JPS63112997A - Production of riboflavin - Google Patents

Production of riboflavin

Info

Publication number
JPS63112997A
JPS63112997A JP26022186A JP26022186A JPS63112997A JP S63112997 A JPS63112997 A JP S63112997A JP 26022186 A JP26022186 A JP 26022186A JP 26022186 A JP26022186 A JP 26022186A JP S63112997 A JPS63112997 A JP S63112997A
Authority
JP
Japan
Prior art keywords
culture
acetic acid
riboflavin
yeast
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26022186A
Other languages
Japanese (ja)
Other versions
JPH088875B2 (en
Inventor
Akikazu Matsuyama
彰収 松山
Teruyuki Nikaido
輝之 二階堂
Sadao Kageyama
蔭山 貞夫
Kimitoshi Kawai
河合 公利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP61260221A priority Critical patent/JPH088875B2/en
Publication of JPS63112997A publication Critical patent/JPS63112997A/en
Publication of JPH088875B2 publication Critical patent/JPH088875B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To produce the titled substance in high yield, by cultivating yeast belonging to the genus Saccharomyces by continuously adding acetic acid and a nitrogen source to a medium in a culture bath and maintaining concentration of calcium, etc., at <=a fixed value in the production of the titled substance using the yeast. CONSTITUTION:Yeast such as Saccharomyces cerevisiae, etc., belonging to the genus Saccharomyces, capable of producing riboflavin from acetic acid, is inoculated into a medium containing acetic acid, a nitrogen source such as urea, peptone, ammonia water, etc., a phosphoric acid source, etc. Culture is carried out under an aerobic condition by continuously or intermittently supplying the consumed acetic acid and nitrogen source. In the culture, calcium concentration in the medium is controlled to <=0.1.% and ammonium ion concentration to <=1,500ppm. Riboflavin is collected from the prepared culture solution by a well-known method.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はサツカロミセス属の酵母を用いる酢酸からりゴ
フラビンの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing goflavin from acetic acid using yeast of the genus Satucharomyces.

(従来の技術) 発酵法によるリボフラビンの製造方法についてはエレモ
セシウム・アシビイ(Eremothecium液中に
リボフラビンを生成・蓄積せしめる方法が知られている
(fログレス・インダストリアル・ミクロバイオロジー
(Progress IndustrialMicro
biology) 1巻139頁、1959)。
(Prior Art) As for a method for producing riboflavin by a fermentation method, a method is known in which riboflavin is produced and accumulated in a liquid of Eremothecium (Progress Industrial Microbiology).
vol. 1, p. 139, 1959).

本発明者の一部は酢酸を炭素源とする発酵法によるリボ
フラビンの製造方法を報告しているアグリ力ルチアルア
ンドバイオロジカルケミストリ−(Agr、  Bio
l、 Chem、)vol、28*p、 559.56
6+ 765(1964)。
Some of the present inventors have reported a method for producing riboflavin by a fermentation method using acetic acid as a carbon source.
l, Chem, ) vol, 28*p, 559.56
6+ 765 (1964).

また、変異株を用いる方法としては、本発明者らによる
サツカロミセス属に属するプリン要求性変異株を用いる
方法(特開昭60−241895号)、サツカロミセス
属に属する3−アミノ−1,2t4− )リアゾールに
耐性を有する変異株を用いる方法(特開昭60−241
896号)、サツカロミセス属に属するプリン要求性復
帰変異株を用いる方法(特、頭昭60−120119号
)、サツカロミセス属に属するアンモニウムイオンに耐
性を有する変異株を用いる方法(特1願昭61−234
86号)が知られている。
Further, as a method using a mutant strain, a method using a purine auxotrophic mutant strain belonging to the genus Satucharomyces by the present inventors (Japanese Patent Application Laid-Open No. 60-241895), 3-amino-1,2t4-) belonging to the genus Satucharomyces Method using a mutant strain resistant to lyazole (Japanese Patent Application Laid-Open No. 60-241
No. 896), a method using a purine auxotrophic revertant strain belonging to the genus Satucharomyces (Special Patent No. 120119, 1986), and a method using a mutant strain resistant to ammonium ions belonging to the genus Satucharomyces (Special Patent No. 1, No. 120119, No. 1988). 234
No. 86) is known.

なお、上記文献において微生物の名称として、キャンデ
ィダ・ロブスタ(Candida robusta)が
用いられているが、その後キャンディダ・ロブスタの標
準法(タイツストレイン)において胞子が見出されてい
るため、ロダー著「デ・イースト」1970年版におい
ては、キャンディダ・ロブスタはサツカロミセス・セレ
ビッシェ(、Saccharomycescerevi
siae)に再分類されている。
In addition, although Candida robusta (Candida robusta) is used as the name of the microorganism in the above-mentioned document, since spores were subsequently found in the standard method (tights strain) for Candida robusta, In the 1970 edition of ``De East,'' Candida robusta was classified as Saccharomyces cerevisiae.
siae).

一般的な培養方法においては、適当な組成の培地に微生
物を接種し、そのまま培養を続ける回分法で培養を行う
ことが多い。これに対し近年、最初から多量に加えると
微生物の生育に阻害的に働くメタノール等の炭素源を培
養経過に応じて少量ずつ加える流加培養法が発展してき
た。パン酵母の製造に際しては、アルコールの副生を抑
えるために、糖蜜を少量ずつ加える流加培養法が用いら
れている。
In general culture methods, microorganisms are often inoculated into a medium with an appropriate composition, and culture is continued in a batch manner. In contrast, in recent years, a fed-batch culture method has been developed in which a carbon source such as methanol, which inhibits the growth of microorganisms if added in large amounts from the beginning, is added little by little as the culture progresses. When producing baker's yeast, a fed-batch culture method is used in which molasses is added little by little to suppress alcohol by-products.

(発明が解決しようとする問題点) 培地中でサツカロミセス属の酵母を培養して、リゾフラ
ビンを採取するりボフラビンの製造方法については、す
でに上記のような本発明者らによる変異株を用いる方法
等が知られているが、かかる発酵法によるリボフラビン
の製造を回分法で行うに当たっては培養中に蓄積される
リボフラビンの濃度をできるだけ高めることが工業化に
際しての大きな課題となる。そればかシでなく、本発明
者らによる変異株を用いる方法を回分法で行うに当たっ
ては、炭素源として酢酸を用いるとりポフラビン生産が
良好な場合が多いが、培養の最初より高濃度の酢酸を仕
込んだシ、培養液中のアンモニウムイオン凝度が200
0ppm以上になると酵母の生育及びリボフラビンの生
成が極端に低下する傾向にある。また、炭素源として酢
酸を用いる場合、培地を中性付近に保つために初発に炭
素源として酢酸カルシウム等の酢酸塩を仕込まざるを得
ないが、培地中のカルシウム濃度が0.5多種度以上に
なると培養中に炭酸カルシウムが多量蓄積し、培養後の
りボフラビンの分離精製を困難にする場合が見られた。
(Problems to be Solved by the Invention) A method for producing boflavin by cultivating yeast of the genus Satucharomyces in a medium and collecting lysoflavin has already been proposed, such as a method using a mutant strain as described above by the present inventors. However, when producing riboflavin by such a fermentation method in a batch process, a major challenge for industrialization is to increase the concentration of riboflavin accumulated during culture as much as possible. However, when carrying out the method of the present inventors using a mutant strain in a batch method, poflavin production using acetic acid as a carbon source is often good. The ammonium ion concentration in the culture solution was 200.
When the concentration exceeds 0 ppm, yeast growth and riboflavin production tend to be extremely reduced. Furthermore, when acetic acid is used as a carbon source, an acetate such as calcium acetate must be initially added as a carbon source to keep the medium near neutrality, but the calcium concentration in the medium is 0.5% or more. In some cases, a large amount of calcium carbonate accumulates during culture, making it difficult to separate and purify riboflavin after culture.

(問題点を解決するだめの手段) 本発明者らは発酵法による酢酸からのリボフラビンの製
造方法を改良すべく、上記の問題点について流加培養法
を用いて鋭意検討した結果、サツカロミセス属の酵母を
用いて酢酸からリゾフラビンを製造する方法において、
培養槽内の培地に酢酸及び窒素源を連続的又は間欠的に
加えて培養を行うことによシ、また、培養液中のカルシ
ウム濃度を0.1チ以下に、アンモニウムイオン濃度ヲ
1500ppm以下に維持することによシ、リゾフラビ
ンが高濃度蓄積されることを認め、本発明を完成するに
至った。
(An unsuccessful means to solve the problem) In order to improve the method for producing riboflavin from acetic acid by fermentation, the present inventors conducted intensive studies on the above problems using a fed-batch culture method, and found that the In a method for producing lysoflavin from acetic acid using yeast,
By culturing by continuously or intermittently adding acetic acid and a nitrogen source to the medium in the culture tank, the calcium concentration in the culture solution can be reduced to 0.1% or less, and the ammonium ion concentration to 1500ppm or less. The present inventors recognized that lysoflavin can be accumulated in high concentration by maintaining the lysoflavin, and have completed the present invention.

即ち、本発明はサツカロミセス属の酵母を用いて酢酸か
らIJ 、35フラビンを製造する方法において、培養
槽内の培地に酢酸及び窒素源を連続的又は間欠的に加え
て培養を行い、培養液中のカルシウム濃度を0.1%以
下に、アンモニウムイオン濃度を1500 ppm以下
に維持することを特徴とするりボフラビンの製造方法で
ある。
That is, the present invention relates to a method for producing IJ, 35 flavin from acetic acid using yeast of the genus Satucharomyces, in which acetic acid and a nitrogen source are continuously or intermittently added to a culture medium in a culture tank, and culture is carried out. This is a method for producing riboflavin, which is characterized by maintaining the calcium concentration at 0.1% or less and the ammonium ion concentration at 1500 ppm or less.

(使用する微生物) 本発明で使用する微生物は酢酸からIJ gフラビンを
生成するサツカロミセス属の酵母であり、例えば前記各
特許に記載されている野生株、変異株を用いることがで
きる。具体的にはサツカロミセス・セレビッシェAHU
 3402. AHU 3405. P−154(FE
RM BP−566)、TPIOIO(FERM BP
−565)、TW−573(FERM BP−567)
、TR−29(FERM BP−782)、NH−26
8(FERM BP−965)などを上げることが出来
る。
(Microorganism used) The microorganism used in the present invention is a yeast of the genus Satucharomyces that produces IJ g flavin from acetic acid, and for example, wild strains and mutant strains described in the above-mentioned patents can be used. Specifically, Satsukaromyces cerevische AHU
3402. AHU 3405. P-154 (FE
RM BP-566), TPIOIO (FERM BP
-565), TW-573 (FERM BP-567)
, TR-29 (FERM BP-782), NH-26
8 (FERM BP-965) etc.

(培養方法) 本発明を実施するに当たって培養物中にIJ gフラビ
ンを蓄積させるために、酢酸、窒素源、リン酸源、その
他必要な栄養源を含む培地にサツカロミセス属に属する
リボフラビン生産能をゼする酵母を接種し、培養を行う
。酢酸としてはフリー酢酸、酢酸カルシウム、酢酸ナト
リウム、酢酸カリウム、酢酸アンモニウム等、水溶液中
で酢酸イオンを生じる物質であれば何れをも用いること
ができる。
(Culture method) In carrying out the present invention, in order to accumulate IJ gflavin in the culture, the riboflavin-producing ability belonging to the genus Satucharomyces is injected into a medium containing acetic acid, a nitrogen source, a phosphoric acid source, and other necessary nutrients. Inoculate yeast and culture. As the acetic acid, any substance that produces acetate ions in an aqueous solution can be used, such as free acetic acid, calcium acetate, sodium acetate, potassium acetate, and ammonium acetate.

窒素源としては種々の形態の窒素化合物がザ用でき、例
えば硫酸アンモニウム、塩化アンモニウム、炭酸アンモ
ニウム、硝酸アンモニウム、アンモニア水、尿素、アミ
ノ酸、ペプトン、コーンステイーノリカー等を用いるこ
とができる。
Various forms of nitrogen compounds can be used as the nitrogen source, such as ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium nitrate, aqueous ammonia, urea, amino acids, peptone, corn styrene liquor, and the like.

また、酢酸、窒素源の他にリン酸第−カリウム、硫酸マ
グネシウム等の無機塩類を使用することが好ましい。ま
た、必要に応じてビオチン等のビタミン類、アミノ酸、
核酸塩基等の微量栄養素を添加すればり?フラピンの蓄
積量を増す場合が多い。
Further, in addition to acetic acid and a nitrogen source, it is preferable to use inorganic salts such as potassium phosphate and magnesium sulfate. In addition, vitamins such as biotin, amino acids,
Should I add micronutrients such as nucleobases? It often increases the amount of furapin accumulated.

本発明者が先に発明した亜鉛イオンを添加してりがフラ
ピン生産性を向上させ鉄イオンによる阻害を防ぐ改良製
法(特開昭60−58088号)を適用することもでき
る。
It is also possible to apply an improved manufacturing method (Japanese Patent Application Laid-Open No. 60-58088) which was previously invented by the present inventor and which improves the productivity of frapin by adding zinc ions to prevent inhibition by iron ions.

培養には好気的条件が好ましい。培地の−は2乃至10
とするが、6乃至9に調節すれは、最も好ましい結果が
得られる。温度は20℃乃至37℃の範囲のうち使用菌
株の生育及びIJ gフラビン生産性に適した温度を用
いることができる。
Aerobic conditions are preferred for culturing. - of medium is 2 to 10
However, adjusting it to 6 to 9 will give the most favorable results. A temperature suitable for the growth of the strain used and IJ g flavin productivity can be used within the range of 20°C to 37°C.

本発明においては、培養の途中で消費された酢酸及び窒
素源を連続的又は間欠的に補充して添加していくことが
肝要である。これによシリポフラビンの蓄積量を著しく
高めることができる。添加に使用する窒素源としては硫
酸アンモニウム、塩化アンモニウム、炭酸アンモニウム
、アンモニア水、硝酸アンモニウム、酢酸アンモニウム
等の各種アンモニア塩、および尿素を使用する。この場
合、培地中のカルシウム濃度を0.1%以下、アンモニ
ウムイオン濃度を1500 ppm以下にコントロール
する事が好ましい。これら途中で添加する酢酸、窒素源
は、粉末状で加えてもよいし水溶液の形で添加してもよ
い。培地中のカルシウム濃度を0.1チ以上にすると、
得られたりポフラビンを培地中よシ採取するのが困難と
なる。又アンモニウムイオン濃度を1500 ppm以
上とすると酵母の生育及びリゾフラビンの生成が低下し
て好ましくない。
In the present invention, it is important to continuously or intermittently replenish and add the acetic acid and nitrogen sources consumed during the culture. This can significantly increase the amount of silipoflavin accumulated. As the nitrogen source used for addition, various ammonium salts such as ammonium sulfate, ammonium chloride, ammonium carbonate, aqueous ammonia, ammonium nitrate, ammonium acetate, and urea are used. In this case, it is preferable to control the calcium concentration in the medium to 0.1% or less and the ammonium ion concentration to 1500 ppm or less. The acetic acid and nitrogen source added during these steps may be added in powder form or in the form of an aqueous solution. When the calcium concentration in the medium is 0.1 h or more,
It becomes difficult to collect poflavin from the culture medium. Furthermore, if the ammonium ion concentration is 1500 ppm or more, yeast growth and lysoflavin production will be reduced, which is not preferable.

このようにして得られる培養液からのリボフラビンの採
取には公知の手法が適用できる。即ち培養液を60℃〜
120℃に加熱しりボフラビンを溶解させたのち、遠心
分離により酵母菌体と濾液に分離し、濾液を必要に応じ
て濃縮した後ハイドロサルファイド或いは三塩化チタン
によシ還元しリボフラビンを沈降させる。このようにし
て得られたIJ gフラビンを空気中で酸化させた後、
水、酢酸水溶液等の溶媒を用いて再結晶を行い、精製す
ることが可能である。
Known techniques can be applied to collect riboflavin from the culture fluid thus obtained. That is, the culture solution is heated to 60℃~
After heating to 120° C., the riboflavin is dissolved, centrifuged to separate the yeast cells and the filtrate, the filtrate is concentrated if necessary, and then reduced with hydrosulfide or titanium trichloride to precipitate the riboflavin. After oxidizing the IJ gflavin thus obtained in air,
It is possible to purify it by recrystallizing it using a solvent such as water or aqueous acetic acid solution.

帛 更には、本発介キよるリボフラビンの取得法(特開昭6
1−21096号)を用いて高純度のり?フラピン結晶
を採取することが可能である。
Furthermore, the method for obtaining riboflavin using the present invention (Unexamined Japanese Patent Publication No. 6
1-21096) to make high-purity glue? It is possible to collect frapine crystals.

(実施例) 次に実施例を示す。(Example) Next, examples will be shown.

実施例1 サツ力ロミセスセレピッシェNH−268(F’ERM
 BP−965)をグルコース2%、ポリペプトン0.
5チ、酵母エキス0.3%、麦芽エキス0.3%を含む
液体培地100rnlに接種し、30℃で43時間振盪
培養する。この前培養液を酢酸アンモニウム0.58%
、酢酸カフルシウム0.13%、 )G(2PO40,
1%、MgSO4・7H200,05%、ZnSO4・
7H2011ppmを含む醗酵培地3000mlに15
%の接紳量で接種し、7L溶ジャーファーメンタ−を用
いて通気量Q、5 v、v、m、攪拌翼の回転数600
 r、p、m、 30℃で培養を開始した。培養開始直
後から−1を7±0.5に維持するように設定したーコ
ントローラーにより50%酢酸、1チ酢酸アンモニウム
混合液を流加し、培地中のカルシウム濃度を0.1%以
下、アンモニウムイオン濃度を1500ppm以下に保
って培養を継続した。
Example 1 Satsuri Romyces Serepische NH-268 (F'ERM
BP-965) with 2% glucose and 0.0% polypeptone.
5 ml, inoculated into 100 rnl of a liquid medium containing 0.3% yeast extract and 0.3% malt extract, and cultured with shaking at 30°C for 43 hours. This pre-culture solution was mixed with ammonium acetate 0.58%
, caflucium acetate 0.13%, )G(2PO40,
1%, MgSO4・7H200,05%, ZnSO4・
15 to 3000 ml of fermentation medium containing 2011 ppm of 7H
%, and using a 7L melting jar fermentor, the aeration amount was Q, 5 v, v, m, and the rotation speed of the stirring blade was 600.
Culture was started at 30°C. Immediately after the start of culture, -1 was set to be maintained at 7 ± 0.5 - A mixture of 50% acetic acid and ammonium 1-thiacetate was added to the controller to keep the calcium concentration in the medium below 0.1%, and ammonium Culture was continued while keeping the ion concentration below 1500 ppm.

全期間における酢酸とアンモニウムイオンの総添加量は
其々913.89.3.1.9であった。培養284時
間でリボフラピン蓄積量が5.8fi/lになった。
The total amounts of acetic acid and ammonium ions added during the entire period were 913.89.3.1.9, respectively. After 284 hours of culture, the amount of riboflavin accumulated was 5.8 fi/l.

比較例1 実施例1と同様の培養で培地中のアンモニウムイオン濃
度を2000〜1500 ppm程度に維持した時は培
養237時間でIJ 、pフラビン蓄積量が2.911
/lになった。
Comparative Example 1 When the ammonium ion concentration in the medium was maintained at about 2000 to 1500 ppm in the same culture as in Example 1, the amount of IJ and pflavin accumulated was 2.911 after 237 hours of culture.
It became /l.

(発明の効果) IJ gフラピン発酵にl)tて、培養の途中で酢酸及
び窒素源を連続的又は間欠的に添加していくことによっ
てリボフラピン蓄積量を著しく高めることができた。リ
ゾフラビンは医薬、飼料添加剤、食品用の着色剤などと
して非常に有用な物質であシ、本発明により、工業的規
模での効率的なIJ 、Hフラビンの製造が可能となっ
た。
(Effects of the Invention) By continuously or intermittently adding acetic acid and a nitrogen source during the culture, the amount of riboflavin accumulated could be significantly increased. Lysoflavin is a very useful substance as a medicine, feed additive, food coloring agent, etc., and the present invention has made it possible to efficiently produce IJ and H flavins on an industrial scale.

Claims (2)

【特許請求の範囲】[Claims] (1)サッカロミセス属の酵母を用いて酢酸からリボフ
ラビンを製造する方法において、培養槽内の培地に酢酸
、窒素源を連続的又は間欠的に加えることを特徴とする
リボフラビンの製造法。
(1) A method for producing riboflavin from acetic acid using yeast of the genus Saccharomyces, which comprises continuously or intermittently adding acetic acid and a nitrogen source to a medium in a culture tank.
(2)培養液中のカルシウム濃度を0.1%以下に、ア
ンモニウムイオン濃度を1500ppm以下に維持する
ことを特徴とする特許請求第1項記載の方法。
(2) The method according to claim 1, characterized in that the calcium concentration in the culture solution is maintained at 0.1% or less, and the ammonium ion concentration is maintained at 1500 ppm or less.
JP61260221A 1986-10-31 1986-10-31 Riboflavin production method Expired - Lifetime JPH088875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61260221A JPH088875B2 (en) 1986-10-31 1986-10-31 Riboflavin production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61260221A JPH088875B2 (en) 1986-10-31 1986-10-31 Riboflavin production method

Publications (2)

Publication Number Publication Date
JPS63112997A true JPS63112997A (en) 1988-05-18
JPH088875B2 JPH088875B2 (en) 1996-01-31

Family

ID=17345030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61260221A Expired - Lifetime JPH088875B2 (en) 1986-10-31 1986-10-31 Riboflavin production method

Country Status (1)

Country Link
JP (1) JPH088875B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524628A (en) * 1975-06-30 1977-01-13 Kawasaki Heavy Ind Ltd Tunnel excavator
JPS5926275A (en) * 1982-07-08 1984-02-10 マンネスマン・タリ−・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Pendulum mechanism for reciprocating machine section

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524628A (en) * 1975-06-30 1977-01-13 Kawasaki Heavy Ind Ltd Tunnel excavator
JPS5926275A (en) * 1982-07-08 1984-02-10 マンネスマン・タリ−・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Pendulum mechanism for reciprocating machine section

Also Published As

Publication number Publication date
JPH088875B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
US3619369A (en) Process for producing xylitol by fermentation
KR910008625B1 (en) Process for the biotechnologoical proparation of poly - d - ( - ) - 3 - hydroxybutyric acid
EP0137226B1 (en) Process for the preparation of riboflavin
KR910002857B1 (en) Process for the biotechnological preparation of poly -d- (-) -3- hydroxybutyric acid
KR0153091B1 (en) Process for fermenting xylitol by regulation of oxygen pressure
US5126248A (en) Process for preparation of riboflavin
JPS63112997A (en) Production of riboflavin
CA1301690C (en) PROCESS FOR THE FERMENTATIVE PREPARATION OF L-AMINO ACIDS FROM .alpha.-KETO CARBOXYLIC ACIDS
JPS63112996A (en) Production of riboflavin
JPH09154589A (en) Production of erythritol
JPH0339678B2 (en)
EP0337502B1 (en) Process for the preparation of riboflavin
EP0338596B1 (en) Process for the preparation of riboflavin
US3121668A (en) Method for the production of 1-glutamic acid
JPS6225996A (en) Production of riboflavin
JPS63295A (en) Production of nicotinamide adenine dinucleotide
JPH0566115B2 (en)
JP3944934B2 (en) Process for producing ε-poly-L-lysine
EP1363992A1 (en) Method for increasing the intracellular glutamate concentration in yeast
JPS62181792A (en) Production of riboflavin
JPS61192293A (en) Production of coenzyme q10
GB2073244A (en) A Process for Preparing Suspensions of Torula or Candida utilis
SU553283A1 (en) Alcohol dehydrogenase production method
JP2818277B2 (en) Method for producing palmitoleic acid
JPS635080B2 (en)