JP2001004753A - Oxide phosphor and radiation detector using it as well as x-ray ct apparatus - Google Patents

Oxide phosphor and radiation detector using it as well as x-ray ct apparatus

Info

Publication number
JP2001004753A
JP2001004753A JP17661999A JP17661999A JP2001004753A JP 2001004753 A JP2001004753 A JP 2001004753A JP 17661999 A JP17661999 A JP 17661999A JP 17661999 A JP17661999 A JP 17661999A JP 2001004753 A JP2001004753 A JP 2001004753A
Authority
JP
Japan
Prior art keywords
ray
oxide phosphor
detector
less
scintillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17661999A
Other languages
Japanese (ja)
Other versions
JP2001004753A5 (en
JP4290282B2 (en
Inventor
Tsuneyuki Kanai
恒行 金井
Ichiro Miura
一朗 三浦
Makoto Sato
佐藤  誠
Takaaki Furubiki
孝明 古曳
Takaki Yamada
敞馗 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP17661999A priority Critical patent/JP4290282B2/en
Publication of JP2001004753A publication Critical patent/JP2001004753A/en
Publication of JP2001004753A5 publication Critical patent/JP2001004753A5/ja
Application granted granted Critical
Publication of JP4290282B2 publication Critical patent/JP4290282B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an oxide phosphor whose luminous efficiency with reference to X-rays is increased, whose afterglow is reduced extremely and which can acquire a high-resolution and high-quality tomogram by forming a garnet structure which is constituted of at least elements as Gd, Ce, Al, Ga and O. SOLUTION: In this oxide phosphor which is used for an X-ray CT apparatus or the like, a garnet structure in which Gd at a site (c) is substituted for Ga and/or holes and in which Ga and Al at a site (a) and a site (d) are substituted mutually and substituted for Gd and/or holes is used as a mother crystal, and Ce is used as a luminous component. When the atomic ratio of Ga/(A+Ga+Gd) is at 0.33 to 0.42, a good characteristic is obtained, Ge is set at a molecular ratio of 0.05 to 2.0% with reference to Gd. However, a case in which (Gd+ Ce)/(Al+Ga+Gd+Ce) is at 0.375 is excluded. A heterogeneous amount other than in the garnet structure is less than 20 wt.%, a relative density is 99.0% or higher, a luminous main peak is near 550 nm, and an afterglow attenuation rate after 30 ms of an excitation stop is 10-3 or lower.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、X線、γ線などを
検出する放射線検出器、特にX線CT装置やポジトロン
カメラなどの放射線検出器に好適な酸化物蛍光体、及び
それを用いた放射線検出器、並びにX線CT装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide phosphor suitable for use as a radiation detector for detecting X-rays, .gamma.-rays, etc., and more particularly to a radiation detector such as an X-ray CT apparatus or a positron camera, and uses the same. The present invention relates to a radiation detector and an X-ray CT device.

【0002】[0002]

【従来の技術】従来、X線CT装置などに用いる放射線
検出器としては、キセノンのガスチェンバー、ゲルマニ
ウム酸ビスマス(BGO単結晶)と光電子増倍管を組み合
わせたもの、CsI:Tl単結晶またはCdWO4単結晶とフォト
ダイオードを組み合わせたものが用いられてきた。ま
た、近年では、放射線から光への変換効率の高い希土類
系蛍光体が開発され、このような蛍光体とフォトダイオ
ードを組み合わせた放射線検出器が実用化されている。
希土類蛍光体は、希土類酸化物或いは希土類酸硫化物を
母材とした発光成分である付活剤を添加したもので、希
土類酸化物蛍光体として、特開平3−50991号等に記載さ
れている酸化イットリウムと酸化ガドリニウムを母材と
したものなどが提案されている。
2. Description of the Related Art Conventionally, as a radiation detector used in an X-ray CT apparatus, a xenon gas chamber, a combination of bismuth germanate (BGO single crystal) and a photomultiplier, a CsI: Tl single crystal or CdWO are used. Combinations of four single crystals and photodiodes have been used. In recent years, rare earth phosphors having high conversion efficiency from radiation to light have been developed, and radiation detectors combining such phosphors and photodiodes have been put to practical use.
Rare earth phosphors are those to which an activator, which is a light emitting component based on a rare earth oxide or a rare earth oxysulfide, is added, and is described as a rare earth oxide phosphor in JP-A-3-50991 and the like. A material using yttrium oxide and gadolinium oxide as a base material has been proposed.

【0003】[0003]

【発明が解決しようとする課題】一般に、放射線検出器
に用いられるシンチレータ材料に要求される特性として
は、高い発光効率、短い残光、大きいX線阻止能などが
挙げられる。上記蛍光体の中には、発光効率の高いもの
もあるが、残光時間は比較的長い。X線CT装置の用途
では、X線検出器に用いられるシンチレータの残光が大
きいと、得られた情報が時間軸方向に対して不鮮明にな
る。上記の従来材料においてはシンチレータ材料の特性
として残光が比較的大きい。
Generally, characteristics required for a scintillator material used for a radiation detector include high luminous efficiency, short afterglow, and high X-ray stopping power. Some of the above phosphors have high luminous efficiency, but the afterglow time is relatively long. In the application of the X-ray CT apparatus, if the afterglow of the scintillator used in the X-ray detector is large, the obtained information becomes unclear in the time axis direction. In the above conventional materials, afterglow is relatively large as a characteristic of the scintillator material.

【0004】本発明の目的は、X線に対する発光効率が
高く、残光が極めて少ない蛍光体を提供することにあ
る。また、この蛍光体を光検出器を備えた放射線検出器
のシンチレータとして用いることにより、光出力が大き
な低残光放射線検出器が得られ、このX線検出器をX線
CT装置に適用することによって、高解像度、高品質の
断層像を提供することにある。
An object of the present invention is to provide a phosphor having a high luminous efficiency with respect to X-rays and an extremely low afterglow. In addition, by using this phosphor as a scintillator of a radiation detector having a photodetector, a low afterglow radiation detector having a large light output can be obtained, and this X-ray detector can be applied to an X-ray CT apparatus. Accordingly, the present invention provides a high-resolution and high-quality tomographic image.

【0005】[0005]

【課題を解決するための手段】本発明にかかわる蛍光体
は、少なくともGd、Ce、Al、Ga及びO元素から構成され
たガーネット構造で、ガーネット構造以外の異相量が2.
0wt%未満、相対密度が99.0%以上、拡散透過率が50.0
%以上の酸化物である。該酸化物は、発光スペクトルの
メインピークが550nm近傍に存在し、励起光を絶ってか
ら30ms後における残光の減衰率が10-3以下となり、発光
効率が高く、残光の少ない蛍光体が得られることを見出
し、本発明に至った。
The phosphor according to the present invention has a garnet structure composed of at least Gd, Ce, Al, Ga and O elements, and has a different phase content other than the garnet structure of 2.
Less than 0 wt%, relative density 99.0% or more, diffuse transmittance 50.0
% Or more of oxides. The oxide has a main peak of the emission spectrum at around 550 nm, the decay rate of afterglow 30 ms after the excitation light is cut off is 10 -3 or less, the luminous efficiency is high, and the phosphor with little afterglow is used. The inventors have found that they can be obtained, and have reached the present invention.

【0006】本発明のガーネット構造の金属イオン配置
を図1に示す。ガーネット構造の金属イオンには3種類
のc、a、dサイトがある。サイトの大きさはc>a>dで、イ
オンの大きさだけから言えば、Ce3+=1.07Å、Gd3+=0.97
Å、Ga3+=0.62Å、Al3+=0.51Åであるから、cサイトはC
e3+とGd3+が、aサイトはGa3+が、dサイトはAl3+がそれ
ぞれ優先的に占め、この場合の化学組成はGd3(Ga2Al3)O
12で表される。Gd、Ce、Al、Ga、O元素からなる種々の
組成のガーネット構造について、X線回折法に基づく結
晶学的な検討をリートベルト解析手法を用いて行った。
FIG. 1 shows the arrangement of metal ions in the garnet structure of the present invention. Garnet-structured metal ions have three types of c, a, and d sites. The size of the site is c>a> d, and from the ion size alone, Ce 3+ = 1.07Å and Gd 3+ = 0.97
Å, Ga 3+ = 0.62Å, Al 3+ = 0.51Å, so the c site is C
e 3+ and Gd 3+ , a site is Ga 3+ , and d site is Al 3+ , respectively.In this case, the chemical composition is Gd 3 (Ga 2 Al 3 ) O
Represented by 12 . For garnet structures of various compositions consisting of Gd, Ce, Al, Ga, and O elements, crystallographic studies based on the X-ray diffraction method were performed using Rietveld analysis.

【0007】この結果、これら構成元素からなるガーネ
ット構造においては、化学量論組成である(Gd,Ce)3(G
a,Al)5O12組成からずれ、cサイトのGdはGa及び/又は
空孔で置換され、a、dサイトのGa及びAlは相互に置換
するばかりでなく、Gd及び/又は空孔でも置換され、更
に酸素のサイトも欠損が生じていることが明らかとなっ
た。従って、このGd、Ce、Al、Ga、O元素から構成され
た現実の酸化物は、厳密には化学量論組成式(Gd,Ce)3
(Ga2Al3)O12であらわすことはできない。
As a result, the garnet structure composed of these constituent elements has a stoichiometric composition of (Gd, Ce) 3 (G
a, Al) 5 O 12 composition, Gd at c site is replaced by Ga and / or vacancy, Ga and Al at a, d site not only replace each other, but also Gd and / or vacancy It has been clarified that the substitution has been made and the oxygen site is also deficient. Therefore, the actual oxide composed of the elements Gd, Ce, Al, Ga, and O is strictly a stoichiometric composition formula (Gd, Ce) 3
It cannot be represented by (Ga 2 Al 3 ) O 12 .

【0008】これらの結果をもとに、Gd、Al、Ga、O元
素からなるガーネット構造を母結晶とし、Ceを発光成分
とする酸化物蛍光体の種々の組成について検討した結
果、Gd/(Al+Ga+Gd)の原子比が、0.33以上、0.42以下で
良好なX線感度と残光特性が得られた。CeはGdに対して
原子比で0.05 %以上、2.0%以下であり、この組成の範囲
外であると、十分な発光強度は得られない。但し、(Gd+
Ce)/(Al+Ga+Gd+Ce)が0.375の場合を除く。
Based on these results, various compositions of oxide phosphors having a garnet structure composed of elements of Gd, Al, Ga, and O as a mother crystal and Ce as a light emitting component were examined. As a result, Gd / ( When the atomic ratio of (Al + Ga + Gd) was 0.33 or more and 0.42 or less, good X-ray sensitivity and afterglow characteristics were obtained. Ce has an atomic ratio of 0.05% or more and 2.0% or less with respect to Gd, and if it is out of the range of the composition, sufficient luminescence intensity cannot be obtained. However, (Gd +
Except when Ce) / (Al + Ga + Gd + Ce) is 0.375.

【0009】本発明の組成が必須の理由としては、Gd/
(Al+Ga+Gd)の原子比が0.33未満であると、ガーネット組
成に比してGd量が少なすぎ、ガーネット構造のマトリッ
クス中にGa2O3などの異相が生成し、一方、Gd量が0.42
を越えると、ペロブスカイト結晶構造のGd(Ga,Al)03やG
d4(Ga,Al) 2O9相がガーネットマトリックス中に生成す
る。これらいずれの場合も、相対密度を99.0%以上とし
ても異相量は2.0 wt%以上、拡散透過率は50.0%未満と
なってしまうためである。また、Ga/Alの原子比が0.20
未満であると、結晶構造としてはガーネット構造単相に
なるが、Ceドープによっても十分な発光強度は得られ
ず、また、Ga/Alの原子比が4.0を越えても十分な発光強
度は得られないためである。
The reason why the composition of the present invention is essential is that Gd /
If the atomic ratio of (Al + Ga + Gd) is less than 0.33, the amount of Gd is too small compared to the garnet composition, and a heterogeneous phase such as Ga 2 O 3 is generated in the garnet structure matrix, while the amount of Gd is Is 0.42
By weight, of the perovskite crystal structure Gd (Ga, Al) 0 3 and G
A d 4 (Ga, Al) 2 O 9 phase forms in the garnet matrix. In any of these cases, even when the relative density is 99.0% or more, the amount of the different phase becomes 2.0 wt% or more and the diffusion transmittance becomes less than 50.0%. The atomic ratio of Ga / Al is 0.20
If it is less than 1, the crystal structure becomes a garnet structure single phase, but sufficient light emission intensity cannot be obtained even with Ce doping, and sufficient light emission intensity is obtained even if the atomic ratio of Ga / Al exceeds 4.0. This is because it cannot be done.

【0010】本発明の蛍光体は、結晶形態には特に限定
されず、単結晶であっても多結晶であっても良いが、製
造の容易さ、特性ばらつきの少ない点から多結晶体が望
ましい。多結晶体は、1)シンチレーの原料となる粉末
の合成プロセスと、2)この粉末を用いた焼結プロセス
を経て蛍光体材料を得ることができる。所望のガーネッ
ト構造単相の酸化物を得るには、合成粉末の結晶粒径は
できるだけ小さいほうが良く、1.0μm以下が望ましい。
[0010] The phosphor of the present invention is not particularly limited to a crystal form, and may be a single crystal or a polycrystal. However, a polycrystal is desirable in view of easiness of production and less variation in characteristics. . The phosphor material can be obtained from the polycrystal through 1) a synthesis process of a powder used as a raw material for scintillation, and 2) a sintering process using the powder. In order to obtain a desired oxide having a garnet structure single phase, the crystal grain size of the synthetic powder is preferably as small as possible, and desirably 1.0 μm or less.

【0011】粉末の合成方法としては、1)通常の酸化
物混合法を主体とした方法、2)共沈法、ゾルゲル法と
いった液相を介する方法、3)更には酸化物混合法を主
体として合成した粉末を再度機械的に微細化する方法、
がある。
[0011] Powders can be synthesized by 1) a method mainly based on an ordinary oxide mixing method, 2) a method via a liquid phase such as a coprecipitation method or a sol-gel method, and 3) a further method based on an oxide mixing method. A method of mechanically refining the synthesized powder again,
There is.

【0012】通常の酸化物混合法では、例えば次のよう
にして製造できる。原料粉末としてGd2O3、Ce2O3、Al2O
3、及びGa2O3を所定量秤量した後、例えば自動乳鉢等に
よって30分程度、湿式混合する。この混合粉末を1400℃
〜1700℃の大気中で数時間焼成してシンチレータ合成粉
末を作製する。必要によっては、フラックスとしてK2SO
4等のカリウム化合物、BaF2等の弗化物等を用いて、Gd-
Ce-Al-Ga-O系ガーネット構造の生成を促進させることも
できる。
In a usual oxide mixing method, it can be produced, for example, as follows. Gd 2 O 3 , Ce 2 O 3 , Al 2 O as raw material powder
3 and Ga 2 O 3 are weighed in a predetermined amount, and then wet-mixed with an automatic mortar or the like for about 30 minutes. 1400 ° C
It is baked for several hours in the air at 11700 ° C. to produce a scintillator synthetic powder. If necessary, K 2 SO as flux
Gd- using potassium compounds such as 4 and fluorides such as BaF 2
The formation of a Ce-Al-Ga-O-based garnet structure can be promoted.

【0013】共沈法を用いたプロセスでは、例えば一例
として次のように合成できる。硝酸ガドリニウム、硝酸
アルミナ、硝酸ガリウム、硝酸セリウムを所定量秤量し
て複合硝酸塩水溶液とし、金属イオン濃度の合計量の15
倍相当の尿素を硫酸イオンと共存させる。この水溶液を
70〜100℃に加熱して尿素を加水分解し、Gd-Ce-Al-Ga-O
前駆体を沈殿させる。沈殿物の洗浄を繰り返し、沈殿物
中の無関係陰イオン濃度を1000ppm未満に低下させた
後、120℃程度での乾燥、1200℃程度での仮焼成を行い
シンチレータ粉末とする。乾燥温度は、水分が蒸発する
90℃以上であれば良く、仮焼温度はガーネット構造が生
成される900℃以上であれば良い。生成したガーネット
構造の結晶粒が成長するような高温での熱処理は避けな
ければならない。
In a process using the coprecipitation method, for example, the following synthesis can be performed. A predetermined amount of gadolinium nitrate, alumina nitrate, gallium nitrate, and cerium nitrate were weighed to form a composite nitrate aqueous solution, and the total amount of metal ion concentration was 15%.
Twice the amount of urea coexists with sulfate ions. This aqueous solution
Heat to 70-100 ° C to hydrolyze urea, Gd-Ce-Al-Ga-O
Precipitate the precursor. Washing of the precipitate is repeated to reduce the concentration of irrelevant anions in the precipitate to less than 1000 ppm, followed by drying at about 120 ° C. and calcination at about 1200 ° C. to obtain a scintillator powder. Drying temperature, moisture evaporates
The temperature may be 90 ° C. or higher, and the calcining temperature may be 900 ° C. or higher at which a garnet structure is generated. Heat treatment at a high temperature at which the generated garnet structure crystal grains grow must be avoided.

【0014】共沈法の原料としては、硝酸塩に限らず、
各種金属の塩酸塩、硫酸塩、蓚酸塩等も用いることがで
きる。また、場合によってこれら金属塩を数種類混合し
て用いることもできる。また、尿素の代わりに炭酸水素
アンモニウムを用いることもできる。
The raw materials for the coprecipitation method are not limited to nitrates.
Hydrochlorides, sulfates, oxalates, and the like of various metals can also be used. In some cases, these metal salts may be used in combination of several types. Also, ammonium bicarbonate can be used instead of urea.

【0015】更に、別の方法としては、複合金属溶液中
に、1)尿素と乳酸アンモニウム、2)炭酸水素アンモ
ニウムとアンモニア水、或いは3)硫酸アンモニウムと
アンモニア水、4)マスキング剤としての過酸化水素水
と、アンモニア水と硫酸アンモニウム、等の添加によっ
てもGd-Ce-Al-Ga-O前駆体を沈殿できる。
Further, as another method, 1) urea and ammonium lactate, 2) ammonium bicarbonate and aqueous ammonia, or 3) ammonium sulfate and aqueous ammonia, 4) hydrogen peroxide as a masking agent The Gd-Ce-Al-Ga-O precursor can also be precipitated by adding water, aqueous ammonia, ammonium sulfate, or the like.

【0016】また、原料粉末を機械的に微細化すること
も、焼結によってガーネット構造を得るのに適した手法
である。即ち、前述の酸化物混合法と同様に、構成金属
成分の酸化物を所定量秤量した後、自動乳鉢で30分程度
混合する。この混合粉末を1500℃前後の温度で仮焼成し
たのち、機械的な粉砕を行う。ボールミル、より好まし
くは遊星ボールミルなど、より粉砕エネルギーの高い粉
砕手法がよい。これにより、粉末粒径が約0.01〜0.5μm
程度の粉末を容易に得ることができる。
Further, mechanically pulverizing the raw material powder is also a method suitable for obtaining a garnet structure by sintering. That is, similarly to the above-described oxide mixing method, a predetermined amount of the constituent metal component oxide is weighed, and then mixed in an automatic mortar for about 30 minutes. After calcining the mixed powder at a temperature of about 1500 ° C., mechanical pulverization is performed. A pulverization method with higher pulverization energy, such as a ball mill, more preferably a planetary ball mill, is preferred. As a result, the powder particle size is about 0.01 to 0.5 μm
Powder of a certain degree can be easily obtained.

【0017】このようにして合成した粉末の焼結は、ホ
ットプレス法、HIP法、常圧焼結法、更には常圧焼結法
とHIP法との併用法、等で行うことができる。ホットプ
レス法では、前述の合成粉末を600kgf/cm2程度の圧力で
金型成型して成型体とした後、ホットプレス型にセット
し、真空中、大気中、或いは酸素中の雰囲気下で、1400
℃から1700℃の焼結温度で数時間、300kgf/cm2程度の加
圧力で焼結する。これによって相対密度99.0%以上の蛍
光体を容易に得ることができる。一方、HIP法では、
鉄、或いはW、Mo等の金属製カプセル中に合成粉末を入
れ、真空封止して、1400℃前後の温度で2000atm程度の
圧力で焼結を行う。
The sintering of the powder synthesized in this manner can be performed by a hot press method, a HIP method, a normal pressure sintering method, or a combination of the normal pressure sintering method and the HIP method. In the hot press method, after the above-mentioned synthetic powder is molded into a molded body at a pressure of about 600 kgf / cm 2 and set in a hot press mold, in a vacuum, in the air, or in an atmosphere of oxygen, 1400
Sintering is performed at a sintering temperature of 1 to 700 ° C. for several hours with a pressure of about 300 kgf / cm 2 . This makes it possible to easily obtain a phosphor having a relative density of 99.0% or more. On the other hand, in the HIP method,
The synthetic powder is put in a metal capsule made of iron or W, Mo, or the like, sealed in a vacuum, and sintered at a temperature of about 1400 ° C. and a pressure of about 2000 atm.

【0018】また、常圧焼結法では、合成粉末を600kgf
/cm2程度の圧力で金型成型した後、3000kgf/cm2程度の
圧力で静水圧プレス(CIP)を行った後、1600〜1700℃
前後の大気中、或いは純酸素中で数〜数十時間の焼結を
行う。1700℃を越えると試料が溶解し、1600℃未満であ
ると焼結密度は90%程度となり十分ではない。雰囲気は
大気中、或いは純酸素中が望ましく、Ar、N2などの不活
性雰囲気中或いは真空雰囲気では、焼結体中のボイドを
少なくできない。
In the normal pressure sintering method, the synthetic powder is 600 kgf
/ After molding in cm 2, a pressure, after isostatic pressing at 3000 kgf / cm 2, the pressure (CIP), from 1,600 to 1700 ° C.
Sintering is performed for several to several tens of hours in the atmosphere before and after or in pure oxygen. If the temperature exceeds 1700 ° C., the sample dissolves. If the temperature is lower than 1600 ° C., the sintered density becomes about 90%, which is not sufficient. Atmosphere in air or pure oxygen is preferred, Ar, in an inert atmosphere or vacuum atmosphere such as N 2 can not reduce the voids in the sintered body.

【0019】常圧焼結法によって、相対密度が99.0%以
上の焼結体を得るには、合成粉末として、1)焼結助剤
を添加した粉末を用いる、2)サブミクロンサイズの微
細粉を用いる。また、常圧焼結によって93.0%程度以上
の相対密度のものができれば閉気孔となるため、必要に
応じて金属製カプセルが不要なカプセルフリーHIP法を
追加することによって、相対密度が99.0%以上の蛍光体
を容易に得ることができる。
In order to obtain a sintered body having a relative density of 99.0% or more by the normal pressure sintering method, 1) a powder to which a sintering aid is added is used as a synthetic powder. Is used. In addition, if a material with a relative density of about 93.0% or more is obtained by normal pressure sintering, it will be closed pores. If necessary, a capsule-free HIP method that does not require metal capsules is added, so that the relative density is 99.0% or more. Can easily be obtained.

【0020】本発明によって、マトリックスがガーネッ
ト構造を有し、これ以外の結晶相が2.0wt%未満、相対
密度が99.0%以上、拡散透過率が50.0%以上の酸化物蛍
光体を得ることができる。この蛍光体は、発光出力が高
く、残光が極めて小さいので、X線などを検出する放射
線検出器、特にX線CT装置やポジトロンカメラなどの
放射線検出器に好適である。
According to the present invention, it is possible to obtain an oxide phosphor having a matrix having a garnet structure, a crystal phase other than 2.0% by weight, a relative density of 99.0% or more, and a diffusion transmittance of 50.0% or more. . Since this phosphor has a high luminous output and extremely low afterglow, it is suitable for a radiation detector for detecting X-rays and the like, in particular, a radiation detector such as an X-ray CT apparatus and a positron camera.

【0021】本発明の放射線検出器は、セラミックスシ
ンチレータと、このシンチレータの発光を検知するため
の光検出器とを備え、セラミックスシンチレータとして
上述の蛍光体を用いたものである。光検出器としてはPI
N型ダイオードを用いる。このフォトダイオ−ドは感度
が高く、応答時間が速く、かつ波長感度が可視光から近
赤外領域にあるので、本発明の蛍光体の発光波長とのマ
ッチングがよい。
The radiation detector of the present invention includes a ceramic scintillator and a photodetector for detecting light emission of the scintillator, and uses the above-described phosphor as the ceramic scintillator. PI as photodetector
Use N-type diode. This photodiode has a high sensitivity, a fast response time, and a wavelength sensitivity in a range from visible light to near-infrared light, so that the matching with the emission wavelength of the phosphor of the present invention is good.

【0022】また、本発明のX線CT装置は、X線源
と、このX線源に対向して配置されたX線検出器と、こ
れらX線源及びX線検出器を保持し被検体の周りで回転
駆動させる回転体と、X線検出器で検出されたX線の強
度に基づき被検体の断層像を画像構成する画像再構成手
段とを備えたX線CT装置において、X線検出器として
上述した蛍光体とフォトダイオードを組み合わせた放射
線検出器を用いる。このX線検出器を用いることによ
り、X線を高い検出効率で検出できるので、従来のシン
チレータ(例えばCdWO4)を用いたX線CT装置に比べ
感度を約2倍向上でき、又残光が極めて少ないため、高
画質、高分解能の画像を得ることができる。
Further, the X-ray CT apparatus of the present invention comprises an X-ray source, an X-ray detector arranged opposite to the X-ray source, and an X-ray source which holds the X-ray source and the X-ray detector. An X-ray CT apparatus comprising: a rotating body driven to rotate around the X-ray detector; and an image reconstruction unit configured to form a tomographic image of the subject based on the intensity of the X-ray detected by the X-ray detector. As the detector, a radiation detector combining the above-described phosphor and photodiode is used. By using this X-ray detector, X-rays can be detected with high detection efficiency, so that the sensitivity can be improved about twice as compared with an X-ray CT apparatus using a conventional scintillator (for example, CdWO 4 ), and afterglow is reduced. Since the number is extremely small, high-quality and high-resolution images can be obtained.

【0023】[0023]

【発明の実施の形態】以下、本発明の実施例について説
明する。
Embodiments of the present invention will be described below.

【0024】(実施例1)原料粉末として、Gd2O3、Ce2
O3、Al2O3、及びGa2O3を用いて、試料No.1〜6を製造
した。粉末を原子量比で表1のように秤量して、自動乳
鉢等によって30分、エタノールを用いて湿式混合した。
この混合粉末に、フラックス成分としてK2SO4を加え、
これらの混合物をアルミナるつぼに充填し、1650℃の大
気中で3時間焼成した。
(Example 1) Gd 2 O 3 , Ce 2
Sample Nos. 1 to 6 were manufactured using O 3 , Al 2 O 3 , and Ga 2 O 3 . The powder was weighed in atomic ratio as shown in Table 1 and wet-mixed with an automatic mortar or the like for 30 minutes using ethanol.
To this mixed powder, K 2 SO 4 is added as a flux component,
The mixture was filled in an alumina crucible and fired in an atmosphere at 1650 ° C. for 3 hours.

【0025】フラックス成分を除去するため、純水中で
6回水洗いしてシンチレータ用合成粉末を得た。この合
成粉末を、600kgf/cm2の圧力で金型成型して成型体とし
た後、ホットプレスダイス型にセットして、真空中雰囲
気下で、1550℃で3時間、300kgf/cm2の圧力でホットプ
レス焼結を行った。相対密度はいずれも99.9%以上であ
った。これら焼結体を、大気中、1300℃での3時間のア
ニールを施した後、厚さ1.8mmに機械加工してセラミッ
クスシンチレータを作製した。この試料の異相量と拡散
透過率とを、X線回折装置、並びに分光光度計を用いて
測定した。また、これら試料とフォトダイオードとを組
み合わせて検出器を作り、X線源(120kV、150mA)から11
0cm離れたところに検出器を置き、発光強度、並びに残
光を評価した。発光強度はCdWO4の値を1としたときの
相対値で、残光はX線を遮断してから30ms後の減衰率で
示した。実施例1の組成からなるシンチレータは発光強
度が高く、しかも残光の小さい優れたシンチレータ特性
を有することが分かる。
In order to remove the flux component, the powder was washed with pure water six times to obtain a synthetic powder for scintillator. This synthetic powder was molded into a molded body at a pressure of 600 kgf / cm 2 , and then set in a hot press die, and at a pressure of 300 kgf / cm 2 at 1550 ° C. for 3 hours in a vacuum atmosphere. For hot press sintering. The relative densities were all over 99.9%. These sintered bodies were annealed in air at 1300 ° C. for 3 hours, and then machined to a thickness of 1.8 mm to produce a ceramic scintillator. The amount of the different phase and the diffuse transmittance of this sample were measured using an X-ray diffractometer and a spectrophotometer. In addition, a detector was made by combining these samples with a photodiode, and an X-ray source (120 kV, 150 mA) was used.
The detector was placed at a distance of 0 cm, and the emission intensity and the afterglow were evaluated. The luminescence intensity was a relative value when the value of CdWO 4 was set to 1, and the afterglow was represented by an attenuation rate 30 ms after the X-ray was cut off. It can be seen that the scintillator having the composition of Example 1 has high emission intensity and has excellent scintillator characteristics with little afterglow.

【表1】 [Table 1]

【0026】(実施例2)原料粉末として硝酸ガドリニ
ウム、硝酸アルミニウム、硝酸ガリウム、硝酸セリウム
を用いて、表2に示す試料No.7〜19を作製した。各粉末
を秤量して、500ccの複合硝酸塩水溶液とした。金属イ
オン濃度の合計量の14.5倍相当の尿素を添加し、更に濃
硫酸を用いて1.2倍量の硫酸イオンを共存させて、90℃
に加熱して撹拌しながら6時間反応させた後、室温まで
冷却した。このようにして沈殿させたGd-Ce-Al-Ga-O前
駆体を、ろ過と水洗のサイクルを6回繰り返した後に15
0℃で12時間乾燥させた。得られた沈殿物中の硫酸イオ
ン濃度は、いずれの試料においても900ppm以下であっ
た。この沈殿を、大気中、1200℃で3時間仮焼して、合
成粉末を製造した。SEMで観察したところ、いずれの試
料においても平均一次粒子径は0.1μm前後の値であっ
た。これら合成粉末を、φ60の金型を用いて600kgf/cm2
の圧力で成型した後、3000kgf/cm2の圧力で静水圧プレ
ス(CIP)を行った後、純酸素中、1650℃で3時間の常
圧焼結を行った。実施例1と同様の方法で、機械加工を
行いシンチレータウェハーとした後、異相量、拡散透過
率といった材料特性、並びに発光強度、残光といったシ
ンチレータとしての特性を評価した。
Example 2 Sample Nos. 7 to 19 shown in Table 2 were prepared using gadolinium nitrate, aluminum nitrate, gallium nitrate, and cerium nitrate as raw material powders. Each powder was weighed to make a 500 cc aqueous solution of a composite nitrate. Add urea equivalent to 14.5 times the total amount of metal ion concentration, and use concentrated sulfuric acid to allow 1.2 times the amount of sulfate ions to coexist.
Then, the mixture was reacted for 6 hours with stirring and then cooled to room temperature. The Gd-Ce-Al-Ga-O precursor precipitated in this way is subjected to filtration and washing cycles six times, and then 15 g.
Dry at 0 ° C. for 12 hours. The sulfate ion concentration in the obtained precipitate was 900 ppm or less in all samples. This precipitate was calcined in the air at 1200 ° C. for 3 hours to produce a synthetic powder. When observed by SEM, the average primary particle diameter of all samples was around 0.1 μm. 600 kgf / cm 2 of these synthetic powders was
After pressing at a pressure of 3000 kgf / cm 2 , isostatic pressing (CIP) was performed, and then normal pressure sintering was performed in pure oxygen at 1650 ° C. for 3 hours. In the same manner as in Example 1, mechanical processing was performed to obtain a scintillator wafer, and then material properties such as the amount of different phases and diffuse transmittance, and characteristics as a scintillator such as light emission intensity and afterglow were evaluated.

【表2】 [Table 2]

【0027】実施例1と同様に、実施例2の材料組成に
おいては、発光強度、残光ともに優れた特性を示すこと
が分かる。なお、尿素の代わりに炭酸水素アンモニウム
を用いて沈殿させた前駆体を使用しても同様の結果が得
られた。また、複合金属溶液中に、1)尿素と乳酸アン
モニウム、2)炭酸水素アンモニウムとアンモニア水、
或いは3)硫酸アンモニウムとアンモニア水、4)マス
キング剤としての過酸化水素水にアンモニア水と硫酸ア
ンモニウム、等の添加、によって合成した粉末でも、い
ずれもサブミクロンサイズの粉末が得られ、良好なシン
チレータ特性を示した。
As in the case of Example 1, it can be seen that the material composition of Example 2 exhibits excellent characteristics in both emission intensity and afterglow. Similar results were obtained when a precursor precipitated using ammonium bicarbonate was used instead of urea. In the composite metal solution, 1) urea and ammonium lactate, 2) ammonium bicarbonate and aqueous ammonia,
Alternatively, powders synthesized by adding 3) ammonium sulfate and ammonia water and 4) aqueous ammonia as a masking agent to aqueous ammonia and ammonium sulfate, etc., can obtain submicron-sized powders, and have good scintillator characteristics. Indicated.

【0028】(実施例3)実施例1と同様の構成金属成
分の酸化物粉末を用いて、試料No.20〜31を製造した。
粉末を秤量した後、自動乳鉢で30分程度混合した。この
混合粉末を大気中、1500℃、3時間、仮焼成した。この
仮焼粉をアルミナ製自動乳鉢を用いて、30分間乾式粉砕
して0.5mm以下の粉末とした。この粉末を、さらに遠心
ボールミルを用いて機械的な粉砕を行った。粉砕媒体と
してはZrO2ボールを用いた。粉砕後の粉末の平均粒子径
は、いずれの試料もほぼ同じで約0.08μmであった。こ
の粉末中へのZrO2の混入が懸念されるため、No.22の試
料の化学分析を行った結果、Zrの含有量は0.002wt%
で、不純物の混入量としては極めて僅かな値であった。
これら合成粉末を用いて、実施例2と同様の方法で成型
体を作製し、常圧焼結によってシンチレータ材料を製造
した。その結果を表3に示す。実施例3の組成範囲の材
料では、いずれも良好なシンチレータ特性を示した。
(Example 3) Samples Nos. 20 to 31 were manufactured using the same oxide powder of the constituent metal components as in Example 1.
After weighing the powder, it was mixed for about 30 minutes in an automatic mortar. This mixed powder was calcined in air at 1500 ° C. for 3 hours. This calcined powder was dry-pulverized for 30 minutes using an automatic mortar made of alumina to obtain a powder of 0.5 mm or less. This powder was further mechanically pulverized using a centrifugal ball mill. ZrO 2 balls were used as grinding media. The average particle size of the pulverized powder was almost the same for all samples, and was about 0.08 μm. Since there is concern that ZrO 2 may be mixed into this powder, a chemical analysis of the No. 22 sample revealed that the Zr content was 0.002 wt%.
Thus, the amount of impurities mixed was a very small value.
Using these synthetic powders, a molded body was produced in the same manner as in Example 2, and a scintillator material was produced by normal-pressure sintering. Table 3 shows the results. All of the materials in the composition range of Example 3 exhibited good scintillator characteristics.

【表3】 [Table 3]

【0029】(実施例4)図2に本発明のシンチレータ
を用いたX線検出器の一例を示す。シンチレータ11はフ
ォトダイオード13と接着し、更にシンチレータの発光を
外部に逃がさないための遮蔽12で覆う。遮蔽12はX線を
透過し、光を反射する材料であるアルミニウム等を用い
る。本発明のシンチレータ11がX線を吸収すると、従来
のシンチレータに比較して高い発光出力を有し、Siフォ
トダイオードの感度波長に比較的近い波長である550nm
近傍に発光ピークを有するので、高い効率でフォトダイ
オードによって光電変換された。また、残光も従来シン
チレータに比して極めて少なく、X線検出器として優れ
た特性を示した。
(Embodiment 4) FIG. 2 shows an example of an X-ray detector using the scintillator of the present invention. The scintillator 11 is adhered to the photodiode 13 and further covered with a shield 12 for preventing the light emitted from the scintillator from escaping to the outside. The shield 12 is made of a material that transmits X-rays and reflects light, such as aluminum. When the scintillator 11 of the present invention absorbs X-rays, the scintillator 11 has a higher luminous output than the conventional scintillator, and has a wavelength of 550 nm which is relatively close to the sensitivity wavelength of the Si photodiode.
Since it has an emission peak in the vicinity, it was photoelectrically converted by the photodiode with high efficiency. Further, the afterglow was extremely small as compared with the conventional scintillator, and exhibited excellent characteristics as an X-ray detector.

【0030】(実施例5)図3に本発明のX線CT装置
の概略を示す。この装置はガントリ部18と画像再構成部
22とを備え、ガントリ部18には、被検体が搬入される開
口部20を備えた回転円板19と、この回転円板に搭載され
たX線管16と、X線管に取りつけられX線の放射方向を
制御するコリメータ17と、X線管に対向して回転円板に
搭載されたX線検出器15と、X線検出器15で検出された
X線を特定の信号に変換する検出器回路21と、回転円板
の回転及びX線束の幅を制御するスキャン制御回路24と
を備えている。開口部20に設置された寝台に被検者を寝
かせた状態で、X線管からX線が照射される。このX線
はコリメータによって指向性を得て、X線検出器によっ
て前記被検体の透過X線を検出する。回転円板を被検体
の周りを回転させることによって、X線の照射方向を変
えながらX線を検出し、画像再構成部22で断層像を作成
し、モニター23に表示する。
(Embodiment 5) FIG. 3 schematically shows an X-ray CT apparatus according to the present invention. This device consists of a gantry section 18 and an image reconstruction section.
The gantry section 18 includes a rotating disk 19 having an opening 20 into which a subject is carried, an X-ray tube 16 mounted on the rotating disk, and an X-ray tube attached to the X-ray tube. A collimator 17 for controlling the radiation direction of the X-ray, an X-ray detector 15 mounted on a rotating disk facing the X-ray tube, and converting the X-ray detected by the X-ray detector 15 into a specific signal. It comprises a detector circuit 21 and a scan control circuit 24 for controlling the rotation of the rotating disk and the width of the X-ray flux. X-rays are emitted from an X-ray tube in a state where the subject lies on a bed set in the opening 20. The X-rays have directivity obtained by a collimator, and X-rays transmitted through the subject are detected by an X-ray detector. By rotating the rotating disk around the subject, X-rays are detected while changing the X-ray irradiation direction, and a tomographic image is created by the image reconstruction unit 22 and displayed on the monitor 23.

【0031】[0031]

【発明の効果】本発明によれば、X線に対する発光効率
が高く、残光が極めて少ない蛍光体を提供できる。ま
た、この蛍光体を光検出器を備えた放射線検出器のシン
チレータとして用いることにより光出力が大きな低残光
放射線検出器が得られ、このX線検出器をX線CT装置
に適用することによって、高解像度、高品質の断層像が
得られる。
According to the present invention, it is possible to provide a phosphor having a high luminous efficiency with respect to X-rays and an extremely low afterglow. Further, by using this phosphor as a scintillator of a radiation detector having a photodetector, a low-persistence radiation detector having a large light output can be obtained. By applying this X-ray detector to an X-ray CT apparatus, , High-resolution, high-quality tomographic images can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)はガーネット構造の金属イオンの配置
図、(b)はガーネット構造の金属イオン周囲の酸素の
配置図。
1A is a layout diagram of metal ions having a garnet structure, and FIG. 1B is a layout diagram of oxygen around metal ions having a garnet structure.

【図2】本発明のシンチレータを用いたX線検出器の概
略図。
FIG. 2 is a schematic diagram of an X-ray detector using the scintillator of the present invention.

【図3】本発明のX線CT装置の概略図。FIG. 3 is a schematic diagram of an X-ray CT apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1…ガーネット構造におけるcサイト 2…ガーネット構造におけるaサイト 3…ガーネット構造におけるdサイト 4…酸素イオン 11…シンチレータ 12…遮蔽板 13…フォトダイオード 16…X線管 17…コリメータ 18…ガントリ 19…回転円板 20…開口部 21…検出器回路 22…画像再構成部 23…モニタ 24…スキャン制御回路 1 ... c site in garnet structure 2 ... a site in garnet structure 3 ... d site in garnet structure 4 ... oxygen ions 11 ... scintillator 12 ... shielding plate 13 ... photodiode 16 ... X-ray tube 17 ... collimator 18 ... gantry 19 ... rotation Disk 20 ... Opening 21 ... Detector circuit 22 ... Image reconstruction unit 23 ... Monitor 24 ... Scan control circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古曳 孝明 東京都千代田区内神田一丁目1番14号 株 式会社日立メディコ内 (72)発明者 山田 敞馗 東京都千代田区内神田一丁目1番14号 株 式会社日立メディコ内 Fターム(参考) 2G088 EE02 FF02 GG10 JJ37 4H001 CA08 XA08 XA13 XA31 XA58 XA64  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Takaaki Furuhiki 1-1-1 Uchikanda, Chiyoda-ku, Tokyo Inside Hitachi Medical Corporation (72) Inventor Shoki Yamada 1-1-1, Uchikanda, Chiyoda-ku, Tokyo No. 14 F-term in Hitachi Medical Corporation (reference) 2G088 EE02 FF02 GG10 JJ37 4H001 CA08 XA08 XA13 XA31 XA58 XA64

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 少なくともGd、Ce、Al、Ga、O元素から
構成された酸化物において、該酸化物の結晶構造がガー
ネット構造であることを特徴とする酸化物蛍光体。
1. An oxide phosphor comprising at least an element composed of Gd, Ce, Al, Ga, and O, wherein the crystal structure of the oxide is a garnet structure.
【請求項2】 請求項1の酸化物蛍光体において、ガー
ネット構造以外の異相量が2.0wt%未満で、相対密度が9
9.0%以上、拡散透過率が50.0%以上であることを特徴
とする酸化物蛍光体。
2. The oxide phosphor according to claim 1, wherein the amount of the hetero phase other than the garnet structure is less than 2.0 wt% and the relative density is 9%.
An oxide phosphor having a diffuse transmittance of at least 9.0% and a diffuse transmittance of at least 50.0%.
【請求項3】 請求項1及び請求項2の酸化物蛍光体に
おいて、発光スペクトルのメインピークが550nm近傍に
存在し、励起光を絶ってから30ms後における残光の減衰
率が10-3以下であることを特徴とする酸化物蛍光体。
3. The oxide phosphor according to claim 1, wherein the main peak of the emission spectrum exists near 550 nm, and the decay rate of afterglow 30 ms after the excitation light is cut off is 10 −3 or less. An oxide phosphor characterized by the following.
【請求項4】 請求項1から請求項3の酸化物蛍光体に
おいて、Gd/(Al+Ga+Gd)の原子比が0.33以上、0.42以下
であることを特徴とする酸化物蛍光体。但し、CeはGdに
対して原子比で0.05 %以上、2.00 %以下であり、(Gd+C
e)/(Al+Ga+Gd+Ce)の原子比が0.375の組成を除く。
4. The oxide phosphor according to claim 1, wherein an atomic ratio of Gd / (Al + Ga + Gd) is 0.33 or more and 0.42 or less. However, Ce is 0.05% or more and 2.00% or less in atomic ratio with respect to Gd, and (Gd + C
e) Except for the composition in which the atomic ratio of (Al + Ga + Gd + Ce) is 0.375.
【請求項5】 請求項1から請求項4の酸化物蛍光体に
おいて、Ga/Alの原子比が0.20以上、4.0以下であること
を特徴とする酸化物蛍光体。
5. The oxide phosphor according to claim 1, wherein an atomic ratio of Ga / Al is 0.20 or more and 4.0 or less.
【請求項6】 セラミックスシンチレータと、このシン
チレータの発光を検出するための光検出器を備えた放射
線検出器において、該セラミックスシンチレータとして
請求項1から請求項5に記載の酸化物蛍光体を用いたこ
とを特徴とする放射線検出器。
6. A radiation detector comprising a ceramic scintillator and a photodetector for detecting light emission of the scintillator, wherein the oxide phosphor according to claim 1 is used as the ceramic scintillator. A radiation detector, characterized in that:
【請求項7】 X線源と、このX線源に対向して置かれ
たX線検出器と、これらX線源及びX線源検出器を保持
し、被検体の周りを回転駆動される回転円板と、前記X
線検出器で検出されたX線の強度に基づき該被検体の断
層像を画像再構成する画像再構成手段とを備えたX線C
T装置において、該X線検出器として請求項6に記載の
放射線検出器を用いたことを特徴とするX線CT装置。
7. An X-ray source, an X-ray detector placed opposite to the X-ray source, holding the X-ray source and the X-ray source detector, and driven to rotate around a subject. A rotating disk and the X
Image reconstruction means for reconstructing a tomographic image of the subject based on the intensity of the X-rays detected by the X-ray detector.
7. An X-ray CT apparatus, wherein the radiation detector according to claim 6 is used as the X-ray detector in the T apparatus.
JP17661999A 1999-06-23 1999-06-23 Oxide phosphor, radiation detector using the same, and X-ray CT apparatus Expired - Lifetime JP4290282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17661999A JP4290282B2 (en) 1999-06-23 1999-06-23 Oxide phosphor, radiation detector using the same, and X-ray CT apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17661999A JP4290282B2 (en) 1999-06-23 1999-06-23 Oxide phosphor, radiation detector using the same, and X-ray CT apparatus

Publications (3)

Publication Number Publication Date
JP2001004753A true JP2001004753A (en) 2001-01-12
JP2001004753A5 JP2001004753A5 (en) 2006-08-10
JP4290282B2 JP4290282B2 (en) 2009-07-01

Family

ID=16016752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17661999A Expired - Lifetime JP4290282B2 (en) 1999-06-23 1999-06-23 Oxide phosphor, radiation detector using the same, and X-ray CT apparatus

Country Status (1)

Country Link
JP (1) JP4290282B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002050211A1 (en) * 2000-12-21 2002-06-27 Hitachi Medical Corporation Oxide phosphor and radiation detector using it, and x-ray ct device
JP2003119070A (en) * 2001-10-15 2003-04-23 Hitachi Medical Corp Phosphor element, radiation detector using the same and medical diagnostic imaging device
WO2006068130A1 (en) * 2004-12-21 2006-06-29 Hitachi Metals, Ltd. Fluorescent material and method for preparation thereof, radiation detector using fluorescent material, and x-ray ct device
JP2006321974A (en) * 2005-04-18 2006-11-30 Mitsubishi Chemicals Corp Phosphor, light emitting device using the same, image display and lighting apparatus
CN100347267C (en) * 2005-03-21 2007-11-07 南昌大学 Garnet type gadolinium aluminate based fluorescent powder and method for making same
US7297954B2 (en) 2005-05-24 2007-11-20 Hitachi Chemical Company, Ltd. Inorganic scintillator, and radiation detector and PET apparatus employing it
WO2008093869A1 (en) 2007-02-02 2008-08-07 Hitachi Metals, Ltd. Fluorescent material, scintillator using the fluorescent material, and radiation detector
EP2157153A1 (en) 2008-07-31 2010-02-24 Hitachi Metals, Ltd. Fluorescent material, scintillator using same, and radiation detector using same
WO2010095737A1 (en) * 2009-02-23 2010-08-26 株式会社東芝 Solid-state scintillator, radiation detector, and x-ray tomographic imaging device
JP2011256371A (en) * 2010-05-10 2011-12-22 Shin-Etsu Chemical Co Ltd Wavelength conversion member, light-emitting device, and method of manufacturing wavelength conversion member
JP2012072331A (en) * 2010-09-29 2012-04-12 Toshiba Corp Material for solid scintillator, solid scintillator, and radiation detector and radiation inspection device using the same
WO2012057133A1 (en) 2010-10-29 2012-05-03 日立金属株式会社 Polycrystalline scintillator for detecting soft x-rays
WO2012105202A1 (en) * 2011-01-31 2012-08-09 国立大学法人東北大学 Garnet type crystal for scintillator and radiation detector using same
JP2012180399A (en) * 2011-02-28 2012-09-20 Furukawa Co Ltd Garnet-type crystal for scintillator, and radiation detector using the same
JP2013002882A (en) * 2011-06-14 2013-01-07 Furukawa Co Ltd Radiation detector
JP2014145040A (en) * 2013-01-29 2014-08-14 Sakai Chem Ind Co Ltd Production method of composition for stress light-emitting material, composition for stress light-emitting material obtained by the production method, and stress light-emitting material produced from the composition
US11284491B2 (en) 2011-12-02 2022-03-22 Lynk Labs, Inc. Color temperature controlled and low THD LED lighting devices and systems and methods of driving the same
US11297705B2 (en) 2007-10-06 2022-04-05 Lynk Labs, Inc. Multi-voltage and multi-brightness LED lighting devices and methods of using same
US11317495B2 (en) 2007-10-06 2022-04-26 Lynk Labs, Inc. LED circuits and assemblies
US11528792B2 (en) 2004-02-25 2022-12-13 Lynk Labs, Inc. High frequency multi-voltage and multi-brightness LED lighting devices
US11566759B2 (en) 2017-08-31 2023-01-31 Lynk Labs, Inc. LED lighting system and installation methods
US11638336B2 (en) 2004-02-25 2023-04-25 Lynk Labs, Inc. AC light emitting diode and AC LED drive methods and apparatus
US11678420B2 (en) 2004-02-25 2023-06-13 Lynk Labs, Inc. LED lighting system
US11953167B2 (en) 2011-08-18 2024-04-09 Lynk Labs, Inc. Devices and systems having AC LED circuits and methods of driving the same

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4683719B2 (en) * 2000-12-21 2011-05-18 株式会社日立メディコ Oxide phosphor, radiation detector using the same, and X-ray CT apparatus
JP2002189080A (en) * 2000-12-21 2002-07-05 Hitachi Medical Corp Oxide phosphor, radiation detector using the same, and x-ray ct
WO2002050211A1 (en) * 2000-12-21 2002-06-27 Hitachi Medical Corporation Oxide phosphor and radiation detector using it, and x-ray ct device
JP2003119070A (en) * 2001-10-15 2003-04-23 Hitachi Medical Corp Phosphor element, radiation detector using the same and medical diagnostic imaging device
US11528792B2 (en) 2004-02-25 2022-12-13 Lynk Labs, Inc. High frequency multi-voltage and multi-brightness LED lighting devices
US11638336B2 (en) 2004-02-25 2023-04-25 Lynk Labs, Inc. AC light emitting diode and AC LED drive methods and apparatus
US11678420B2 (en) 2004-02-25 2023-06-13 Lynk Labs, Inc. LED lighting system
EP1829950A4 (en) * 2004-12-21 2010-03-10 Hitachi Metals Ltd Fluorescent material and method for preparation thereof, radiation detector using fluorescent material, and x-ray ct device
EP1829950A1 (en) * 2004-12-21 2007-09-05 Hitachi Metals, Ltd. Fluorescent material and method for preparation thereof, radiation detector using fluorescent material, and x-ray ct device
JP5233119B2 (en) * 2004-12-21 2013-07-10 日立金属株式会社 Fluorescent material and manufacturing method thereof, radiation detector using fluorescent material, and X-ray CT apparatus
US7595492B2 (en) 2004-12-21 2009-09-29 Hitachi Metals, Ltd. Fluorescent material, a method of manufacturing the fluorescent material, a radiation detector using the fluorescent material, and an X-ray CT scanner
WO2006068130A1 (en) * 2004-12-21 2006-06-29 Hitachi Metals, Ltd. Fluorescent material and method for preparation thereof, radiation detector using fluorescent material, and x-ray ct device
JPWO2006068130A1 (en) * 2004-12-21 2008-06-12 日立金属株式会社 Fluorescent material and manufacturing method thereof, radiation detector using fluorescent material, and X-ray CT apparatus
US7947956B2 (en) 2004-12-21 2011-05-24 Hitachi Metals, Ltd. Fluorescent material, a method of manufacturing the fluorescent material, a radiation detector using the fluorescent material, and an X-ray CT scanner
CN100347267C (en) * 2005-03-21 2007-11-07 南昌大学 Garnet type gadolinium aluminate based fluorescent powder and method for making same
JP2006321974A (en) * 2005-04-18 2006-11-30 Mitsubishi Chemicals Corp Phosphor, light emitting device using the same, image display and lighting apparatus
US7297954B2 (en) 2005-05-24 2007-11-20 Hitachi Chemical Company, Ltd. Inorganic scintillator, and radiation detector and PET apparatus employing it
US8410446B2 (en) 2007-02-02 2013-04-02 Hitachi Metals, Ltd. Fluorescent material, scintillator using same, and radiation detector using same
WO2008093869A1 (en) 2007-02-02 2008-08-07 Hitachi Metals, Ltd. Fluorescent material, scintillator using the fluorescent material, and radiation detector
US11729884B2 (en) 2007-10-06 2023-08-15 Lynk Labs, Inc. LED circuits and assemblies
US11317495B2 (en) 2007-10-06 2022-04-26 Lynk Labs, Inc. LED circuits and assemblies
US11297705B2 (en) 2007-10-06 2022-04-05 Lynk Labs, Inc. Multi-voltage and multi-brightness LED lighting devices and methods of using same
US8129685B2 (en) 2008-07-31 2012-03-06 Hitachi Metals, Ltd. Fluorescent material, scintillator using same, and radiation detector using same
EP2157153A1 (en) 2008-07-31 2010-02-24 Hitachi Metals, Ltd. Fluorescent material, scintillator using same, and radiation detector using same
JP5686724B2 (en) * 2009-02-23 2015-03-18 株式会社東芝 Solid scintillator, radiation detector, and X-ray tomography apparatus
WO2010095737A1 (en) * 2009-02-23 2010-08-26 株式会社東芝 Solid-state scintillator, radiation detector, and x-ray tomographic imaging device
US8377335B2 (en) 2009-02-23 2013-02-19 Kabushiki Kaisha Toshiba Solid scintillator, radiation detector, and tomograph
KR101799109B1 (en) 2010-05-10 2017-11-17 신에쓰 가가꾸 고교 가부시끼가이샤 Wavelength converting member, light-emitting device, and method for manufacturing wavelength converting member
JP2011256371A (en) * 2010-05-10 2011-12-22 Shin-Etsu Chemical Co Ltd Wavelength conversion member, light-emitting device, and method of manufacturing wavelength conversion member
JP2012072331A (en) * 2010-09-29 2012-04-12 Toshiba Corp Material for solid scintillator, solid scintillator, and radiation detector and radiation inspection device using the same
US8815122B2 (en) 2010-10-29 2014-08-26 Hitachi Metals, Ltd. Polycrystalline scintillator for detecting soft X-rays
WO2012057133A1 (en) 2010-10-29 2012-05-03 日立金属株式会社 Polycrystalline scintillator for detecting soft x-rays
JP5952746B2 (en) * 2011-01-31 2016-07-13 古河機械金属株式会社 Garnet-type single crystal for scintillator and radiation detector using the same
WO2012105202A1 (en) * 2011-01-31 2012-08-09 国立大学法人東北大学 Garnet type crystal for scintillator and radiation detector using same
US8969812B2 (en) 2011-01-31 2015-03-03 Furukawa Co., Ltd. Garnet-type crystal for scintillator and radiation detector using the same
JPWO2012105202A1 (en) * 2011-01-31 2014-07-03 古河機械金属株式会社 Garnet-type crystal for scintillator and radiation detector using the same
JP2012180399A (en) * 2011-02-28 2012-09-20 Furukawa Co Ltd Garnet-type crystal for scintillator, and radiation detector using the same
JP2013002882A (en) * 2011-06-14 2013-01-07 Furukawa Co Ltd Radiation detector
US11953167B2 (en) 2011-08-18 2024-04-09 Lynk Labs, Inc. Devices and systems having AC LED circuits and methods of driving the same
US11284491B2 (en) 2011-12-02 2022-03-22 Lynk Labs, Inc. Color temperature controlled and low THD LED lighting devices and systems and methods of driving the same
JP2014145040A (en) * 2013-01-29 2014-08-14 Sakai Chem Ind Co Ltd Production method of composition for stress light-emitting material, composition for stress light-emitting material obtained by the production method, and stress light-emitting material produced from the composition
US11566759B2 (en) 2017-08-31 2023-01-31 Lynk Labs, Inc. LED lighting system and installation methods

Also Published As

Publication number Publication date
JP4290282B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
JP4290282B2 (en) Oxide phosphor, radiation detector using the same, and X-ray CT apparatus
EP1043383B2 (en) Phosphors, and radiation detectors and x-ray ct unit made by using the same
US7008558B2 (en) Terbium or lutetium containing scintillator compositions having increased resistance to radiation damage
JP4683719B2 (en) Oxide phosphor, radiation detector using the same, and X-ray CT apparatus
US5116560A (en) Method of forming rare earth oxide ceramic scintillator with ammonium dispersion of oxalate precipitates
US6793848B2 (en) Terbium or lutetium containing garnet scintillators having increased resistance to radiation damage
CA2059915C (en) Method of forming yttria-gadolinia ceramic scintillator using hydroxide coprecipitation step
JPS5930883A (en) Rare earth element-added yttria-gadolinia ceramic scintillator and manufacture
JP3777486B2 (en) Phosphor, radiation detector using the same, and X-ray CT apparatus
EP1279717B1 (en) Phosphor, radiation detector containing the same, and x-ray ct apparatus
JP2001294853A (en) Oxide fluorescent substance, radiation detector using the same, and x-ray ct apparatus
JPH0262596B2 (en)
JP4429444B2 (en) Scintillator, radiation detector and X-ray CT apparatus using the same
JP2003119070A (en) Phosphor element, radiation detector using the same and medical diagnostic imaging device
JPH0585824A (en) Process for producing yttria-gadolinia ceramic scintillator from coprecipitated oxalate dispersed with ammonium
JP2001181043A (en) Transparent polycrystalline garnet scintillator, powder for scintillator and method for producing the same
WO2022202500A1 (en) Scintillator and radiation detector
JP2005095514A (en) Radiation detector and x-ray ct apparatus using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090401

R150 Certificate of patent or registration of utility model

Ref document number: 4290282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term