JPS63112996A - Production of riboflavin - Google Patents

Production of riboflavin

Info

Publication number
JPS63112996A
JPS63112996A JP26022086A JP26022086A JPS63112996A JP S63112996 A JPS63112996 A JP S63112996A JP 26022086 A JP26022086 A JP 26022086A JP 26022086 A JP26022086 A JP 26022086A JP S63112996 A JPS63112996 A JP S63112996A
Authority
JP
Japan
Prior art keywords
culture
source
riboflavin
yeast
carbon source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26022086A
Other languages
Japanese (ja)
Inventor
Akikazu Matsuyama
彰収 松山
Teruyuki Nikaido
輝之 二階堂
Sadao Kageyama
蔭山 貞夫
Kimitoshi Kawai
河合 公利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP26022086A priority Critical patent/JPS63112996A/en
Publication of JPS63112996A publication Critical patent/JPS63112996A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To produce the titled substance in high yield, by cultivating yeast belonging to the genus Saccharomyces by continuously or intermittently adding a carbon source, a nitrogen source and a phosphoric acid source to a medium in a culture bath in the production of the titled substance by using the yeast. CONSTITUTION:Yeast such as Saccharomyces cerevisiae, etc., belonging to the genus Saccharomyces, capable of producing riboflavin, is inoculated into a medium containing a carbon source such as glucose, acetic acid, ethanol, etc., a nitrogen source such as ammonium sulfate, peptone, urea, etc., and a phosphoric acid source such as phosphate, etc. The culture is carried under an aerobic condition out by continuously and intermittently supplying the consumed carbon source, nitrogen source and phosphate source. Riboflavin is collected from the prepared culture solution by a well-known method.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はサツカロミセス属の酵母を用いる酢酸からりボ
フラビンの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing acetic acid-induced boflavin using yeast of the genus Satucharomyces.

(従来の技術) 発酵法によるリボフラビンの製造方法についてはエレモ
セシウムOアシビイ(Eremothaciumash
byii)、アシビア・ゴッシビイ(Ashbyago
ssypii)、キャンディダ・フラング4 (Can
dida中 flareri)、クロストジウム・アセトブチリカム
(Clostridium acetobutylic
um )等を塘質培地中で培養して培養液中にリボフラ
ビンを生成・蓄積せしめる方法が知られている(fログ
レス・インダストリアル・ミクロバイオロジー(Pro
gressIndustrial Microbiol
ogy  )1巻139頁、1959)。
(Prior art) Regarding the production method of riboflavin by fermentation method, Eremothesium O.
byii), Ashbyago
ssypii), Candida Frang 4 (Can
Clostridium acetobutylic (Clostridium acetobutylic)
um) etc. in a solid medium to produce and accumulate riboflavin in the culture solution (Flogres Industrial Microbiology (Pro
gressIndustrial Microbiol
ogy), Vol. 1, p. 139, 1959).

本発明者の一部は酢酸を炭素源とする発酵法によるリボ
フラビンの製造方法を報告して−る(アグリ力ルチアル
アンド バイオロジカル、ケミスト リ −(Agr、
Biol 、Chem、)vol 、  28 + p
、559+566+765(1964))。
Some of the inventors have reported a method for producing riboflavin by a fermentation method using acetic acid as a carbon source (Agr.
Biol, Chem, ) vol, 28 + p
, 559+566+765 (1964)).

また、変異株を用いる方法としては、本発明者らによる
サツカロミセス属に属するプリン要求性変異株を用いる
方法(特開昭60−241895号)、サツカロミセス
属に属する3−アミノ−1,2t4−)リアゾールに耐
性を有する変異株を用いる方法(特開昭60−2418
96号)、サツカロミセス属に属するプリン要求性復帰
変異株を用いる方法(特願昭60−120119号)、
サツカロミセス属に属するアンモニウムイオンに耐性を
有する変異株を用いる方法(特願昭61−23486号
)か知られている。
Further, as a method using a mutant strain, a method using a purine auxotrophic mutant strain belonging to the genus Satucharomyces by the present inventors (Japanese Patent Application Laid-open No. 60-241895), 3-amino-1,2t4-) belonging to the genus Satucharomyces Method using a mutant strain resistant to lyazole (Japanese Patent Application Laid-Open No. 60-2418
96), a method using a purine auxotrophic revertant strain belonging to the genus Satucharomyces (Japanese Patent Application No. 120119/1982),
A method using a mutant strain resistant to ammonium ions belonging to the genus Satucharomyces (Japanese Patent Application No. 61-23486) is known.

なお、上記文献において微生物の名称として、キャンデ
ィダ・ロブスタ(Candida robusta)が
用いられているが、その後キャンディダ・ロブスタの標
準様(タイゲストレイン)において胞子が見出されてい
るため、ロダー著「デ・イースト」1970年版におい
ては、キャンディダ・ロブスタはサツカロミセス・セレ
ビッシェ(Saccharomycescerevis
iae )に再分類されている。
In addition, although Candida robusta (Candida robusta) is used as the name of the microorganism in the above-mentioned literature, since spores were subsequently found in the standard form (tigest strain) of Candida robusta, In the 1970 edition of "De East", Candida robusta is referred to as Saccharomyces cerevisiae.
iae).

一般的な培養方法においては、適当な組成の培地に微生
物を接種し、そのまま培養を続ける回分法で培養を行う
ことが多い。これに対し近年、最初から多量に加えると
微生物の生育に阻害的に働くメタノール等の炭素源を培
養経過に応じて少量ずつ加える流加培養法が発展してき
た。パン酵母の製造に際しては、アルコールの副生を抑
えるために糖蜜を少量ずつ加える流加培養法が用いられ
ている。
In general culture methods, microorganisms are often inoculated into a medium with an appropriate composition, and culture is continued in a batch manner. In contrast, in recent years, a fed-batch culture method has been developed in which a carbon source such as methanol, which inhibits the growth of microorganisms if added in large amounts from the beginning, is added little by little as the culture progresses. When producing baker's yeast, a fed-batch culture method is used in which molasses is added little by little to suppress the by-product of alcohol.

(発明が解決しようとする問題点) 培地中でサツカロミセス属の酵母を培養して、リボフラ
ビンを採取するりボフラビンの製造方法については、す
でに上記のような本発明者らによる変異株を用いる方法
等が知られているが、かかる発酵法によるIJ gフラ
ビンの製造を回分法で行うに当たっては培養中に蓄積さ
れるリボフラビ/の濃度をできるだけ高めることが工業
化に際しての大きな課題となる。また、回分法で行うに
当たって、培養の最初よシ高濃度の炭素源を仕込むと、
酵母の生育及びす?フラビンの生成が阻害されることが
多いという欠点がある。
(Problems to be Solved by the Invention) A method for producing boflavin by cultivating yeast of the genus Satucharomyces in a medium and collecting riboflavin has already been proposed, such as a method using a mutant strain as described above by the present inventors. However, when producing IJ g flavin by such a fermentation method in a batch method, a major challenge for industrialization is to increase the concentration of riboflavin accumulated during culture as much as possible. In addition, when using the batch method, if a high concentration of carbon source is added at the beginning of culture,
Yeast growth and growth? The disadvantage is that flavin production is often inhibited.

(問題点を解決するための手段) 本発明者らは発酵法によるveフラビンの製造方法を改
良すべく、上記のような炭素源ばかシでなく広く他の成
分について流加培養法を用いて鋭意検討した結果、サツ
カロミセス属の酵母を用いてリボフラビンを製造する方
法において、培養槽内の培地に炭素源及び窒素源を連続
的又は間欠的に加えて培養を行うことにより、リボフラ
ビンが高濃度蓄積されることを認め、本発明を完成する
に至った。
(Means for Solving the Problems) In order to improve the method for producing veflavin by fermentation, the present inventors have used a fed-batch culture method for a wide range of other components, not just the carbon source as described above. As a result of extensive research, we found that in a method for producing riboflavin using yeast of the genus Satucharomyces, riboflavin accumulates at high concentrations by continuously or intermittently adding a carbon source and a nitrogen source to the culture medium in the culture tank. The present invention was completed based on this recognition.

即ち、本発明はサツカロミセス属の酵母を用いてりzク
ラビンを製造する方法において、培養槽内の培地に炭素
源及び窒素源を連続的又は間欠的に加えて培養を行うこ
とを特徴とするりぜフラビンの製造方法である。
That is, the present invention provides a method for producing z-clavine using yeast of the genus Satucharomyces, which is characterized in that the culture is carried out by continuously or intermittently adding a carbon source and a nitrogen source to a medium in a culture tank. This is a method for producing zeflavin.

(使用する微生物) 本発明に於て使用する微生物としては培地で培養するこ
とによシリボフラビンを生産する微生物であればいかな
るものでも良いが複雑な天然物などの使用量が少ない培
地で培養できりボフラビンを生産する微生物例えば酢酸
などを炭素源としてリボフラビンを生産するサツカロミ
セス(Saccharomyces)属の酵母などが好
ましい具体例トシてはサツカロミセス・センビッシェ(
Saccharomyces cerevisiae 
) AHU 3405から誘導された変異株であるサツ
カロミセス・セレビッン工p−154(FEゐi BP
−566) TPl、010(FERM BP−565
)、TW−573(FERM BP−567)、TR−
29(FERM BP−782)、NH−268(FE
肢I BP−965)などが上げることが出来る。
(Microorganisms used) The microorganisms used in the present invention may be any microorganisms as long as they can produce siliboflavin when cultured in a medium, but those that can be cultured in a medium with a small amount of use, such as complex natural products. Preferred examples include microorganisms that produce riboflavin, such as yeast of the genus Saccharomyces that produces riboflavin using acetic acid as a carbon source.
Saccharomyces cerevisiae
) AHU 3405-derived mutant strain Satucharomyces cerebinate p-154 (FEii BP
-566) TPl, 010 (FERM BP-565
), TW-573 (FERM BP-567), TR-
29 (FERM BP-782), NH-268 (FERM
Limb I BP-965) can be raised.

(培養方法) 本発明を実施するに当たって培養物中にリボフラビンを
蓄積させるために、炭素源、窒素源、リン酸源、その他
必要な栄養源を含む培地にサツカロミセス属に属するす
がフラビン生産能を有する酵母を接種し、培養を行う。
(Culture method) In carrying out the present invention, in order to accumulate riboflavin in the culture, the flavin-producing ability of Saccharomyces spp. Inoculate the yeast containing the yeast and culture it.

炭素源としては酢酸、グルコン酸等の有ta 酸、グル
コース、シュークロース、キシロース等のRTJ 、エ
タノール、グリセリン等のアルコール類その他を使用で
きる。
As carbon sources, talic acids such as acetic acid and gluconic acid, RTJs such as glucose, sucrose and xylose, alcohols such as ethanol and glycerin, and others can be used.

窒素源としては種々の形態の窒素化合物が使用でき、例
えば硫酸アンモニウム、塩化アンモニウム、炭酸アンモ
ニウム、硝酸アンモニウム、アンモニア水、尿素、アミ
ノ酸、ペプトン、コーンステイープリカー等を用いるこ
とができる。
Various forms of nitrogen compounds can be used as the nitrogen source, such as ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium nitrate, aqueous ammonia, urea, amino acids, peptone, and cornstarch liquor.

リン酸源としてはフリーのリン酸の他リン酸第−カリウ
ム、す/酸第二カリウム、す/酸第−ナトリウム等のリ
ン酸塩を用いることができる。
As the phosphoric acid source, in addition to free phosphoric acid, phosphates such as potassium phosphate, dibasic potassium phosphate, and sodium chloride phosphate can be used.

また、炭素源、窒素源、リン酸源の他に硫酸マグネシウ
ム等の無機塩類を使用することが好ましい。また、必要
に応じてピオチン等のビタミン類、アミノ酸、核酸塩基
等の微量栄養素を添加すればリボフラビンの蓄積量を増
す場合が多い。本発明者が先に発明した亜鉛イオンを添
加してリボフラビン生産性を向上させ鉄イオンによる阻
害を防ぐ改良製法(%開昭60−58088号)を適用
することもできる。
Moreover, it is preferable to use inorganic salts such as magnesium sulfate in addition to the carbon source, nitrogen source, and phosphoric acid source. Furthermore, if necessary, the amount of accumulated riboflavin can be increased in many cases by adding micronutrients such as vitamins such as piotin, amino acids, and nucleobases. It is also possible to apply an improved manufacturing method (% JP-A-60-58088) which was previously invented by the present inventor and which improves riboflavin productivity by adding zinc ions to prevent inhibition by iron ions.

培養には好気的条件が好ましい。培地の声は2乃至10
とするが、6乃至9に調節すれば、最も好ましい結果が
得られる。温度は20℃乃至37℃の範囲のうち使用菌
株の生育及びリボフラビン生産性に適した温度を用いる
ことができる。
Aerobic conditions are preferred for culturing. Medium voice is 2 to 10
However, if the value is adjusted to 6 to 9, the most preferable results will be obtained. A temperature suitable for the growth of the strain used and riboflavin productivity can be used within the range of 20°C to 37°C.

′本発明においては、培養の途中で消費された炭素源及
び窒素源を連続的又は間欠的に添加して補充していくこ
とが肝要である。これによシリボフラビンの蓄積量を著
しく高めることができる。また、リン酸源を添加するこ
とによシリボフラビ/の蓄積量を更に高めることができ
る。これら途中で添加する炭素源、窒素源、リン酸源は
、粉末状で加えてもよいし水溶液の形で添加してもよい
'In the present invention, it is important to continuously or intermittently add and replenish the carbon and nitrogen sources consumed during the culture. This can significantly increase the amount of siliboflavin accumulated. In addition, by adding a phosphoric acid source, the amount of siliboflavin/ can be further increased. The carbon source, nitrogen source, and phosphoric acid source that are added during these steps may be added in powder form or in the form of an aqueous solution.

このようにして得られる培養液からのリボフラビンの採
取には公知の手法が適用できる。即ち培養液を60℃〜
120℃に加熱しりボフラビンを溶解させたのち、遠心
分離によシ酵母菌体と濾液に分離し、濾液を必要に応じ
て濃縮した後ハ・「ドロサルファイド或いは三塩化チタ
ンによシ還元しり?2ラビンを沈降させる。このように
して得られたり?フラピンを空気中で酸化させた後、水
、酢酸水溶液等の溶媒を用いて再結晶を行い、精製する
ととが可能である。
Known techniques can be applied to collect riboflavin from the culture fluid thus obtained. That is, the culture solution is heated to 60℃~
After heating to 120°C and dissolving the boflavin, it was separated into yeast cells and filtrate by centrifugation, and the filtrate was concentrated as necessary. 2 Rabin is precipitated.Furapine thus obtained can be oxidized in air and then recrystallized using a solvent such as water or an aqueous acetic acid solution to purify it.

更には、本発明者によるリボフラビンの取得法(特開昭
61−21096号)を用いて高純度のり?7ラピン結
晶を採取することが可能である。
Furthermore, high-purity glue can be obtained using the method for obtaining riboflavin by the present inventor (Japanese Patent Application Laid-Open No. 61-21096). It is possible to collect 7 lapin crystals.

(実施例) 次に実施例を示す。(Example) Next, examples will be shown.

実施例1 サツカロミセスセレビッシェNH−268(FERM 
BP−965)をグルコース2%、ポリ−2ニア°トン
0.5%、酵母エキス0.3J、麦芽エキス0.3チを
含む液体培地IQQm/に接種し、30℃で45時間振
盪培養する。との前培養液を第−表の発酵A培地300
0mlに15%の接種量で接種し、7L容ジャーファー
メンタ−を用いて通気量0.33 v、v、m、 、攪
拌翼の回転数60 Or、p、m、、30℃で培養を開
始した。
Example 1 Satsukaromyces cerevisiae NH-268 (FERM
BP-965) was inoculated into a liquid medium IQQm/ containing 2% glucose, 0.5% poly-2Niaton, 0.3J yeast extract, and 0.3J malt extract, and cultured with shaking at 30°C for 45 hours. . The pre-culture solution with Fermentation A medium 300 in Table 1.
0 ml at a 15% inoculum volume, and cultured at 30°C using a 7 L jar fermenter with aeration volume of 0.33 v, v, m, rotation speed of stirring blades: 60 Or, p, m. It started.

培養開始78時間目から酢酸カルシウムと硫酸アンモニ
ウムを流加し培養を継続した。全期間における酢酸カル
シウムと硫酸アンモニウムの総添加量は其々765 f
l 、 23.2 gであった。培養264時間でリボ
フラビン蓄積量が4.91//lになった。
From 78 hours after the start of culture, calcium acetate and ammonium sulfate were added to continue the culture. The total amount of calcium acetate and ammonium sulfate added during the entire period was 765 f each.
1, 23.2 g. After 264 hours of culture, the amount of riboflavin accumulated was 4.91/l.

比較例1 実施例1と同様に培養を開始し、酢酸カルシウムと硫酸
アンモニウムの流加をおこなわず、通常の回分培養を行
った。培養140時間でリボフラビン蓄積量がL9fl
/lと最大になった。
Comparative Example 1 Culture was started in the same manner as in Example 1, and normal batch culture was performed without feeding calcium acetate and ammonium sulfate. The amount of riboflavin accumulated after 140 hours of culture was L9fl.
It reached the maximum of /l.

実施例2 サツカロミセスセレビッシェNH−268(FERM 
BP−965)ラブルコース2%、ポリペプトン0.5
係、酵母エキス0.3 % 、麦芽エキス0.3 %を
含む液体培地100mJに接種し、30℃で45時間振
盪培養する。この前培養液を第二表の発酵B培地300
0、wlに3,3チの接種量で接種し、7L容ジャーフ
ァーメンタ−を用いて通気量0.5 v、v、m、、攪
拌翼の回転数600 r、p、m、、30℃で培養を開
始した。培養開始48.5時間目と74時間目にシュー
クロース150gを其々流加した。また、PH訳節を培
養開始直後よシーを7±0.5に維持するよう声コント
ローラーによ928%アンモニア水を流加し、窒素源流
加とした。全期間に100.9の28係アンモニア水を
流加した。培養139時間でリボフラビン蓄積量が71
61ng/lになった。
Example 2 Satsukaromyces cerevisiae NH-268 (FERM
BP-965) Rubble course 2%, polypeptone 0.5
100 mJ of a liquid medium containing 0.3% yeast extract and 0.3% malt extract was inoculated and cultured with shaking at 30°C for 45 hours. This pre-culture solution was added to Fermentation B medium 300 in Table 2.
Inoculate 0, wl with an inoculum amount of 3.3 cm, and use a 7 L jar fermenter with aeration volume of 0.5 v, v, m, rotation speed of stirring blade 600 r, p, m,, 30 Culture was started at ℃. 150 g of sucrose was fed at 48.5 hours and 74 hours after the start of culture. Immediately after the start of culture, 928% ammonia water was added using a voice controller to maintain the pH value at 7±0.5, and a nitrogen source was added. During the entire period, 100.9% 28% ammonia water was fed. After 139 hours of culture, the amount of riboflavin accumulated was 71.
It became 61ng/l.

実施例3 サツ力ロミセスセレピッシェNH−268(FER,’
li’I BP−965)ラブルコース2%、ポリペプ
トン0.5 %、酵母エキス0.3%、麦芽エキス0.
3チを含む液体培地100m/に接種し、30℃で40
時間振盪培養する。実施例1と同様に培養を開始した。
Example 3 Satsuri Romyces Serepische NH-268 (FER,'
li'I BP-965) Rubble course 2%, polypeptone 0.5%, yeast extract 0.3%, malt extract 0.
Inoculate 100 m/liquid medium containing 3.
Incubate with shaking for an hour. Culture was started in the same manner as in Example 1.

培善開始60時間目から酢酸カルシウムと硫酸アンモニ
ウムとリン酸第−カリウムを流加し培養を継続した。全
期間における酢酸カルシウムと硫酸アンモニウムとリン
酸第−カリウムの総添加量は其々370/#15.2g
、6゜Oyであった。培養250時間でリボフラビン蓄
積量が5.8g/lとなった。
From 60 hours after the start of culture, calcium acetate, ammonium sulfate, and potassium phosphate were added to continue the culture. The total amount of calcium acetate, ammonium sulfate, and potassium phosphate added during the entire period was 370/#15.2g each.
, 6°Oy. After 250 hours of culture, the amount of riboflavin accumulated was 5.8 g/l.

(発明の効果) す、1.−フラビン発酵に於て、培養の途中で炭素源及
び窒素源を連続的又は間欠的に添加していくことによっ
てリボフラビン蓄積量を著しく高めることができた、リ
ボフラビンは医薬、飼料添加剤。
(Effects of the invention) 1. - During flavin fermentation, the amount of riboflavin accumulated could be significantly increased by continuously or intermittently adding a carbon source and a nitrogen source during the culture. Riboflavin is used as a medicine and feed additive.

食品用の着色剤などとして非常に有用な物質であり、本
発明により、工業的規模での効率的なりボフラビンの製
造が可能となった。
Boflavin is a very useful substance as a food coloring agent, and the present invention has made it possible to efficiently produce boflavin on an industrial scale.

Claims (2)

【特許請求の範囲】[Claims] (1)サッカロミセス属の酵母を用いてリボフラビンを
製造する方法において、培養槽内の培地に炭素源、窒素
源を連続的又は間欠的に加えて培養を行うことを特徴と
するリボフラビンの製造方法。
(1) A method for producing riboflavin using yeast of the genus Saccharomyces, which comprises culturing by continuously or intermittently adding a carbon source and a nitrogen source to a medium in a culture tank.
(2)培養槽内の培地に炭素源、窒素源に加えてリン酸
源を連続的又は間欠的に加えて培養を行うことを特徴と
する特許請求第1項記載の方法。
(2) The method according to claim 1, characterized in that the culture is carried out by continuously or intermittently adding a phosphoric acid source in addition to a carbon source and a nitrogen source to the culture medium in the culture tank.
JP26022086A 1986-10-31 1986-10-31 Production of riboflavin Pending JPS63112996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26022086A JPS63112996A (en) 1986-10-31 1986-10-31 Production of riboflavin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26022086A JPS63112996A (en) 1986-10-31 1986-10-31 Production of riboflavin

Publications (1)

Publication Number Publication Date
JPS63112996A true JPS63112996A (en) 1988-05-18

Family

ID=17345018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26022086A Pending JPS63112996A (en) 1986-10-31 1986-10-31 Production of riboflavin

Country Status (1)

Country Link
JP (1) JPS63112996A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589355A (en) * 1992-12-07 1996-12-31 Kyowa Hakko Kogyo Co., Ltd. Process for producing riboflavin

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524628A (en) * 1975-06-30 1977-01-13 Kawasaki Heavy Ind Ltd Tunnel excavator
JPS5926275A (en) * 1982-07-08 1984-02-10 マンネスマン・タリ−・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Pendulum mechanism for reciprocating machine section

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524628A (en) * 1975-06-30 1977-01-13 Kawasaki Heavy Ind Ltd Tunnel excavator
JPS5926275A (en) * 1982-07-08 1984-02-10 マンネスマン・タリ−・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Pendulum mechanism for reciprocating machine section

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589355A (en) * 1992-12-07 1996-12-31 Kyowa Hakko Kogyo Co., Ltd. Process for producing riboflavin

Similar Documents

Publication Publication Date Title
US3619369A (en) Process for producing xylitol by fermentation
EP0137226B1 (en) Process for the preparation of riboflavin
US3962034A (en) Method for producing s-adenosylmethionine or methylthioadenosine by yeast
JPS6339231B2 (en)
EP0211289B1 (en) Process for preparation of riboflavin
JPS5846318B2 (en) Method for producing 2-keto-L-gulonic acid
JPS63112996A (en) Production of riboflavin
JPS63112997A (en) Production of riboflavin
US4830964A (en) Ethanol production by high performance bacterial fermentation
JPH0339678B2 (en)
US3121668A (en) Method for the production of 1-glutamic acid
JP2833037B2 (en) Glutathione-rich yeast production method
US20040086990A1 (en) Method for increasing the intracellular glutamate concentration in yeast
JPS60156379A (en) Preparation of yeast having high gluthathione content
US3698999A (en) Fermentative preparation of coenzyme a
JP2818277B2 (en) Method for producing palmitoleic acid
US3296090A (en) Fermentation process for producing 1-tryptophane
JPH01148181A (en) Method for accumulating glutathione in microbial cell
JPS6225996A (en) Production of riboflavin
JPS635080B2 (en)
KR950007224B1 (en) Preparation method of riboflavine
SU553283A1 (en) Alcohol dehydrogenase production method
JP3741158B2 (en) Method for producing catalase
SU526295A3 (en) Method for producing lysine
JPH0566115B2 (en)