JP2003119070A - Phosphor element, radiation detector using the same and medical diagnostic imaging device - Google Patents

Phosphor element, radiation detector using the same and medical diagnostic imaging device

Info

Publication number
JP2003119070A
JP2003119070A JP2001316658A JP2001316658A JP2003119070A JP 2003119070 A JP2003119070 A JP 2003119070A JP 2001316658 A JP2001316658 A JP 2001316658A JP 2001316658 A JP2001316658 A JP 2001316658A JP 2003119070 A JP2003119070 A JP 2003119070A
Authority
JP
Japan
Prior art keywords
phosphor
radiation
radiation detector
powder
phosphor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001316658A
Other languages
Japanese (ja)
Other versions
JP4087093B2 (en
JP2003119070A5 (en
Inventor
Makoto Sato
佐藤  誠
Tsuneyuki Kanai
恒行 金井
Ichiro Miura
一朗 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2001316658A priority Critical patent/JP4087093B2/en
Publication of JP2003119070A publication Critical patent/JP2003119070A/en
Publication of JP2003119070A5 publication Critical patent/JP2003119070A5/ja
Application granted granted Critical
Publication of JP4087093B2 publication Critical patent/JP4087093B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Luminescent Compositions (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a phosphor element having high light emission efficiency and low energy dependence and to provide a radiation detector and a medical diagnostic imaging device which use the element. SOLUTION: The phosphor element uses a phosphor comprising a mother crystal having a garnet structure with Ce as the light emitting element and containing at least Gd, Al, Ga and O. The phosphor element has >=99.8% relative density, >=4 μm average grain size and 550 nm main wavelength for mission of light. The phosphor element shows <=0.6 mm<-1> absorption coefficient μ for light at 550 nm wavelength and has high transmittance. Therefore, the element does not cause decrease in the sensitivity for radiation in a low energy region and is suitable for a radiation detector, particularly for a radiation detector of a medical diagnostic imaging device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、X線、γ線など
を検出する放射線検出器、特にX線CT装置などの医用
画像診断装置に好適な放射線検出器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation detector for detecting X-rays, γ-rays, etc., and particularly to a radiation detector suitable for a medical image diagnostic apparatus such as an X-ray CT apparatus.

【0002】[0002]

【従来の技術】従来、X線CT装置などの医用画像診断
装置に用いる放射線検出器としては、Xeガス電離箱方式
のものや、CdWO4、CsI:Tlなどの単結晶シンチレータ
や、希土類酸化物系蛍光体(特公昭63-59436号、特開平
3-50991号、WO99/33934)や希土類硫化物系蛍光体(特
公昭60-4856号)を用いたセラミックシンチレータなど
の蛍光体素子と、Siフォトダイオードや光電子倍増管な
どの光電変換素子を組み合わせた固体検出器が用いられ
てきた。近年のX線CT装置の放射線検出器において
は、固体検出器が主流となっている。
2. Description of the Related Art Conventionally, a radiation detector used in a medical image diagnostic apparatus such as an X-ray CT apparatus has a Xe gas ionization chamber type, a single crystal scintillator such as CdWO 4 , CsI: Tl, or a rare earth oxide. -Based phosphor (Japanese Patent Publication No. 63-59436)
3-50991, WO99 / 33934) and rare earth sulfide-based phosphors (Japanese Patent Publication No. 60-4856), such as ceramic scintillator and other phosphor elements, combined with Si photodiodes and photomultiplier tubes and other photoelectric conversion elements Solid state detectors have been used. In radiation detectors of recent X-ray CT apparatuses, solid-state detectors have become the mainstream.

【0003】このような医用画像診断装置に用いられる
放射線検出器に要求される特性としては、放射線に対す
る高い発光効率を有することと共に、広範囲のエネルギ
ーの放射線に対して感度が高いこと、すなわちエネルギ
ー依存性が小さいことが挙げられる。エネルギー依存性
が大きいと、感度の低いエネルギーの放射線に対して
は、放射線検出器の濃度分解能が低くなり、画質の低下
を招くことになる。この放射線検出器の特性は、放射線
検出器を構成する素子のうち、特に蛍光体素子の特性に
大きく依存し、発光効率が高くエネルギー依存性の小さ
い蛍光体素子を使用することが望まれる。
The characteristics required for a radiation detector used in such a medical image diagnostic apparatus are that it has a high luminous efficiency with respect to radiation and that it is highly sensitive to radiation in a wide range of energy, that is, energy dependence. It can be mentioned that the sex is small. When the energy dependence is large, the density resolution of the radiation detector becomes low for the radiation of energy having low sensitivity, which causes the deterioration of the image quality. The characteristics of the radiation detector greatly depend on the characteristics of the phosphor element among the elements constituting the radiation detector, and it is desirable to use a phosphor element having high luminous efficiency and low energy dependence.

【0004】これまで発光効率が高くエネルギー依存性
の小さく、放射線検出器に好適な蛍光体素子に関し、い
くつかの提案がなされ、本出願人においてもCeを発光元
素とし、Gd、Al、Gaを含む希土類酸化物蛍光体を提案し
ており、CdWO4に比べ極めて高い放射線感度を実現して
いる。しかしながら、近年のX線CT装置においては、
被検体の周りを回転走査するX線の走査時間を短縮して
計測時間を短縮すると共に、検出器素子を一次元化して
小型化する傾向にあり、放射線検出器としては、さらに
高感度で低エネルギー依存性のものが求められるように
なっている。
Up to now, several proposals have been made regarding a phosphor element which has a high luminous efficiency and a small energy dependence and is suitable for a radiation detector, and the applicant of the present invention has also selected Ce as a luminous element and Gd, Al and Ga. We have proposed rare-earth oxide phosphors containing them and have achieved extremely high radiation sensitivity compared to CdWO 4 . However, in recent X-ray CT apparatuses,
There is a tendency that the scanning time of X-rays that rotate around the subject is shortened to shorten the measurement time, and the detector element tends to be one-dimensional and miniaturized. Energy-dependent products are required.

【0005】[0005]

【発明が解決しようとする課題】そこで本発明は、発光
効率が高く且つ低エネルギー依存性を有する蛍光体素子
を提供することを目的とする。また本発明は、広範囲の
エネルギーの放射線に対し高感度な放射線検出器を提供
することを目的とする。さらに本発明は、走査時間を短
縮した場合にも高画質の画像を得ることができる医用画
像診断装置を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a phosphor element having high luminous efficiency and low energy dependence. Another object of the present invention is to provide a radiation detector having high sensitivity to radiation having a wide range of energy. A further object of the present invention is to provide a medical image diagnostic apparatus capable of obtaining a high quality image even when the scanning time is shortened.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明者らは、発光効率の高いGd3(Al,Ga)5O12:Ce
系の蛍光体素子について、低エネルギー依存性を得るた
めの条件を鋭意研究した結果、図1に示すように、蛍光
体のエネルギー依存性は、その光透過率と関連し、光透
過率が高い場合には、広いエネルギー範囲に亘って、光
透過率100%の場合に比べ感度の低下が少ないが、光透
過率が低い場合には、放射線のエネルギーが小さくなる
につれ、感度の低下も大きくなることを見出した。特
に、この蛍光体の主発光波長である550nmの光に対する
吸収係数μを0.6mm-1以下とすることにより、放射線検
出器として必要な放射線吸収率を維持できる最小限の厚
さにおいて、低エネルギー放射線に対する感度低下を軽
減できることを見出し本発明に至ったものである。
In order to achieve the above object, the inventors of the present invention have found that Gd 3 (Al, Ga) 5 O 12 : Ce having high luminous efficiency.
As a result of diligent research on the conditions for obtaining low energy dependence of the phosphor element of the system, as shown in FIG. 1, the energy dependence of the phosphor is related to its light transmittance, and the light transmittance is high. In the case where the light transmittance is low, the decrease in sensitivity is less than that in the case where the light transmittance is 100% over a wide energy range, but when the light transmittance is low, the decrease in sensitivity also increases as the radiation energy decreases. I found that. In particular, by setting the absorption coefficient μ for light of 550 nm, which is the main emission wavelength of this phosphor, to 0.6 mm -1 or less, at the minimum thickness that can maintain the radiation absorption rate required as a radiation detector, low energy The inventors of the present invention have found that the reduction in sensitivity to radiation can be reduced and have led to the present invention.

【0007】即ち、本発明の蛍光体素子は、Ceを発光元
素とし、少なくともGd、Al、Ga及びOを含んだガーネッ
ト構造の母体結晶からなる蛍光体を用いた蛍光体素子で
あって、波長550nmの光に対する吸収係数μが0.6mm-1
下のものである。ここでμは、光吸収をI(d)=I0e-μd
(dは吸収体の厚さ)と表したときの吸収係数である。
That is, the phosphor element of the present invention is a phosphor element using Ce as a light emitting element and a phosphor composed of a matrix crystal of a garnet structure containing at least Gd, Al, Ga and O, and having a wavelength of The absorption coefficient μ for light of 550 nm is 0.6 mm -1 or less. Where μ is the light absorption I (d) = I 0 e -μd
The absorption coefficient is expressed as (d is the thickness of the absorber).

【0008】また本発明の蛍光体素子は、上記蛍光体素
子であって、相対密度が99.8%以上であり、且つ平均結
晶粒径が4μm以上のものである。ここで相対密度と
は、単結晶の密度(理論密度)を100%としたときの相
対的な値である。結晶粒径が大きく相対密度が高い緻密
な構造とすることにより、光の光路長を短くすることが
でき、これにより光透過率を高めることができる。
The phosphor element of the present invention is the above phosphor element having a relative density of 99.8% or more and an average crystal grain size of 4 μm or more. Here, the relative density is a relative value when the density (theoretical density) of a single crystal is 100%. With a dense structure having a large crystal grain size and a high relative density, the optical path length of light can be shortened, and thus the light transmittance can be increased.

【0009】以下、本発明の蛍光体素子について詳述す
る。本発明の蛍光体素子は、少なくともGd、Ce、Ga、A
l、Oからなりガーネット構造の母体結晶からなる。ガー
ネット構造であるために、Gd/(Al+Ga+Gd)の原子比が0.3
3以上、0.42以下であることが好ましい。このようなガ
ーネット構造の母体結晶からなる蛍光体は、本出願人に
よる特許出願明細書(特開2001-4753号公報)に記載さ
れた蛍光体と同様であり、この明細書に記載された、蛍
光体の組成及び構造に関する説明は、本明細書の一部と
する。
The phosphor element of the present invention will be described in detail below. The phosphor element of the present invention is at least Gd, Ce, Ga, A
It consists of l and O, and consists of a garnet-structured host crystal. Due to the garnet structure, the atomic ratio of Gd / (Al + Ga + Gd) is 0.3.
It is preferably 3 or more and 0.42 or less. The phosphor composed of such a garnet structure mother crystal is similar to the phosphor described in the patent application specification by the present applicant (JP 2001-4753A), and is described in this specification, A description of the composition and structure of the phosphor is part of this specification.

【0010】本発明の蛍光体は、更に、波長550nmの光
に対する吸収係数μが0.6mm-1以下であり、このような
吸収係数を有するために、結晶粒径が4μm以上の高密
度の多結晶体であることが好ましい。このような多結晶
体からなる蛍光体は、1)構成元素の酸化物、炭酸化物
等の原料粉末を混合し、合成するプロセスと、2)合成
後の粉末を粉末焼成(焼結も含む)するプロセスを経て
製造することができ、この際、一次粒径の大きい合成粉
末を用いて焼結するか、焼結時に結晶粒が成長するよう
な焼結条件で焼結する。これにより、焼結体として結晶
粒径が大きく、相対密度の高い焼結体を得ることができ
る。なお、本明細書において、粉末の一次粒径は、粉体
粒子を構成している最小単位の粒子の粒径を意味し、焼
結体の結晶粒径は、多結晶体である焼結体を構成してい
る最小単位の結晶粒の粒径を意味する。
Further, the phosphor of the present invention has an absorption coefficient μ of 0.6 mm -1 or less for light having a wavelength of 550 nm, and since it has such an absorption coefficient, it has a high crystal density of 4 μm or more. It is preferably crystalline. The phosphor made of such a polycrystal has a process of 1) mixing and synthesizing raw material powders such as oxides and carbonates of constituent elements, and 2) powder firing (including sintering) of the powder after synthesis. It can be manufactured through the process described above, and at this time, it is sintered by using a synthetic powder having a large primary particle diameter, or is sintered under the sintering condition that crystal grains grow during sintering. As a result, a sintered body having a large crystal grain size and a high relative density can be obtained. In the present specification, the primary particle size of the powder means the particle size of the smallest unit particle constituting the powder particle, and the crystal grain size of the sintered body is the sintered body which is a polycrystalline body. It means the grain size of the crystal grain of the smallest unit constituting the.

【0011】以下、本発明の蛍光体素子の具体的に製造
方法を説明する。合成プロセスとしては、1)通常の酸
化物混合法を主体とした方法、2)共沈法、ゾルゲル法
といった液相を介する方法、3)酸化物混合法を主体と
して合成した粉末を再度機械的に微細化する方法が挙げ
られる。
Hereinafter, a specific method for manufacturing the phosphor element of the present invention will be described. As the synthesis process, 1) a method mainly based on a normal oxide mixing method, 2) a method through a liquid phase such as a coprecipitation method or a sol-gel method, 3) a powder synthesized mainly based on the oxide mixing method is mechanically again. There is a method of miniaturizing.

【0012】酸化物混合法の場合、Gd2O3、Al2O3、Ga2O
3、Ce2O3等の原料粉末を、湿式混合した後、この混合粉
末を1400℃〜1700℃の大気中で数時間焼成する。この
際、原料粉末の粒径及びその後の焼結プロセスに応じて
焼成温度を適宜調整する。例えば、原料粉末の粒径が比
較的小さく、例えばサブミクロンサイズ(1μm以下)
の場合には、1500℃以下で焼成することが好ましい。こ
のような粒径範囲の原料粉末を1500℃以下で焼成した場
合、焼成後にできる粉末の一次粒径は原料粉末と同程度
であるが、サブミクロンサイズの粉末はその後の焼結に
よって結晶が成長し、結果として結晶粒径の大きな焼結
体を得ることができる。
In the case of the oxide mixing method, Gd 2 O 3 , Al 2 O 3 and Ga 2 O
3 , raw material powders such as Ce 2 O 3 are wet-mixed, and the mixed powders are fired in the atmosphere at 1400 ° C. to 1700 ° C. for several hours. At this time, the firing temperature is appropriately adjusted depending on the particle size of the raw material powder and the subsequent sintering process. For example, the particle size of the raw material powder is relatively small, for example, submicron size (1 μm or less)
In this case, it is preferable to bake at 1500 ° C or lower. When the raw material powder having such a particle size range is fired at 1500 ° C. or less, the primary particle diameter of the powder produced after firing is about the same as that of the raw material powder, but the submicron-sized powder grows crystals after sintering. As a result, a sintered body having a large crystal grain size can be obtained.

【0013】また原料粉末の粒径が比較的大きい、例え
ば0.1〜数μm程度の場合には、1500℃以上、好適には1
550℃〜1650℃の高温で焼成する。これにより一次粒径
の比較的大きい蛍光体粉末が得られる。具体的には平均
粒径が数μm以上の蛍光体粉末が得られる。このような
一次粒径の蛍光体粉末を焼結することにより、同程度の
結晶粒径を有する焼結体が得られる。焼結体としてでき
るだけ大きな結晶粒径を得るためには、焼成後さらに蛍
光体粉末を分級し、所定の大きさ以上の粉末を焼結に用
いることが好ましい。
When the particle size of the raw material powder is relatively large, for example, about 0.1 to several μm, 1500 ° C. or higher, preferably 1
Bake at a high temperature of 550 ℃ to 1650 ℃. As a result, a phosphor powder having a relatively large primary particle size can be obtained. Specifically, a phosphor powder having an average particle size of several μm or more is obtained. By sintering the phosphor powder having such a primary particle diameter, a sintered body having a similar crystal grain size can be obtained. In order to obtain a crystal grain size as large as possible as a sintered body, it is preferable to further classify the phosphor powder after firing and use a powder having a predetermined size or more for sintering.

【0014】共沈法の場合、原料元素の硝酸塩、塩酸
塩、硫酸塩、蓚酸塩等を水に溶かして複合水溶液とし、
この複合複合水溶液に尿素、炭酸水素アンモニウム等を
添加し、Gd-Ce-Al-Ga-O前駆体を沈殿させる。この沈殿
物を洗浄し、乾燥後、1200℃程度で仮焼成し合成粉末を
得る。共沈法では、サブミクロン以下の合成粉末が得ら
れる。機械的に微細化する方法は、酸化物混合法で得ら
れた合成粉末をボールミル等の粉砕手段で微細化するも
のであり、サブミクロン以下の合成粉末を得る場合に採
用される。
In the case of the coprecipitation method, the raw material nitrates, hydrochlorides, sulfates, oxalates, etc. are dissolved in water to form a composite aqueous solution.
Urea, ammonium hydrogen carbonate, etc. are added to this complex aqueous solution to precipitate the Gd-Ce-Al-Ga-O precursor. The precipitate is washed, dried, and then calcined at about 1200 ° C to obtain a synthetic powder. The coprecipitation method yields synthetic powders of submicron or smaller. The method of mechanically refining is a method of refining a synthetic powder obtained by an oxide mixing method by a pulverizing means such as a ball mill, and is used when a synthetic powder of submicron or less is obtained.

【0015】上記手法により得られた合成粉末を、所望
の形状、例えば板状に加圧成型した後、焼結する。焼結
は、ホットプレス法、HIP法、常圧焼結法、さらには
常圧焼結法とHIP法との併用法等で行うことができ
る。このうち、特にホットプレス法、常圧焼結法が好適
である。ホットプレス法では、真空中の雰囲気下で、14
00〜1700℃の焼結温度、500kgf/cm2程度の加圧力で数時
間焼結する。常圧焼結法では、3000kgf/cm2程度の圧力
で静水圧プレスを行った後、蛍光体の融点直下の焼結温
度(具体的には1600〜1700℃)で、大気中或いは純酸素中
で数時間〜数十時間焼結する。HIP法は、サブミクロ
ン以下の合成粉末を用いる場合に採用することができ、
金属製カプセル中に合成粉末を入れ、真空封止して、14
00℃前後の温度で2000atm程度の圧力で焼結を行う。
The synthetic powder obtained by the above method is pressed into a desired shape, for example, a plate shape, and then sintered. The sintering can be performed by a hot pressing method, a HIP method, an atmospheric pressure sintering method, a combined method of the atmospheric pressure sintering method and the HIP method, or the like. Among these, the hot pressing method and the atmospheric pressure sintering method are particularly preferable. In the hot press method, under an atmosphere of vacuum, 14
Sintering is performed for several hours at a sintering temperature of 00 to 1700 ° C and a pressure of about 500 kgf / cm 2 . In the atmospheric pressure sintering method, after performing isostatic pressing at a pressure of about 3000 kgf / cm 2 , at the sintering temperature just below the melting point of the phosphor (specifically 1600 to 1700 ° C), in the atmosphere or pure oxygen. Sinter for several hours to several tens of hours. The HIP method can be adopted when using a synthetic powder of submicron or less,
Place synthetic powder in a metal capsule, vacuum seal, and
Sintering is performed at a temperature of about 00 ° C and a pressure of about 2000 atm.

【0016】また焼結時には、焼結助剤を用いることが
好ましい。焼結助剤としては、LiF、LiCl等のリチウム
化合物、K2SO4、KNO3、K2CO3、K3PO4等のカリウム化合
物、BaF2等を用いることができる。特に、LiF、LiClが
好ましい。このような焼結助剤は、蛍光体粉末に対し0.
001〜10重量%程度用いることができ、その添加によ
り、焼結時の結晶の成長を促し、結晶粒径の大きな焼結
体を得ることができる。
At the time of sintering, it is preferable to use a sintering aid. As the sintering aid, lithium compounds such as LiF and LiCl, potassium compounds such as K 2 SO 4 , KNO 3 , K 2 CO 3 and K 3 PO 4 , and BaF 2 can be used. LiF and LiCl are particularly preferable. Such a sintering aid is 0.
It can be used in an amount of about 001 to 10% by weight, and the addition thereof can promote the growth of crystals during sintering and obtain a sintered body having a large crystal grain size.

【0017】既に述べたように、比較的粒径が小さな原
料粉末を焼成して得られた粒径の小さい合成粉末の場合
には、このような焼結助剤を用いなくても上述した焼結
条件において結晶が成長し、大きな結晶粒径の焼結体が
得られる。また焼成後の合成粉末を分級することによっ
て、大きな一次粒径のものを選択して焼結に供した場合
にも、焼結助剤を用いなくても大きな結晶粒径の焼結体
が得られる。従ってこれらの場合には、焼結助剤は用い
ても用いなくてもよいが、焼成後の合成粉末の粒径が比
較的大きく且つブロードな分布を有するときには、焼結
助剤を添加することが必要である。
As described above, in the case of a synthetic powder having a small particle size obtained by firing a raw material powder having a relatively small particle size, the above-mentioned firing is performed without using such a sintering aid. Crystals grow under the binding conditions, and a sintered body having a large crystal grain size is obtained. In addition, by classifying the synthetic powder after firing, even when a material with a large primary particle size is selected for sintering, a sintered body with a large crystal particle size can be obtained without using a sintering additive. To be Therefore, in these cases, a sintering aid may or may not be used, but when the particle size of the synthetic powder after firing has a relatively large and broad distribution, a sintering aid should be added. is necessary.

【0018】このような条件で焼結することにより、相
対密度99.8%以上で、結晶粒径が4μm以上の緻密な焼
結体を得ることができる。この焼結体を、所定の厚さ、
好適には1.8mm以上に切り取り、蛍光体素子を得る。こ
のような相対密度の高い結晶においては、粒界の三重点
などにおける空孔の数や大きさが著しく減少するため、
光の散乱が減少する。これにより焼結体を透過する光の
光路長が短くなり、結果として蛍光体素子の光透過率を
向上することができる。
By sintering under such conditions, a dense sintered body having a relative density of 99.8% or more and a crystal grain size of 4 μm or more can be obtained. This sintered body has a predetermined thickness,
It is preferably cut to a size of 1.8 mm or more to obtain a phosphor element. In a crystal with such a high relative density, the number and size of the vacancies at the triple points of grain boundaries are significantly reduced,
Light scattering is reduced. As a result, the optical path length of the light passing through the sintered body is shortened, and as a result, the light transmittance of the phosphor element can be improved.

【0019】また本発明の蛍光体素子は、厚さを1.8mm
以上とすることにより、高い放射線吸収性を確保できる
ので、放射線検出器として用いた場合に高い検出能を発
揮することができる。具体的にはシンチレータの厚さを
1.8mm以上とすることにより、管電圧120kVのX線を照射
した場合に、X線を95%以上吸収させることができる。
The phosphor element of the present invention has a thickness of 1.8 mm.
With the above, high radiation absorbency can be secured, and thus high detectability can be exhibited when used as a radiation detector. Specifically, change the thickness of the scintillator
By setting the length to 1.8 mm or more, it is possible to absorb X-rays by 95% or more when irradiated with X-rays having a tube voltage of 120 kV.

【0020】このようにして製造された本発明の焼結体
は、放射線を吸収したときの主発光波長が550nmであ
り、この波長の光に対する吸収係数μが0.6mm-1以下で
ある。この吸収係数を、厚さ1.8mmの蛍光体素子の光透
過率に換算すると35%以上となる。光透過率が35%以上
であることにより、低エネルギー側の放射線に対する感
度低下を低減し、エネルギー依存性の小さい蛍光体素子
が得られる。
The thus produced sintered body of the present invention has a main emission wavelength of 550 nm when absorbing radiation, and an absorption coefficient μ for light of this wavelength is 0.6 mm -1 or less. Converting this absorption coefficient into the light transmittance of a phosphor element having a thickness of 1.8 mm will be 35% or more. When the light transmittance is 35% or more, a decrease in sensitivity to radiation on the low energy side can be reduced, and a phosphor element having small energy dependence can be obtained.

【0021】[0021]

【実施例】以下、本発明の蛍光体素子の実施例を説明す
る。
EXAMPLES Examples of the phosphor element of the present invention will be described below.

【0022】実施例1 出発原料粉末として、粒径が0.1〜5μm程度のGd2O3、A
l2O3、Ga2O3、Ce2(C2O 4)3・9H2O粉末を用い、これらを混
合した後、1550℃〜1650℃で焼成することにより、一次
粒径が2〜6μm程度のGd3(Al,Ga)5O12:Ce蛍光体粉末を
得た。この粉末から、一次粒径が4μm以上の粉末のみ
を分け取り、加圧成型し、真空中で1500℃、500kgf/cm2
にてホットプレス焼結し、蛍光体粉末とほぼ同じ結晶粒
径を持つ焼結体を得た。得られた焼結体を機械加工して
厚さ1.8mmのセラミックシンチレータを作成した。
Example 1 As a starting material powder, Gd with a particle size of about 0.1-5 μm2O3, A
l2O3, Ga2O3, Ce2(C2O Four)3・ 9H2Use O powder and mix these
After combining, the primary temperature is set by firing at 1550 ℃ -1650 ℃.
Gd with a particle size of 2 to 6 μm3(Al, Ga)FiveO12: Ce phosphor powder
Obtained. From this powder, only powder with a primary particle size of 4 μm or more
Separately, press-molded, 1500 ° C in vacuum, 500kgf / cm2
And hot-sintered with the same crystal grains as the phosphor powder
A sintered body having a diameter was obtained. Machine the obtained sintered body
A ceramic scintillator having a thickness of 1.8 mm was created.

【0023】この焼結体の相対密度は99.9%であった。
またこのシンチレータの波長550nmの光に対する吸収係
数μは0.57mm-1であり、波長550nmの光に対する光透過
率は36%であった。この場合、60keVのX線に対する感
度下は、光透過率100%の感度を100としたとき76以上で
あり、低エネルギー領域についても十分な検出感度を有
することが示された。
The relative density of this sintered body was 99.9%.
The scintillator had an absorption coefficient μ for light having a wavelength of 550 nm of 0.57 mm −1 and a light transmittance of 36% for light having a wavelength of 550 nm. In this case, the sensitivity to X-rays of 60 keV is 76 or more when the sensitivity at 100% light transmittance is 100, and it is shown that the detection sensitivity is sufficient even in the low energy region.

【0024】比較例1 実施例1と同様の原料粉末を用いて、温度1500℃で焼成
することにより、一次粒径が1〜3μm程度のGd3(Al,Ga)
5O12:Ce蛍光体粉末を得た。この蛍光体粉末を加圧成型
した後、実施例1と同じ焼結条件(真空中、1500℃、50
0kgf/cm2のホットプレス)で焼結し一次粒径と同様の結
晶粒径(1〜3μm程度)を有する焼結体を得た。これを
機械加工して、厚さ1.8mmのセラミックシンチレータ
を得た。
Comparative Example 1 The same raw material powder as in Example 1 was used and fired at a temperature of 1500 ° C. to give Gd 3 (Al, Ga) having a primary particle size of about 1 to 3 μm.
5 O 12 : Ce phosphor powder was obtained. After this phosphor powder was pressure-molded, the same sintering conditions as in Example 1 (in vacuum, 1500 ° C., 50 ° C.) were used.
It was sintered with a hot press of 0 kgf / cm 2 ) to obtain a sintered body having a crystal grain size (about 1 to 3 μm) similar to the primary grain size. This was machined to obtain a ceramic scintillator having a thickness of 1.8 mm.

【0025】この焼結体の相対密度は99.9%であった。
また、このシンチレータ波長550nmの光に対する吸収係
数μは0.63mm-1であり、波長550nmの光に対する光透過
率は32%であった。この場合、60keVのX線に対する感
度は、光透過率100%の場合の感度を100とするとき68に
低下し、低エネルギー領域については十分な検出感度が
得られないことが示された。
The relative density of this sintered body was 99.9%.
The absorption coefficient μ of the scintillator having a wavelength of 550 nm was 0.63 mm -1 , and the light transmittance of the light having a wavelength of 550 nm was 32%. In this case, the sensitivity to X-rays of 60 keV was reduced to 68 when the sensitivity was 100 when the light transmittance was 100%, indicating that sufficient detection sensitivity could not be obtained in the low energy region.

【0026】実施例2 出発原料粉末として、粒径が0.01〜0.1μm程度のGd
2O3、Al2O3、Ga2O3、Ce2(C2O4)3・9H2O粉末を用い、これ
らを混合した後、1400℃〜1500℃で焼成することによ
り、一次粒径が0.05〜0.1μm程度のGd3(Al,Ga)5O12:Ce
蛍光体粉末を得た。この粉末を加圧成型し、真空中で15
00℃、500kgf/cm2にてホットプレス焼結した。この焼結
条件では、結晶が蛍光体粉末の一次粒径より大きく成長
し、約10μmの結晶粒径を有する焼結体が得られた。こ
の焼結体を機械加工して厚さ1.8mmのセラミックシン
チレータを作成した。
Example 2 As a starting material powder, Gd having a particle size of about 0.01 to 0.1 μm
2 O 3, Al 2 O 3 , Ga 2 O 3, Ce 2 (C 2 O 4) 3 · 9H 2 with O powder were mixed them by firing at 1400 ° C. to 1500 ° C., primary particle Gd 3 (Al, Ga) 5 O 12 : Ce with a diameter of 0.05 to 0.1 μm
A phosphor powder was obtained. This powder is pressure-molded and vacuumed for 15
Hot press sintering was performed at 00 ° C and 500 kgf / cm 2 . Under these sintering conditions, the crystals grew larger than the primary grain size of the phosphor powder, and a sintered body having a grain size of about 10 μm was obtained. This sintered body was machined to produce a ceramic scintillator having a thickness of 1.8 mm.

【0027】この焼結体の相対密度は99.9%以上であっ
た。またこのシンチレータの波長550nmの光に対する吸
収係数μは0.30mm-1であり、波長550nmの光に対する光
透過率は58%であった。この場合、60keVのX線に対す
る感度は、光透過率100%の感度を100とするとき87であ
り、実施例1のシンチレータよりも更に低エネルギー領
域の検出感度が向上した。
The relative density of this sintered body was 99.9% or more. The scintillator had an absorption coefficient μ of 0.30 mm −1 for light having a wavelength of 550 nm and a light transmittance of 58% for light having a wavelength of 550 nm. In this case, the sensitivity to X-rays of 60 keV was 87 when the sensitivity at 100% light transmittance was 100, and the detection sensitivity in the low energy region was further improved as compared with the scintillator of Example 1.

【0028】実施例3 実施例1と同様の原料粉末を用いて、温度1500℃で焼成
することにより、一次粒径が1〜3μm程度のGd3(Al,Ga)
5O12:Ce蛍光体粉末を得た。この蛍光体粉末に焼結助剤
としてLiFを0.1重量%添加して加圧成型した後、実施例
1と同じ焼結条件(真空中、1500℃、500kgf/cm2のホッ
トプレス)で焼結した。この焼結条件では、結晶が蛍光
体粉末の一次粒径より大きく成長し、約5μmの結晶粒
径を有する焼結体が得られた。これを機械加工して、厚
さ1.8mmのセラミックシンチレータを得た。
Example 3 The same raw material powder as in Example 1 was used and fired at a temperature of 1500 ° C. to obtain Gd 3 (Al, Ga) having a primary particle size of about 1 to 3 μm.
5 O 12 : Ce phosphor powder was obtained. 0.1% by weight of LiF as a sintering aid was added to this phosphor powder, and the mixture was pressure-molded and then sintered under the same sintering conditions as in Example 1 (in vacuum, 1500 ° C., 500 kgf / cm 2 hot press). did. Under these sintering conditions, crystals grew larger than the primary grain size of the phosphor powder, and a sintered body having a grain size of about 5 μm was obtained. This was machined to obtain a ceramic scintillator having a thickness of 1.8 mm.

【0029】この焼結体の相対密度は99.9%であった。
またこのシンチレータの波長550nmの光に対する吸収係
数μは0.53mm-1であり、波長550nmの光に対する光透過
率は39%であった。60keVのX線に対する感度は、光透
過率100%の感度を100とするとき78で、低エネルギー領
域についても十分な検出感度が得られることが示され
た。
The relative density of this sintered body was 99.9%.
The scintillator had an absorption coefficient μ for light having a wavelength of 550 nm of 0.53 mm -1 , and a light transmittance of 39% for light having a wavelength of 550 nm. The sensitivity to X-rays of 60 keV was 78 when the sensitivity at 100% light transmittance was 100, and it was shown that sufficient detection sensitivity can be obtained even in the low energy region.

【0030】実施例4 実施例1と同様の原料粉末を用いて、温度1500℃で焼成
することにより、一次粒径が1〜3μm程度のGd3(Al,Ga)
5O12:Ce蛍光体粉末を得た。この蛍光体粉末に焼結助剤
としてLiFを0.1重量%添加して加圧成型した後、この蛍
光体の融点直下の温度である1600〜1700℃で、大気中で
常圧焼結した。この焼結条件においても、結晶が蛍光体
粉末の一次粒径より大きく成長し、約5μmの結晶粒径
を有する焼結体が得られた。これを機械加工して、厚さ
1.8mmのセラミックシンチレータを得た。
Example 4 The same raw material powder as in Example 1 was used and fired at a temperature of 1500 ° C. to obtain Gd 3 (Al, Ga) having a primary particle size of about 1 to 3 μm.
5 O 12 : Ce phosphor powder was obtained. After 0.1% by weight of LiF as a sintering aid was added to the phosphor powder and pressure molding was performed, the phosphor powder was sintered under atmospheric pressure at 1600 to 1700 ° C., which is a temperature just below the melting point of the phosphor. Even under these sintering conditions, crystals grew larger than the primary particle size of the phosphor powder, and a sintered body having a crystal particle size of about 5 μm was obtained. Machine this to the thickness
A 1.8 mm ceramic scintillator was obtained.

【0031】この焼結体の相対密度は99.9%であった。
またこのシンチレータの波長550nmの光に対する吸収係
数μは0.51mm-1であり、波長550nmの光に対する光透過
率は39%であった。この場合、60keVのX線に対する感
度は、光透過率100%の感度を100とするとき78で、低エ
ネルギー領域についても十分な検出感度が得られること
が示された。
The relative density of this sintered body was 99.9%.
The scintillator had an absorption coefficient μ for light having a wavelength of 550 nm of 0.51 mm −1 and a light transmittance of 39% for light having a wavelength of 550 nm. In this case, the sensitivity to X-rays of 60 keV was 78 when the sensitivity at 100% light transmittance was 100, and it was shown that sufficient detection sensitivity can be obtained even in the low energy region.

【0032】以上の実施例からわかるように、本発明の
蛍光体素子は、波長550nmの光に対する吸収係数が0.6mm
-1以下であることにより、発光効率が高く、低エネルギ
ーの放射線に対しても感度低下が少なかった。このよう
な蛍光体素子は、以下に述べるように放射線検出器用の
蛍光体素子として好適であり、高い検出能の放射線検出
器が得られる。
As can be seen from the above examples, the phosphor element of the present invention has an absorption coefficient of 0.6 mm for light having a wavelength of 550 nm.
When it was -1 or less, the luminous efficiency was high, and the sensitivity was low even with low-energy radiation. Such a phosphor element is suitable as a phosphor element for a radiation detector as described below, and a radiation detector with high detectability can be obtained.

【0033】[0033]

【発明の実施の形態】以下、本発明の放射線検出器およ
びそれを用いた医用画像診断装置について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A radiation detector according to the present invention and a medical image diagnostic apparatus using the same will be described below.

【0034】図2は、本発明の放射線検出器の断面を示
したものである。この放射線検出器は、複数の蛍光体素
子1と、これら蛍光体素子1に、蛍光体素子1の発光を
吸収しない光学接着剤によってそれぞれ接着された複数
の光電変換素子2と、これら光電変換素子2を配列した
素子アレイ基盤3と、蛍光体素子1を覆い、蛍光体素子
1から光を反射し、チャンネル管のクロストークを防止
する光反射材4とを備えている。図では、蛍光体素子1
は4個のみ示されているが、蛍光体素子の数は用途によ
って任意に変更できる。また蛍光体素子及び光電変換素
子の配列は、線状或いは平面状であってもよい。例えば
後述するX線CT装置の放射線検出器の場合、蛍光体素
子及び光電変換素子を数100個、円弧状に配列したもの
からなる。
FIG. 2 shows a cross section of the radiation detector of the present invention. This radiation detector includes a plurality of phosphor elements 1, a plurality of photoelectric conversion elements 2 bonded to the phosphor elements 1 by an optical adhesive that does not absorb the light emitted from the phosphor elements 1, and these photoelectric conversion elements. An element array substrate 3 in which 2 are arranged, and a light reflector 4 that covers the phosphor element 1 and reflects light from the phosphor element 1 to prevent crosstalk of the channel tube are provided. In the figure, the phosphor element 1
Although only four are shown, the number of phosphor elements can be arbitrarily changed depending on the application. The array of phosphor elements and photoelectric conversion elements may be linear or planar. For example, in the case of a radiation detector of an X-ray CT apparatus, which will be described later, several 100 phosphor elements and photoelectric conversion elements are arranged in an arc shape.

【0035】蛍光体素子1は、上述の、Ceを発光元素と
しGd、Al、Ga、Oを主元素とするガーネット構造のセラ
ミックシンチレータであり、主発光波長が550nmで、こ
の波長の光に対する吸収係数μが0.6mm-1以下のもので
ある。厚さは放射線を95%以上吸収できるようにするた
めに、1.8mm以上が好ましい。
The phosphor element 1 is a ceramic scintillator having a garnet structure containing Ce as a light emitting element and Gd, Al, Ga and O as main elements, and has a main emission wavelength of 550 nm and absorbs light of this wavelength. The coefficient μ is 0.6 mm -1 or less. The thickness is preferably 1.8 mm or more in order to absorb 95% or more of radiation.

【0036】光電変換素子2は、蛍光体素子1が発光し
た光を電気信号に変換するもので、応答速度が速く、ま
た波長550nmにおける変換効率の優れた材料が好まし
い。このような材料として、例えばSi-PINフォトダイオ
ードを用いることができる。光反射材4は、放射線は透
過するが蛍光体素子が発する光を反射する材料で、通常
TiO2樹脂が用いられるが、これに限定されない。
The photoelectric conversion element 2 converts the light emitted by the phosphor element 1 into an electric signal, and is preferably made of a material having a high response speed and excellent conversion efficiency at a wavelength of 550 nm. As such a material, for example, a Si-PIN photodiode can be used. The light-reflecting material 4 is a material that transmits radiation but reflects light emitted by the phosphor element.
TiO 2 resin is used, but is not limited thereto.

【0037】このような構成における放射線検出器は、
蛍光体素子1として、Gd、Al、Ga、Oを主元素とするガ
ーネット構造のセラミックシンチレータを用いているの
で、発光効率が従来のCdWO4に比べ著しく高く、しかも
波長550nmにおける吸収係数μが0.6mm-1以下、光透過率
35%以上であるので、低エネルギー側の放射線に対して
も高い感度を保つことができる。本発明の放射線検出器
は、次に説明する医用画像診断装置の放射線検出器とし
てのみならず、産業用の放射線検出器に適用することが
でき、高い放射線検出能を実現できる。
The radiation detector having such a structure is
As the phosphor element 1, a ceramic scintillator having a garnet structure containing Gd, Al, Ga, and O as main elements is used, so that the luminous efficiency is significantly higher than that of conventional CdWO 4 , and the absorption coefficient μ at a wavelength of 550 nm is 0.6. mm -1 or less, light transmittance
Since it is 35% or more, high sensitivity can be maintained even for low-energy radiation. INDUSTRIAL APPLICABILITY The radiation detector of the present invention can be applied not only as a radiation detector of a medical image diagnostic apparatus described below but also as an industrial radiation detector, and can realize high radiation detection ability.

【0038】次に上記放射線検出器を用いた医用画像診
断装置について説明する。図3は、本発明の医用画像診
断装置の一実施形態であるX線CT装置の概略を示す図
である。このX線CT装置は、被検体の撮影を行なうた
めのスキャンガントリ部10と、スキャンガントリ部10で
得られた計測データを元にCT画像を再構成する画像再
構成部20とを備え、スキャンガントリ部10には、被検体
が搬入される開口部14を備えた回転円板11と、この回転
円板11に搭載されたX線管12と、X線管12に取り付けら
れ、X線束の放射方向を制御するコリメータ13と、X線
管12と対向して回転円板11に搭載されたX線検出器15
と、X線検出器15で検出されたX線を所定の信号に変換
する検出器回路16と、回転円板11の回転及びX線束の幅
を制御するスキャン制御回路17とが備えられている。
Next, a medical image diagnostic apparatus using the above radiation detector will be described. FIG. 3 is a diagram showing an outline of an X-ray CT apparatus which is an embodiment of the medical image diagnostic apparatus of the present invention. This X-ray CT apparatus includes a scan gantry unit 10 for imaging a subject and an image reconstructing unit 20 for reconstructing a CT image based on the measurement data obtained by the scan gantry unit 10, The gantry unit 10 has a rotating disk 11 having an opening 14 into which a subject is loaded, an X-ray tube 12 mounted on the rotating disk 11, and an X-ray tube 12 attached to the rotating disk 11. A collimator 13 for controlling the radiation direction and an X-ray detector 15 mounted on the rotating disk 11 so as to face the X-ray tube 12.
A detector circuit 16 for converting the X-rays detected by the X-ray detector 15 into a predetermined signal; and a scan control circuit 17 for controlling the rotation of the rotating disk 11 and the width of the X-ray flux. .

【0039】画像再構成部20は、被検者氏名、検査日
時、検査条件などを入力する入力装置21、検出器回路16
から送出される計測データS1を演算処理してCT画像
の再構成を行なう画像演算回路22、画像演算回路22で作
成されたCT画像に、入力装置21から入力された被検者
氏名、検査日時、検査条件などの情報を付加する画像情
報付加部23と、画像情報を付加されたCT画像信号S2
の表示ゲインを調整してディスプレイモニタ30へ出力す
るディスプレイ回路24とを備えている。
The image reconstructing section 20 includes an input device 21 for inputting the name of the subject, inspection date and time, inspection conditions, etc., and detector circuit 16.
An image calculation circuit 22 for performing a calculation process on the measurement data S1 sent from to reconstruct a CT image, the CT image created by the image calculation circuit 22, the subject name and examination date and time input from the input device 21. , An image information adding section 23 for adding information such as inspection conditions, and a CT image signal S2 to which image information is added
And a display circuit 24 that adjusts the display gain of and output to the display monitor 30.

【0040】上記スキャンガントリ部10と画像再構成部
20の構成は従来のX線CT装置と同様であるが、ここで
はX線検出器15として上述した本発明の放射線検出器を
用いる。即ち、X線検出器15は、シンチレータとフォト
ダイオートとを組み合わせた検出素子を多数(例えば96
0個)円弧状に配列したものであり、シンチレータを構
成する蛍光体素子として本発明の蛍光体素子を用いてい
る。
Scan gantry unit 10 and image reconstruction unit
The structure of 20 is the same as that of the conventional X-ray CT apparatus, but here the radiation detector of the present invention described above is used as the X-ray detector 15. That is, the X-ray detector 15 includes a large number of detection elements (for example 96
(0 pieces) arranged in an arc shape, and the phosphor element of the present invention is used as a phosphor element that constitutes a scintillator.

【0041】このX線CT装置では、スキャンガントリ
部10の開口部14に設置された寝台(図示せず)に被検者
を寝かせた状態で、X線管12からX線が照射される。こ
のX線はコリメータ13により指向性を得、ファンビーム
状のX線として被検者に照射される。そして被検者を透
過したX線がX線検出器15により検出される。この際、
X線を連続して照射するとともに回転円板11を被検者の
周りに回転させることにより、X線を照射する方向を変
えながら、透過X線を検出する。フルスキャンの場合に
は回転円板の1回転で、ハーフスキャンの場合には半回
転で、被検体のCT像を得るための計測データS1が得
られる。
In this X-ray CT apparatus, X-rays are irradiated from the X-ray tube 12 with the subject lying on a bed (not shown) installed in the opening 14 of the scan gantry unit 10. The X-ray has directivity by the collimator 13 and is irradiated to the subject as a fan-beam-shaped X-ray. Then, the X-rays transmitted through the subject are detected by the X-ray detector 15. On this occasion,
By continuously irradiating X-rays and rotating the rotary disk 11 around the subject, transmitted X-rays are detected while changing the X-ray irradiation direction. The measurement data S1 for obtaining the CT image of the subject is obtained by one rotation of the rotating disk in the case of full scan and half rotation in the case of half scan.

【0042】この回転円板の回転時間は、近年短時間化
する傾向にあり、具体的には0.5〜1秒/回転である。X
線検出器16は、この1回転の間に数百回のオンオフを行
い、被検者を透過してきたX線を検出する。X線検出器
16が検出するX線量は、回転時間の短縮化に伴い、減少
することになるが、本発明のX線CT装置では、放射線
感度が高く、低エネルギー依存性のX線検出器16を用い
ているので、回転時間が短縮化しても高出力が得られ、
結果として高画質のCT画像を得ることができる。得ら
れた画像は、ディスプレイモニタ30に表示される。
The rotation time of this rotating disk tends to be shortened in recent years, specifically, it is 0.5 to 1 second / revolution. X
The ray detector 16 turns on and off several hundred times during this one rotation, and detects the X-rays that have passed through the subject. X-ray detector
Although the X-ray dose detected by 16 will decrease as the rotation time is shortened, the X-ray CT apparatus of the present invention uses the X-ray detector 16 having high radiation sensitivity and low energy dependence. Therefore, even if the rotation time is shortened, high output can be obtained,
As a result, a high quality CT image can be obtained. The obtained image is displayed on the display monitor 30.

【0043】なお、以上の実施形態では、医用画像診断
装置としてX線CT装置を例に説明したが、本発明の医
用画像診断装置は、放射線源としてγ線を用いた装置に
も適用できる。
In the above embodiments, the X-ray CT apparatus has been described as an example of the medical image diagnostic apparatus, but the medical image diagnostic apparatus of the present invention can also be applied to an apparatus using γ rays as a radiation source.

【0044】[0044]

【発明の効果】本発明によれば、高発光効率で且つ広範
囲のエネルギーの放射線に対して感度が高い蛍光体素子
を提供することができる。またこのような蛍光体素子を
用いることにより、放射線検出能が高く低エネルギー依
存性の放射線検出器を提供することができる。さらにこ
の放射線検出器を備えたことにより、被検体を透過する
放射線の検出能に優れ、高画質なCT画像を得ることが
可能な医用画像診断装置を提供することができる。
According to the present invention, it is possible to provide a phosphor element having high luminous efficiency and high sensitivity to radiation having a wide range of energy. Further, by using such a phosphor element, it is possible to provide a radiation detector having high radiation detection ability and low energy dependence. Furthermore, by providing this radiation detector, it is possible to provide a medical image diagnostic apparatus which has excellent detectability of radiation passing through the subject and is capable of obtaining a high-quality CT image.

【図面の簡単な説明】[Brief description of drawings]

【図1】 蛍光体素子の光透過率と放射線感度のエネル
ギー依存性を説明する図
FIG. 1 is a diagram illustrating the energy dependence of light transmittance and radiation sensitivity of a phosphor element.

【図2】 本発明の放射線検出器の一実施形態を示す
図。
FIG. 2 is a diagram showing an embodiment of a radiation detector of the present invention.

【図3】 本発明の医用画像診断装置の一実施形態を示
す図。
FIG. 3 is a diagram showing an embodiment of a medical image diagnostic apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1…蛍光体素子、2…光電変換素子、11…回転円板、
12…X線管、15…X線検出器、20…画像再構成部
DESCRIPTION OF SYMBOLS 1 ... Phosphor element, 2 ... Photoelectric conversion element, 11 ... Rotating disk,
12 ... X-ray tube, 15 ... X-ray detector, 20 ... Image reconstruction unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01T 1/20 G01T 1/20 G 1/202 1/202 H04N 5/321 H01L 27/14 C04B 35/00 H H04N 5/321 H01L 27/14 K (72)発明者 三浦 一朗 東京都千代田区内神田1丁目1番14号 株 式会社日立メディコ内 Fターム(参考) 2G088 EE01 EE02 FF02 FF04 GG10 GG19 GG20 JJ04 JJ05 JJ37 4G030 AA11 AA14 AA34 AA36 BA00 CA04 GA11 GA23 4H001 CA02 CA04 CA08 CF02 XA08 XA13 XA31 XA64 YA58 4M118 AB01 CA01 CB11 5C024 AX11 AX16 CX41 CY47 GX02 GX09 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G01T 1/20 G01T 1/20 G 1/202 1/202 H04N 5/321 H01L 27/14 C04B 35/00 H H04N 5/321 H01L 27/14 K (72) Ichiro Miura Ichiro Miura 1-14-1 Uchikanda, Chiyoda-ku, Tokyo F-term (reference) 2H088 EE01 EE02 FF02 FF04 GG10 GG19 GG20 JJ04 JJ05 JJ37 4G030 AA11 AA14 AA34 AA36 BA00 CA04 GA11 GA23 4H001 CA02 CA04 CA08 CF02 XA08 XA13 XA31 XA64 YA58 4M118 AB01 CA01 CB11 5C024 AX11 AX16 CX41 CY47 GX02 GX09

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 Ceを発光元素とし、少なくともGd、Al、
Ga及びOを含んだガーネット構造の母体結晶からなる蛍
光体を用いた蛍光体素子であって、波長550nmの光に対
する吸収係数μが0.6mm-1以下であることを特徴とする
蛍光体素子。
1. Ce as a light emitting element, at least Gd, Al,
What is claimed is: 1. A phosphor element using a phosphor composed of a garnet-structured host crystal containing Ga and O, wherein the absorption coefficient μ for light having a wavelength of 550 nm is 0.6 mm -1 or less.
【請求項2】 請求項1記載の蛍光体素子であって、相
対密度が99.8%以上であり、且つ平均結晶粒径が4μm
以上であることを特徴とする蛍光体素子。
2. The phosphor element according to claim 1, wherein the relative density is 99.8% or more and the average crystal grain size is 4 μm.
A phosphor element having the above features.
【請求項3】 厚さが1.8mm以上であることを特徴とす
る請求項1又は2に記載の蛍光体素子。
3. The phosphor element according to claim 1, having a thickness of 1.8 mm or more.
【請求項4】 前記蛍光体は、原料粉末を合成し、平均
粒径が4μm以上の蛍光体粉末を得る工程と、前記蛍光
体粉末を焼結する工程とを含む製造方法により製造され
たことを特徴とする請求項1ないし3いずれか1項記載
の蛍光体素子。
4. The phosphor is manufactured by a manufacturing method including a step of synthesizing raw material powders to obtain a phosphor powder having an average particle size of 4 μm or more, and a step of sintering the phosphor powder. The phosphor element according to any one of claims 1 to 3, characterized in that.
【請求項5】 前記蛍光体は、原料粉末を合成し、平均
粒径が1μm以下の蛍光体粉末を得る工程と、前記蛍光
体粉末を焼結する工程とを含む製造方法により製造され
たことを特徴とする請求項1ないし3いずれか1項記載
の蛍光体素子。
5. The phosphor is manufactured by a manufacturing method including a step of synthesizing raw material powders to obtain a phosphor powder having an average particle size of 1 μm or less, and a step of sintering the phosphor powder. The phosphor element according to any one of claims 1 to 3, characterized in that.
【請求項6】 前記蛍光体は、原料粉末を合成し、蛍光
体粉末を得る工程と、前記蛍光体粉末を融点直下の温度
で常圧焼結する工程とを含む製造方法により製造された
ことを特徴とする請求項1ないし3いずれか1項記載の
蛍光体素子。
6. The phosphor is manufactured by a manufacturing method including a step of synthesizing a raw material powder to obtain a phosphor powder, and a step of sintering the phosphor powder at a temperature just below a melting point under normal pressure. The phosphor element according to any one of claims 1 to 3, characterized in that.
【請求項7】 放射線により発光する蛍光体素子と、前
記蛍光体による発光を検出する光電変換素子とを備えた
放射線検出器において、前記蛍光体素子として請求項1
ないし6いずれか1項記載の蛍光体素子を用いたことを
特徴とする放射線検出器。
7. A radiation detector comprising a phosphor element that emits light by radiation and a photoelectric conversion element that detects light emission by the phosphor, wherein the phosphor element is used.
7. A radiation detector comprising the phosphor element according to any one of items 1 to 6.
【請求項8】 放射線源と、この放射線源に対向して配
置された放射線検出器と、これら放射線源及び放射線検
出器を保持し、被検体の周りで回転駆動される回転円板
と、前記放射線で検出された放射線の強度に基づき前記
被検体の断層像を画像再構成する画像再構成手段とを備
えた医用画像診断装置において、前記放射線検出器とし
て請求項7に記載の放射線検出器を用いたことを特徴と
する医用画像診断装置。
8. A radiation source, a radiation detector arranged to face the radiation source, a rotating disk which holds the radiation source and the radiation detector, and is driven to rotate around a subject, The radiation detector according to claim 7, which is used as the radiation detector in a medical image diagnostic apparatus including image reconstruction means for reconstructing a tomographic image of the subject based on the intensity of the radiation detected by the radiation. A medical image diagnostic apparatus characterized by being used.
JP2001316658A 2001-10-15 2001-10-15 Phosphor element, radiation detector using the same, and medical image diagnostic apparatus Expired - Lifetime JP4087093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001316658A JP4087093B2 (en) 2001-10-15 2001-10-15 Phosphor element, radiation detector using the same, and medical image diagnostic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001316658A JP4087093B2 (en) 2001-10-15 2001-10-15 Phosphor element, radiation detector using the same, and medical image diagnostic apparatus

Publications (3)

Publication Number Publication Date
JP2003119070A true JP2003119070A (en) 2003-04-23
JP2003119070A5 JP2003119070A5 (en) 2005-06-23
JP4087093B2 JP4087093B2 (en) 2008-05-14

Family

ID=19134636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001316658A Expired - Lifetime JP4087093B2 (en) 2001-10-15 2001-10-15 Phosphor element, radiation detector using the same, and medical image diagnostic apparatus

Country Status (1)

Country Link
JP (1) JP4087093B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348273A (en) * 2000-04-06 2001-12-18 Hitachi Metals Ltd Ceramics, method of producing ceramics powder, and method of producing ceramics
WO2008093869A1 (en) 2007-02-02 2008-08-07 Hitachi Metals, Ltd. Fluorescent material, scintillator using the fluorescent material, and radiation detector
WO2009044657A1 (en) * 2007-10-01 2009-04-09 Hamamatsu Photonics K.K. Radiation detector
WO2009113379A1 (en) * 2008-03-10 2009-09-17 株式会社東芝 Solid scintillator, radiation detector and computed tomography scanner
JP2009534863A (en) * 2006-04-25 2009-09-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Fluorescent lighting that produces white light
US7595492B2 (en) 2004-12-21 2009-09-29 Hitachi Metals, Ltd. Fluorescent material, a method of manufacturing the fluorescent material, a radiation detector using the fluorescent material, and an X-ray CT scanner
EP2157153A1 (en) 2008-07-31 2010-02-24 Hitachi Metals, Ltd. Fluorescent material, scintillator using same, and radiation detector using same
JP4431701B1 (en) * 2009-09-04 2010-03-17 学校法人立教学院 Method for producing thermoluminescent plate, method for producing thermoluminescent laminate, thermoluminescent plate, and thermoluminescent laminate
JP4457219B1 (en) * 2009-10-23 2010-04-28 学校法人立教学院 Thermoluminescent laminate, thermoluminescent plate, method for producing thermoluminescent laminate, method for producing thermoluminescent plate, and method for obtaining three-dimensional dose distribution of radiation
WO2010064594A1 (en) * 2008-12-01 2010-06-10 学校法人立教学院 Thermofluorescent stack, thermofluorescent plate, process for producing thermoflorescent stack, process for producing thermofluorescent plate, and method of acquiring three-dimensional radiation dose distribution
JP2010174211A (en) * 2009-02-02 2010-08-12 Toshiba Corp Solid scintillator, radiation detector, radiographic inspection apparatus, powder for solid scintillator production and method for producing solid scintillator
WO2012057133A1 (en) 2010-10-29 2012-05-03 日立金属株式会社 Polycrystalline scintillator for detecting soft x-rays
WO2017018824A1 (en) * 2015-07-29 2017-02-02 엘지이노텍 주식회사 Phosphor plate composition and phosphor plate for vehicle headlamp comprising same
KR20170039659A (en) * 2014-08-08 2017-04-11 도레이 카부시키가이샤 Scintillator panel and radiation detector

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326946A (en) * 1989-06-26 1991-02-05 Hitachi Metals Ltd Method for measuring linearity of scintillator
JPH09202880A (en) * 1995-11-21 1997-08-05 Toshiba Corp Ceramic scintillator, radioactive ray detector using the same and radioactive ray inspector
WO1999033934A1 (en) * 1997-12-24 1999-07-08 Hitachi Medical Corporation Phosphors, and radiation detectors and x-ray ct unit made by using the same
JP2001004753A (en) * 1999-06-23 2001-01-12 Hitachi Medical Corp Oxide phosphor and radiation detector using it as well as x-ray ct apparatus
JP2001183463A (en) * 1999-12-24 2001-07-06 Hitachi Medical Corp Scintillator, radiation detector using the same, and x-ray ct equipment
JP2001294853A (en) * 2000-04-12 2001-10-23 Hitachi Medical Corp Oxide fluorescent substance, radiation detector using the same, and x-ray ct apparatus
JP2001348273A (en) * 2000-04-06 2001-12-18 Hitachi Metals Ltd Ceramics, method of producing ceramics powder, and method of producing ceramics

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326946A (en) * 1989-06-26 1991-02-05 Hitachi Metals Ltd Method for measuring linearity of scintillator
JPH09202880A (en) * 1995-11-21 1997-08-05 Toshiba Corp Ceramic scintillator, radioactive ray detector using the same and radioactive ray inspector
WO1999033934A1 (en) * 1997-12-24 1999-07-08 Hitachi Medical Corporation Phosphors, and radiation detectors and x-ray ct unit made by using the same
JP2001004753A (en) * 1999-06-23 2001-01-12 Hitachi Medical Corp Oxide phosphor and radiation detector using it as well as x-ray ct apparatus
JP2001183463A (en) * 1999-12-24 2001-07-06 Hitachi Medical Corp Scintillator, radiation detector using the same, and x-ray ct equipment
JP2001348273A (en) * 2000-04-06 2001-12-18 Hitachi Metals Ltd Ceramics, method of producing ceramics powder, and method of producing ceramics
JP2001294853A (en) * 2000-04-12 2001-10-23 Hitachi Medical Corp Oxide fluorescent substance, radiation detector using the same, and x-ray ct apparatus

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348273A (en) * 2000-04-06 2001-12-18 Hitachi Metals Ltd Ceramics, method of producing ceramics powder, and method of producing ceramics
US7947956B2 (en) 2004-12-21 2011-05-24 Hitachi Metals, Ltd. Fluorescent material, a method of manufacturing the fluorescent material, a radiation detector using the fluorescent material, and an X-ray CT scanner
US7595492B2 (en) 2004-12-21 2009-09-29 Hitachi Metals, Ltd. Fluorescent material, a method of manufacturing the fluorescent material, a radiation detector using the fluorescent material, and an X-ray CT scanner
JP2009534863A (en) * 2006-04-25 2009-09-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Fluorescent lighting that produces white light
US8410446B2 (en) 2007-02-02 2013-04-02 Hitachi Metals, Ltd. Fluorescent material, scintillator using same, and radiation detector using same
WO2008093869A1 (en) 2007-02-02 2008-08-07 Hitachi Metals, Ltd. Fluorescent material, scintillator using the fluorescent material, and radiation detector
WO2009044657A1 (en) * 2007-10-01 2009-04-09 Hamamatsu Photonics K.K. Radiation detector
US8552390B2 (en) 2007-10-01 2013-10-08 Hamamatsu Photonics K. K. Radiation detector
US8338789B2 (en) 2007-10-01 2012-12-25 Hamamatsu Photonics K.K. Radiation detector
WO2009113379A1 (en) * 2008-03-10 2009-09-17 株式会社東芝 Solid scintillator, radiation detector and computed tomography scanner
US8083968B2 (en) 2008-03-10 2011-12-27 Kabushiki Kaisha Toshiba Solid scintillator, radiation detector, and X-ray tomographic imaging apparatus
EP2157153A1 (en) 2008-07-31 2010-02-24 Hitachi Metals, Ltd. Fluorescent material, scintillator using same, and radiation detector using same
US8129685B2 (en) 2008-07-31 2012-03-06 Hitachi Metals, Ltd. Fluorescent material, scintillator using same, and radiation detector using same
US8704182B2 (en) 2008-12-01 2014-04-22 Rikkyo Gakuin Thermoluminescent layered product, thermoluminescent plate, method of producing thermoluminescent layered product, method of producing thermoluminescent plate and method of acquiring three-dimensional dose distribution of radiation
WO2010064594A1 (en) * 2008-12-01 2010-06-10 学校法人立教学院 Thermofluorescent stack, thermofluorescent plate, process for producing thermoflorescent stack, process for producing thermofluorescent plate, and method of acquiring three-dimensional radiation dose distribution
JP2010174211A (en) * 2009-02-02 2010-08-12 Toshiba Corp Solid scintillator, radiation detector, radiographic inspection apparatus, powder for solid scintillator production and method for producing solid scintillator
JP4431701B1 (en) * 2009-09-04 2010-03-17 学校法人立教学院 Method for producing thermoluminescent plate, method for producing thermoluminescent laminate, thermoluminescent plate, and thermoluminescent laminate
JP2011052179A (en) * 2009-09-04 2011-03-17 Rikkyo Gakuin Method for producing thermofluorescent plate like body, method for producing thermofluorescent laminate, thermofluorescent plate like body and thermofluorescent laminate
JP2010127930A (en) * 2009-10-23 2010-06-10 Rikkyo Gakuin Thermofluorescent stack, thermofluorescent plate, method of manufacturing thermofluorescent stack, method of manufacturing thermofluorescent plate, and method of acquiring three-dimensional dose distribution of radiation
JP4457219B1 (en) * 2009-10-23 2010-04-28 学校法人立教学院 Thermoluminescent laminate, thermoluminescent plate, method for producing thermoluminescent laminate, method for producing thermoluminescent plate, and method for obtaining three-dimensional dose distribution of radiation
WO2012057133A1 (en) 2010-10-29 2012-05-03 日立金属株式会社 Polycrystalline scintillator for detecting soft x-rays
US8815122B2 (en) 2010-10-29 2014-08-26 Hitachi Metals, Ltd. Polycrystalline scintillator for detecting soft X-rays
KR20170039659A (en) * 2014-08-08 2017-04-11 도레이 카부시키가이샤 Scintillator panel and radiation detector
KR102179765B1 (en) * 2014-08-08 2020-11-17 도레이 카부시키가이샤 Scintillator panel and radiation detector
WO2017018824A1 (en) * 2015-07-29 2017-02-02 엘지이노텍 주식회사 Phosphor plate composition and phosphor plate for vehicle headlamp comprising same
KR20170014153A (en) * 2015-07-29 2017-02-08 엘지이노텍 주식회사 composition using phosphor plate and phosphor plate using the same for head lamp of vehicle
US10472566B2 (en) 2015-07-29 2019-11-12 Lg Innotek Co., Ltd. Phosphor plate composition and phosphor plate for vehicle headlamp comprising same
KR102475228B1 (en) 2015-07-29 2022-12-07 엘지이노텍 주식회사 composition using phosphor plate and phosphor plate using the same for head lamp of vehicle

Also Published As

Publication number Publication date
JP4087093B2 (en) 2008-05-14

Similar Documents

Publication Publication Date Title
US8431042B2 (en) Solid state scintillator material, solid state scintillator, radiation detector, and radiation inspection apparatus
US7655157B2 (en) Doped cadmium tungstate scintillator with improved radiation hardness
EP1043383B2 (en) Phosphors, and radiation detectors and x-ray ct unit made by using the same
EP2826835B1 (en) Solid scintillator, radiation detector and radiographic examination device
JP4683719B2 (en) Oxide phosphor, radiation detector using the same, and X-ray CT apparatus
JP4290282B2 (en) Oxide phosphor, radiation detector using the same, and X-ray CT apparatus
US8377335B2 (en) Solid scintillator, radiation detector, and tomograph
JP3777486B2 (en) Phosphor, radiation detector using the same, and X-ray CT apparatus
JP4087093B2 (en) Phosphor element, radiation detector using the same, and medical image diagnostic apparatus
US8083968B2 (en) Solid scintillator, radiation detector, and X-ray tomographic imaging apparatus
EP1666566B1 (en) Ceramic scintillator, and radiation detector and radiographic examination apparatus using same
JP5100050B2 (en) Oxide phosphor, radiation detector and X-ray CT apparatus
EP1279717B1 (en) Phosphor, radiation detector containing the same, and x-ray ct apparatus
JP2001294853A (en) Oxide fluorescent substance, radiation detector using the same, and x-ray ct apparatus
JP4429444B2 (en) Scintillator, radiation detector and X-ray CT apparatus using the same
JP5241979B2 (en) Ceramic scintillator material and manufacturing method thereof, and radiation detector and radiation inspection apparatus using the same
JP4906322B2 (en) Oxide phosphor, radiation detector and X-ray CT apparatus
JP2002082171A (en) Radiation detector and x-ray diagnostic equipment using the same
JP2005095514A (en) Radiation detector and x-ray ct apparatus using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041007

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4087093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350