど発光効率の良いシンチレータ材料の
粉末を樹脂中に分散し固化したものであり、xiを該樹
脂・粉末複合体3に照射し、透過X線を鉛ガラス4によ
って吸収し、フォトダイオード5によって発光をとらえ
るvt造となっている。しかしながら、かかる構造のも
のにおいては、樹脂・粉末複合体3の透光性が低いため
に、この部分を比較的薄い部材とせざるを得ない。この
ため、入射X#lが直接7オトダイオード5に達し、悪
影響を与えることが無いように、XMを吸収させる目的
で鉛がフス4を中間に設けることが不可欠とされ、構造
が複雑となる欠点がある。
In the figure, 3 is a tjg fat/powder composite, which is made by dispersing and solidifying powder of a scintillator material with high luminous efficiency, such as Gd2O2S, in a resin. It has a VT structure in which transmitted X-rays are absorbed by a lead glass 4 and the emitted light is captured by a photodiode 5. However, in such a structure, since the resin/powder composite 3 has low light transmittance, this part has to be made into a relatively thin member. Therefore, in order to prevent the incident X#l from directly reaching the 7 otodiode 5 and causing any adverse effects, it is essential to provide a lead frame 4 in the middle for the purpose of absorbing XM, which makes the structure complicated. There are drawbacks.

また、樹脂・粉末複合体の発光強度もJ!I!論値より
かなり小さく、さらに加工時の変形も素子化の障害とな
っている。
Also, the luminescence intensity of the resin/powder composite is J! I! It is much smaller than the theoretical value, and deformation during processing is also an obstacle to device development.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記実情に鑑み、本願発明者等は、先に透光性希土類オ
キシ硫化物と7オトダイオードとを組み合わせた素子を
提案した(特願昭59−247467号、特願昭60−
191951号)。
In view of the above-mentioned circumstances, the inventors of the present application previously proposed an element that combines a translucent rare earth oxysulfide and a 7-otodiode (Japanese Patent Application No. 59-247467, Japanese Patent Application No. 60-60).
No. 191951).

tjS4図は、上記本発明者等が先に提案した透光性希
土類オキシ硫化物焼結体を用いた固体検出素子の概略構
成説明図である。
Figure tjS4 is a schematic structural explanatory diagram of a solid-state detection element using a translucent rare earth oxysulfide sintered body previously proposed by the present inventors.

同図において、6はシンチレータ用焼結体であり、例え
ば、G d202S  −P r 、Ce 、F焼結体
が使用される。
In the figure, 6 is a sintered body for a scintillator, and for example, a sintered body of G d202S-P r , Ce, F is used.

χmを焼結体に照射し、透過xiを鉛ガラス7によって
吸収しフォトダイオード8によって発光をとらえる構造
となっている。焼結体層が厚い場合には、この層におけ
るXIaの吸収が大きいために鉛ガラスを必要としない
、しかし、先に提案した発明において具体的に開示した
焼結体の発光出力は、前記樹脂・粉末複合材料の1.5
倍程度まで得られるものの、焼結体の厚さをより大きく
とって鉛ガラスを不要にする場合や解像力を高める場合
には必ずしも十分ではないことが判明した。
The structure is such that the sintered body is irradiated with χm, the transmitted xi is absorbed by the lead glass 7, and the emitted light is captured by the photodiode 8. If the sintered body layer is thick, lead glass is not required because the absorption of XIa in this layer is large. However, the light emitting output of the sintered body specifically disclosed in the previously proposed invention is・1.5 of powder composite material
It has been found that although it is possible to obtain approximately twice the thickness of the sintered body, this is not necessarily sufficient when increasing the thickness of the sintered body to eliminate the need for lead glass or when increasing resolution.

前述したごとく、希土類オキシ硫化物にHIP法により
焼結したものは、樹脂・粉末複合材料に比べて高い発光
出力を得ることが可能であるが、シンチレータ素子とし
ての性能を大幅に向上させようとする場合には不十分で
ある。
As mentioned above, rare earth oxysulfides sintered using the HIP method can provide higher luminous output than resin/powder composite materials, but efforts have been made to significantly improve the performance as scintillator elements. It is insufficient if

本発明は、上記の実情に鑑み、高い発光出力を有する希
土類オキシ硫化物焼結体の実現を目的とするものである
In view of the above circumstances, the present invention aims to realize a rare earth oxysulfide sintered body having high luminous output.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記目的を達成するために、希土類オキシ硫
化物粉末に焼結助剤を添加し、これを熱間静水圧プレス
法(以下、HIP法という)により焼結することにより
透光性を有し高密度の焼結体としたシンチレータ材料で
あることを特徴とするものである。
In order to achieve the above object, the present invention adds a sintering aid to rare earth oxysulfide powder and sinters it using a hot isostatic pressing method (hereinafter referred to as HIP method). The scintillator material is a high-density sintered body having:

本発明において、上記希土類オキシ硫化物としでは、例
えば、待闇昭55−62930号公報または待閏昭56
−151376号公報などにより知られる組成のもの、
すなわち、組成式%式%:() ただし、式中 Lnは、Gd 、La 、YおよびLuのなかから選ば
れた少なくとも一種類の元素 Mは、PrおよびTbのうちの一種または二種の元素 Xの量は、3X10−’≦X≦0.2 yの量は、lXl0−≦y≦5×10−コFまたはC1
の量は、重量で0〜1000 pp+*で表わされるも
の、または組成式 %式%) ただし、式中 Lnは、Gd 、La 、YおよびLuのなかから選ば
れた少なくとも一種類の元素 Mは、PrおよrJPTbのうちの−P!iまたは二種
の元素 aの量は、1×10−コ≦ a≦0.1bの量は、2X
10−’≦ b≦lXl0−4で表わされるものを用い
ることができる。また、本発明においては、これらのう
ち、特に、(Gcl 1−x−y Pr x Ce 3
1> 202S  : (F)又は(C/) ただし、3X10”≦X≦0.2゜ lXl0−’≦y≦5X10−’ で表わされるシンチレータ材料がよい。
In the present invention, examples of the above-mentioned rare earth oxysulfide include Machiya Sho 55-62930 Publication or Taihan Sho 56
-Those with a composition known from Publication No. 151376 etc.
That is, composition formula % formula %: () However, in the formula, Ln is at least one element selected from Gd, La, Y, and Lu, and M is one or two elements selected from Pr and Tb. The amount of X is 3X10-'≦X≦0.2 The amount of y is 1
The amount is expressed as 0 to 1000 pp+* by weight, or the composition formula (% formula %). However, in the formula, Ln is at least one element selected from Gd, La, Y, and Lu; , -P of Pr and rJPTb! The amount of i or two elements a is 1×10−co≦a≦0.1b, the amount of 2X
10-'≦b≦lXl0-4 can be used. Moreover, in the present invention, among these, (Gcl 1-x-y Pr x Ce 3
1>202S: (F) or (C/) However, a scintillator material expressed by 3X10''≦X≦0.2°lX10-'≦y≦5X10-' is preferable.

また、本発明において、上記焼結助剤としては、それを
添加することによって緻密化を促進し、希土類オキシ硫
化物焼結体の発光出力が向上する効果を有する物質であ
ればよく、例えば、LiF= Li1GeFs * L
i2B40y −Na2AiFg。
Further, in the present invention, the sintering aid may be any substance that has the effect of promoting densification and improving the luminous output of the rare earth oxysulfide sintered body by adding it, for example, LiF=Li1GeFs*L
i2B40y-Na2AiFg.

NaPF、、NaBF、、LiBF=  、  (NH
−)tGeFsおよびMg5iF@のなかから選ばれた
一種または二種以上の化合物などが使用できる。
NaPF, , NaBF, , LiBF= , (NH
-) One or more compounds selected from tGeFs and Mg5iF@ can be used.

また、その添加量は、0.001%と極めて微量の添加
でも効果が現われるが、あまり多く添加した場合には、
シンチレータ材料本来の発光出力が得られなくなるので
、多くても10重量%以下とすることが望ましい。
In addition, the effect can be seen even if the addition amount is as small as 0.001%, but if too much is added,
Since the original light emitting output of the scintillator material cannot be obtained, it is desirable that the content be at most 10% by weight or less.

しかして、本発明においては、焼結助剤を添加含有させ
ているがために、先に提案した焼結材料に比べて非常に
密度が高く、相jt密度96%以上の高密度の優れた特
性のシンチレータ材料が実現できるのである。
However, since the present invention contains a sintering aid, it has a much higher density than the previously proposed sintered material, and has an excellent high density with a phase jt density of 96% or more. This makes it possible to create scintillator materials with special characteristics.

さらにまた、本発明における上記焼結材料のある断面で
観察さへる結晶粒子の形状は、先に提案したものとは違
いがあり、本発明によるものは、いずれも柱状の外観を
呈する結晶粒子を比較的多く含有していることが特徴で
ある。この柱状粒子の存在については、焼結体の断面上
で顕微鏡によって観察することができるものであるが、
その量と焼結体の特性との関係についでは、現在検討中
であり必ずしも明確ではないものの、切断面の顕微#!
観寮写真上の面積率で約10%以上あれば本発明の目的
とする優れた特性を示すことが確認されている。
Furthermore, the shape of the crystal grains observed in a certain cross section of the sintered material according to the present invention is different from that proposed previously, and the shapes of the crystal particles according to the present invention have a columnar appearance. It is characterized by containing a relatively large amount of. The presence of these columnar particles can be observed with a microscope on the cross section of the sintered body.
The relationship between the amount and the properties of the sintered body is currently under investigation and is not necessarily clear, but it is important to note the relationship between the amount and the properties of the sintered body.
It has been confirmed that if the area ratio on the dormitory photograph is about 10% or more, it exhibits the excellent characteristics aimed at by the present invention.

第1図(a)に焼結助剤のない場合の粒子の形状を示し
、同図(b)に焼結助剤を添加した場合の粒子形状を示
す。
FIG. 1(a) shows the shape of the particles without the sintering aid, and FIG. 1(b) shows the shape of the particles with the addition of the sintering aid.

〔実施例〕〔Example〕

以下、本発明を実施例に基づいてより詳細に説明する。 Hereinafter, the present invention will be explained in more detail based on examples.

(実施例1) (Gd 611117 Pr il+63 Ce 5x
lo−@)t OzSに90 ppmのFを添加した粉
末に、第1表に示す種々の焼結助剤を添加した粉末を、
ステンレス容器内に真空封入した後、 この容器を1,
300℃、1.000気圧のアルゴンガス中で 3時間
HIP処理を行なった。得られた焼結体の相対密度、任
意の断面における柱状を呈する結晶の面積の割合、およ
び発光出力比を、添加物を加えないHIP焼結体と比較
してttS1表に示す。
(Example 1) (Gd 611117 Pr il+63 Ce 5x
lo-@)t Powder obtained by adding 90 ppm of F to OzS, and powder obtained by adding various sintering aids shown in Table 1,
After vacuum sealing in a stainless steel container, this container is
HIP treatment was performed for 3 hours in argon gas at 300°C and 1.000 atm. The relative density, area ratio of columnar crystals in any cross section, and luminous output ratio of the obtained sintered body are shown in Table ttS1 in comparison with the HIP sintered body to which no additives are added.

第    1    表 (実施例2) (Gd oa**t P r 011003 Ce 5
xlo−’ )202Sに90ppmのFを添加した粉
末に、第2表に示す種々の焼結助剤を添加した粉末を、
ステンレス容器内に真空封入した後、 この容器を1,
300℃、1,500気圧のアルゴンがス中で1゜5時
間HIP処理を行なった。得られた焼結体の相対密度、
任意の断面における柱状を呈する結晶の面積の割合、お
よび発光出力比を、添加物を加えないHIP焼結体と比
較して第2表に示す。
Table 1 (Example 2) (Gd oa**t P r 011003 Ce 5
xlo-' ) 202S with 90 ppm of F added to the powder with various sintering aids shown in Table 2,
After vacuum sealing in a stainless steel container, this container is
HIP treatment was performed for 1°5 hours in an argon atmosphere at 300° C. and 1,500 atm. The relative density of the obtained sintered body,
Table 2 shows the area ratio of columnar crystals in any cross section and the luminous output ratio in comparison with the HIP sintered body to which no additives were added.

(実施例3) fi3表に示す希土類オキシ硫化物粉末に焼結助剤を添
加した粉末をステンレス容器内に真空封入した後、この
容器を1.300℃、1.250気圧のアルゴンガス中
で2時間HIP処理を行なった。
(Example 3) A powder obtained by adding a sintering aid to the rare earth oxysulfide powder shown in Table fi3 was vacuum sealed in a stainless steel container, and then the container was placed in argon gas at 1.300°C and 1.250 atm. HIP treatment was performed for 2 hours.

第3表 得られた焼結体の相対密度、任意の断面における柱状を
呈する結晶の面積の割合、および発光出力比を添加物を
加えないHIP焼結体と比較して第4表に示す。
Table 3 The relative density of the obtained sintered body, the area ratio of columnar crystals in any cross section, and the luminous output ratio are shown in Table 4 in comparison with the HIP sintered body to which no additives were added.

本NO,は、第3表のシンチレータ組成を示す。This NO. indicates the scintillator composition in Table 3.

〔発明の効果〕〔Effect of the invention〕

以上詳述したごとく、本発明によれば、従来の希土類オ
キシ硫化物焼結体より発光出力が高い希土類オキシ硫化
物の焼結体が得られ、その結果、 (1)  XQCT用シンチレータ素子等に用いる高発
光出力の放射線検出用固体検出素子が得られる、 (2)高発光出力のために固体検出素子の厚さを大きく
とれるので、故am吸収用の材料、例えば鉛ガラスを不
要とするか薄層にすることで素子化のコストが低減でき
る、 (3)高発光出力のためにシグナル・ノイズ比(S/N
比)が大きくなることや素子の開口角を小さくすること
によって空間、濃淡の分解能を向上させることが可能と
なり、従来の放射線検出素子の検出限界を超えることが
できる、 等の効果がある。
As detailed above, according to the present invention, a sintered body of rare earth oxysulfide having a higher luminous output than the conventional sintered body of rare earth oxysulfide can be obtained, and as a result, (1) it can be used as a scintillator element for XQCT, etc. (2) Since the thickness of the solid-state detection element can be increased for high luminescence output, materials for am absorption, such as lead glass, are not required. (3) Signal-to-noise ratio (S/N) for high light output can be reduced by making the layer thinner.
By increasing the ratio (ratio) and reducing the aperture angle of the element, it becomes possible to improve the spatial and gradation resolution, and the detection limits of conventional radiation detection elements can be exceeded.

また、本発明によって作製された焼結体は、XMCT用
素子色素子は無論のこと、透光性発光体、ターデッド材
等への応用も可能であるためにその工業上の効果は大で
ある。
In addition, the sintered body produced according to the present invention can be applied not only to XMCT element dyes, but also to translucent luminescent materials, tarded materials, etc., and therefore has great industrial effects. .

【図面の簡単な説明】[Brief explanation of the drawing]

ff11図は、本発明シンチレータ材料および比較材料
の組織を示す観察図、第2図は単結晶シンチレータ材料
を用いた固体検出素子の概略構成説明図、tAs図は樹
脂・粉末複合体を用いた固体検出素子の概略構成説明図
、第4図は本発明者等が先に提案した透光性希土類オキ
シ硫化物焼結体を用いた固体検出素子の概略構成説明図
である。 1 :単結晶シンチレータ材料、 2.5 。 8 :フォトダイオード、   3 :樹脂・粉末複合
体、  4.7 :鉛ガラス、 6 :シンチレータ用
焼結体 代理人 弁理士  本  間     崇Y  l  
画 (■ (b〕
Figure ff11 is an observational diagram showing the structures of the scintillator material of the present invention and comparative materials, Figure 2 is a schematic diagram illustrating the configuration of a solid state detection element using a single crystal scintillator material, and Figure tAs is a diagram showing the structure of a solid state detection element using a resin/powder composite. FIG. 4 is a schematic diagram illustrating the configuration of a solid-state detection element using a translucent rare earth oxysulfide sintered body previously proposed by the present inventors. 1: Single crystal scintillator material, 2.5. 8: Photodiode, 3: Resin/powder composite, 4.7: Lead glass, 6: Sintered body for scintillator Agent Patent attorney Takashi Honma Yl
Picture (■ (b)

Claims (7)

【特許請求の範囲】[Claims] (1)焼結助剤が添加含有された希土類オキシ硫化物粉
末を原料とし熱間静水圧プレス法により焼結されたこと
を特徴とする高密度透光性シンチレータ材料。
(1) A high-density translucent scintillator material characterized in that it is made from rare earth oxysulfide powder containing a sintering aid and is sintered by hot isostatic pressing.
(2)上記焼結助剤の添加量が、0.001〜10重量
%であることを特徴とする特許請求の範囲第(1)項の
記載の高密度透光性シンチレータ材料。
(2) The high-density translucent scintillator material according to claim (1), wherein the amount of the sintering aid added is 0.001 to 10% by weight.
(3)上記希土類オキシ硫化物が、組成式 (Gd_1_−_x_−_yPr_xCe_y)_2O
_2S:(F)又は(Cl) ただし、3×10^−^6≦x≦0.2、 1×10^−^6≦y≦5×10^−^3 で表わされるものであることを特徴とする特許請求の範
囲第(1)項または第(2)項記載の高密度透光性シン
チレータ材料。
(3) The rare earth oxysulfide has a composition formula (Gd_1_-_x_-_yPr_xCe_y)_2O
_2S: (F) or (Cl) However, it must be expressed as 3×10^-^6≦x≦0.2, 1×10^-^6≦y≦5×10^-^3 A high-density translucent scintillator material according to claim (1) or (2).
(4)上記焼結材料が、相対密度96%以上の高密度で
あることを特徴とする特許請求の範囲第(1)項ないし
第(3)項のいずれかに記載の高密度透光性シンチレー
タ材料。
(4) High-density translucency according to any one of claims (1) to (3), characterized in that the sintered material has a high density with a relative density of 96% or more. scintillator material.
(5)上記焼結材料のある断面における結晶粒子の形状
が柱状を呈していることを特徴とする特許請求の範囲第
(1)項ないし第(4)項のいずれかに記載の高密度透
光性シンチレータ材料。
(5) The high-density transparent material according to any one of claims (1) to (4), wherein the crystal grains in a certain cross section of the sintered material have a columnar shape. Photoactive scintillator material.
(6)上記焼結材料のある断面における結晶粒子の形状
が面積比で10%以上について柱状であることを特徴と
する特許請求の範囲第(5)項記載の高密度透光性シン
チレータ材料。
(6) The high-density translucent scintillator material according to claim (5), wherein the shape of the crystal grains in a certain cross section of the sintered material is columnar for an area ratio of 10% or more.
(7)上記焼結助剤がLiF、Li_2GeF_6、L
i、B_4O_7、Na_3AlF_6、NaPF_6
、NaBF_4、LiBF_4、(NH_4)_2Ge
F_6およびMgSiF_6のなかから選ばれた一種ま
たは二種以上の化合物であることを特徴とする特許請求
の範囲第(1)項ないし第(6)項のいずれかに記載の
高密度透光性シンチレータ材料。
(7) The above sintering aid is LiF, Li_2GeF_6, L
i, B_4O_7, Na_3AlF_6, NaPF_6
, NaBF_4, LiBF_4, (NH_4)_2Ge
The high-density translucent scintillator according to any one of claims (1) to (6), characterized in that it is one or more compounds selected from F_6 and MgSiF_6. material.
JP61305254A 1986-04-30 1986-12-23 Scintillator material Granted JPS63113388A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9833086 1986-04-30
JP61-98330 1986-04-30

Publications (2)

Publication Number Publication Date
JPS63113388A true JPS63113388A (en) 1988-05-18
JPH0516756B2 JPH0516756B2 (en) 1993-03-05

Family

ID=14216893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61305254A Granted JPS63113388A (en) 1986-04-30 1986-12-23 Scintillator material

Country Status (1)

Country Link
JP (1) JPS63113388A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191084A (en) * 1988-01-27 1989-08-01 Hitachi Medical Corp Radiation detector
JP2001089762A (en) * 1999-07-16 2001-04-03 Toshiba Corp Ceramic scintillator material and its production, and radiation detector and radiation inspector using the same
US7060982B2 (en) 2003-09-24 2006-06-13 Hokushin Corporation Fluoride single crystal for detecting radiation, scintillator and radiation detector using the single crystal, and method for detecting radiation
JP2016061655A (en) * 2014-09-17 2016-04-25 株式会社東芝 Scintillator, radiation detector and radiation inspector

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5115860B2 (en) * 2009-02-12 2013-01-09 日立金属株式会社 Manufacturing method of scintillator material powder
WO2018021418A1 (en) * 2016-07-27 2018-02-01 三菱ケミカル株式会社 Sintered phosphor, light-emitting device, lighting device and vehicle indicator lamp
WO2018105611A1 (en) 2016-12-06 2018-06-14 株式会社 東芝 Scintillator array, method of manufacturing scintillator array, radiation detector, and radiation inspecting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191084A (en) * 1988-01-27 1989-08-01 Hitachi Medical Corp Radiation detector
JP2001089762A (en) * 1999-07-16 2001-04-03 Toshiba Corp Ceramic scintillator material and its production, and radiation detector and radiation inspector using the same
US7060982B2 (en) 2003-09-24 2006-06-13 Hokushin Corporation Fluoride single crystal for detecting radiation, scintillator and radiation detector using the single crystal, and method for detecting radiation
JP2016061655A (en) * 2014-09-17 2016-04-25 株式会社東芝 Scintillator, radiation detector and radiation inspector

Also Published As

Publication number Publication date
JPH0516756B2 (en) 1993-03-05

Similar Documents

Publication Publication Date Title
US5213712A (en) Lanthanum lutetium oxide phosphor with cerium luminescence
EP1043383B1 (en) Phosphors, and radiation detectors and x-ray ct unit made by using the same
EP0297269B1 (en) Solid state scintillator and method for preparing such scintillator
KR910008481B1 (en) Radiation detector employing solid state scintillator material and preparation methods therefor
CN101107206B (en) Fluorescent ceramic and fabrication method thereof
US7008558B2 (en) Terbium or lutetium containing scintillator compositions having increased resistance to radiation damage
JP3407937B2 (en) Preparation of high density rare earth-oxysulfide scintillation ceramics and ceramic body for x-ray computed tomography
US5116560A (en) Method of forming rare earth oxide ceramic scintillator with ammonium dispersion of oxalate precipitates
EP1028154B1 (en) Phosphor, and radiation detector and x-ray ct unit each equipped therewith
US20030127630A1 (en) Terbium or lutetium containing garnet scintillators having increased resistance to radiation damage
US5124072A (en) Alkaline earth hafnate phosphor with cerium luminescence
JP2001004753A (en) Oxide phosphor and radiation detector using it as well as x-ray ct apparatus
US5242620A (en) Gadolinium lutetium aluminate phosphor with cerium luminescence
EP1279717B1 (en) Phosphor, radiation detector containing the same, and x-ray ct apparatus
JPS63113388A (en) Scintillator material
US5204021A (en) Lanthanide oxide fluoride phosphor having cerium luminescence
JP4429444B2 (en) Scintillator, radiation detector and X-ray CT apparatus using the same
JP2002082171A (en) Radiation detector and x-ray diagnostic equipment using the same
JP2001181043A (en) Transparent polycrystalline garnet scintillator, powder for scintillator and method for producing the same
CN1088738C (en) Luminous objects containing additive for decreasing afterglow
US20100059668A1 (en) Scintillator material and radiation detectors containing same
JP2595027B2 (en) Manufacturing method of ceramic scintillator
JP3369681B2 (en) X-ray detector phosphor and X-ray detector using the same
JPS6318286A (en) Radiation detector

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term