JPS63111403A - Displacement measuring instrument - Google Patents

Displacement measuring instrument

Info

Publication number
JPS63111403A
JPS63111403A JP25681786A JP25681786A JPS63111403A JP S63111403 A JPS63111403 A JP S63111403A JP 25681786 A JP25681786 A JP 25681786A JP 25681786 A JP25681786 A JP 25681786A JP S63111403 A JPS63111403 A JP S63111403A
Authority
JP
Japan
Prior art keywords
light
optical component
luminous flux
displacement
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25681786A
Other languages
Japanese (ja)
Inventor
Masakazu Hayashi
正和 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25681786A priority Critical patent/JPS63111403A/en
Publication of JPS63111403A publication Critical patent/JPS63111403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To measure an extremely close interval with high accuracy by finding the displacement of an object body by utilizing a leak of light in a reflecting surface. CONSTITUTION:Luminous flux L1 from a laser light source 1 is incident on an optical component 2 at an angle thetai1 of incidence and projected at an angle thetai2 of projection to become luminous flux L4, which travels to a photoelectric sensor 3 and is converted photoelectrically. The output of the sensor 3 is inputted to a processor 4 in the form of a voltage or current. At this time, a little light leaks to an external field from the border between the optical component 2 and the medium as the external field. Namely, when the objective body 5 comes close to the bottom surfaces S of the optical component 2 up to wavelength order, luminous flux L2 is reflected at a point B while the leaking light is absorbed by the objective body 5 to become pieces of luminous flux L3 and L4, so that the luminous flux traveling the sensor 3 is reduced. This is found from the output of the photoelectric sensor 3 and the output is measured, so that the interval (x) is calculated by the processor 4 and displayed on a display device 6.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、非接触変位測定装置に係り、特に光の反射面
からのにじみ出しを利用して、対象物体との変位を高精
度に測定する変位測定装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a non-contact displacement measuring device, and in particular, the present invention relates to a non-contact displacement measuring device, and in particular, the present invention relates to a non-contact displacement measuring device, and in particular, to a non-contact displacement measuring device, which measures the displacement of a target object by utilizing the seepage of light from a reflective surface. This invention relates to a displacement measuring device that measures displacement with high precision.

(従来の技術) 従来、光を用いた非接触測定方式としては、第6図のよ
うに、対象物体(A)にHe −Neレーザー光(B)
を照射し、対象物体(A)に当った光のスポットをレン
ズ系(C)などで例えばPAD (Po5ition8
ensinp Diode )などのような、光t1素
子(D) (Cの素子では、例えば10龍XIQ*mの
光を素子面に当った光の位;u(x、y)に比例した電
圧が出力できる。)面に結像させ、この出力電圧からセ
ンナ(E)と物体(A)との距ma+の変動を算出する
方式がある。
(Prior art) Conventionally, as a non-contact measurement method using light, as shown in Fig. 6, a He-Ne laser beam (B) is applied to a target object (A).
The spot of light hitting the target object (A) is captured using a lens system (C), for example, by PAD (Po5ition8).
In the case of an optical t1 element (D) (C element, for example, 10XIQ*m of light hits the element surface, a voltage proportional to u(x, y) is output. There is a method in which the image is formed on a surface (possible) and the variation in the distance ma+ between the senna (E) and the object (A) is calculated from this output voltage.

このような変位計は装置化され、市販されている。Such a displacement meter is commercially available.

一方、別の方式としては、第7図のように、対象物体(
F)とセンサ(G)面を図のような配置とし、センナ(
G) ?Iliからの反射光几!と対象物体からの反射
光几、の干渉を利用して、距離dの変動(変位)’eK
出する方式などがある。この方式を装置化したものはあ
まり市販されている例がないが、測定方式としては、き
わめて一般的である。
On the other hand, as another method, as shown in Fig. 7, the target object (
Arrange the F) and sensor (G) surfaces as shown in the figure, and attach the senna (
G)? Reflected light from Ili! By using the interference between
There are ways to get it out. Although there are not many commercially available devices using this method, it is an extremely common measurement method.

しかるに、前者のPSDによる方式では、変位aの分解
能は一般的には数μm〜数10μm程度であり、光の波
長の数100倍のオーダーである。また、作動圧% (
w’ork distance)は数myt 〜数10
順が必要である。また後者の干渉による方式では、変位
dの分解能は、光の数分の1波長オーダーである。たと
えば、図中の光路をJと置くと、良く知られている干渉
の条件から 2L=nλl  ”=1+ 2131   λ:光のW
長を満すJについては、明るい縞が検出できる。また、
を満すJについては、暗い縞が検出できる。したかって
、これを利用した干渉による変位検出方式では、最初に
検出できるのは暗い縞で1=λ/4(m=1のとき)で
あり、作動距離(work distance )λ 
            λ は、/4以上1分解能/(1〜32)(ただし、内挿法
を用いた場合)程度が一般的である。
However, in the former method using PSD, the resolution of the displacement a is generally on the order of several μm to several tens of μm, which is on the order of several hundred times the wavelength of light. Also, the working pressure% (
w'ork distance) is several myt to several tens
Order is required. In the latter interference method, the resolution of the displacement d is on the order of a fraction of the wavelength of light. For example, if the optical path in the figure is J, then from the well-known interference condition 2L=nλl ''=1+2131 λ: W of light
For J that satisfies the length, bright stripes can be detected. Also,
For J that satisfies , dark stripes can be detected. Therefore, in the displacement detection method using interference using this, the first thing that can be detected is a dark stripe at 1 = λ/4 (when m = 1), and the working distance (work distance) λ
Generally, λ is approximately /4 or more and 1 resolution/(1 to 32) (when interpolation is used).

(発明が解決しようとする問題点) 本発明は、上述した従来の変位測定方式が、作動距離が
長く且つ測定fW度にも限界があることを顧慮してなさ
れたもので、センサー面に非常に近接した作動距離(具
体的には波長λ以内)で、きわめて高分解能(波長λの
数十分の1〜数σ分の1)で対象物体との距離、もしく
は物体の変位を測定する変位測定装置を提供することを
目的とする。
(Problems to be Solved by the Invention) The present invention was made in consideration of the fact that the above-mentioned conventional displacement measurement method has a long working distance and a limit to the measurement fW degree. Displacement that measures the distance to the target object or the displacement of the object with extremely high resolution (several tenths to several σ of the wavelength λ) at a working distance close to (specifically, within wavelength λ) The purpose is to provide a measuring device.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段と作用)光を出射する光
源と、上記光を入射する入射面並びに入射面を介して内
部に入射してきた光を全反射し且つ被測定物に対問して
設けられる全反射面を有する光学的手段と、上記全反射
面からの光を受光して光電変洟する光電変換手段とを有
し、全反射面からの光の増減と被測定物の変位量との関
数関係により変位測定するようにしたものである。
(Means and actions for solving the problem) A light source that emits light, an incident surface that enters the light, and a method that totally reflects the light that has entered the interior through the incident surface and interrogates the object to be measured. an optical means having a total reflection surface provided on the surface, and a photoelectric conversion means for receiving light from the total reflection surface and photoelectrically converting the light from the total reflection surface. Displacement is measured based on the functional relationship with the amount.

(実施例) 以下、本発明の一実施例を図面を参照して詳述する。(Example) Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図にこの実施例の変位測定装置の構成を示している
。この装置は、He−Neレーザ光を出射するレーザ光
源(IIと、レーザ光束を通過反射させる光学部品(2
)と、レーザ光束の光景を測定するフォトダイオード、
フォトトランジスタなどの光電センサ(3)と、光電セ
ンサ(3)の出力(′4圧または電流)を入力し後述す
る処理を行うマイクロコンピュータを主体とする処理装
置(4)と、この処理装置(4)における処理結果であ
る光学部品(2)と対象物体(5)の間隔Xまたは対象
物体(5)の変位11dxを表示する表示装置(6)と
がら構成されている。ここでは、対象物体(5)は、ガ
ラス板のように光が透過する物体とする。
FIG. 1 shows the configuration of the displacement measuring device of this embodiment. This device consists of a laser light source (II) that emits He-Ne laser light, and an optical component (II) that passes through and reflects the laser beam.
) and a photodiode that measures the sight of the laser beam,
A photoelectric sensor (3) such as a phototransistor, a processing device (4) mainly composed of a microcomputer that inputs the output ('4 voltage or current) of the photoelectric sensor (3) and performs the processing described below, and this processing device ( The display device (6) displays the distance X between the optical component (2) and the target object (5) or the displacement 11dx of the target object (5), which is the processing result in step 4). Here, the target object (5) is an object through which light passes, such as a glass plate.

つぎに、上記構成の変位測定装置の作動について述べる
Next, the operation of the displacement measuring device having the above configuration will be described.

まず、レーザ光源(1)から出射した光束L1は、例え
ば第1図のような光学部品(2)の左側面点Aへ入射角
θ11で入射する。そして、透過光は、屈折角θ1゜で
光学部品内に進入する。今、光学部品(2)の屈折率を
nap 、光学部品(2)外の媒質の屈折率noutと
すると、良く知られている屈折の法則又は5nellの
法則から 一θ1./順θtl ””nop / nout ==
 nQp  outとなる。一般的には外の媒質全空気
とするとnapout ) 1である。そして、光学部
品(2)内部を進む光束病は、光学部品(2)の底面S
の点Bへ入射角θ、で入射する。この発明では、入射角
θ、は、θ、〉θ−を満すように設定されている。ただ
しθrは臨界角で−02”:: nout −op =
 nout /nop (lを満す角度とする。
First, a light beam L1 emitted from a laser light source (1) enters a point A on the left side of an optical component (2) as shown in FIG. 1, for example, at an incident angle θ11. The transmitted light then enters the optical component at a refraction angle of θ1°. Now, if the refractive index of the optical component (2) is nap and the refractive index of the medium outside the optical component (2) is nout, then from the well-known law of refraction or 5nell's law, θ1. / order θtl ””nop / nout ==
It becomes nQp out. In general, if the outside medium is all air, napout ) 1. The light flux disease that advances inside the optical component (2) is caused by the bottom surface S of the optical component (2).
is incident on point B at an incident angle θ. In this invention, the incident angle θ is set to satisfy θ, >θ−. However, θr is the critical angle -02":: nout -op =
nout /nop (An angle that satisfies l.

これは、いわゆる全反射の状、標で、光束り、はすべて
の元が角θ2で反射して光束L3となって、光学部品の
右側面へ向うことを示している。光学部品(2)の右側
面上の点Cでは、左側面点Aで生じたのと同様に、屈折
の法則より、 期θ12 / 5uII9t、 =: nop−out
の関係を有する角θi、で、光束り、は光学部品を出射
する。この光束L4は先に述べた光電センサ(3)へ向
い、光電変換される。センナ(3)から得られた出力は
、電圧又は電流の形で処理装置(4)へ入力される。
This is a state of so-called total reflection, and shows that all the elements of the light flux are reflected at angle θ2 to become a light flux L3, which heads toward the right side of the optical component. At point C on the right side of optical component (2), similarly to what happened at left side point A, according to the law of refraction, period θ12 / 5uII9t, =: nop-out
The light beam exits the optical component at an angle θi, which has the relationship: This luminous flux L4 is directed to the photoelectric sensor (3) mentioned above and is photoelectrically converted. The output obtained from the sensor (3) is input to the processing device (4) in the form of voltage or current.

従来のマクロ的な光学では、光学部品(2)の底面Sで
全反射した光は、光学部品外では、存在していないと考
えるのが一般的である。しかし、微視的に見ると、光学
部品(2)と外界の媒質の境界では、わずかに外界に光
かにじみ出していることが認められる。そこで、光学部
品(2)の底面Sを第2図のように拡大し示した。この
光学部品(2)の外界の媒質に対する屈折率nop −
out = nとすると、仮想の透過光り、と光束り、
を考え、先の屈折の法則より、−殺性を失なわずに −θim/−θ宜=n となる。そこで、これから −θ−1θIm/ n とすれば、光束L!の位相項は となる。すなわち、振部が境界からの距離Zの指で減衰
するが、波m(光束)かにしろ出している事がわかる。
In conventional macroscopic optics, it is generally considered that the light totally reflected by the bottom surface S of the optical component (2) does not exist outside the optical component. However, when viewed microscopically, it is recognized that light leaks slightly into the outside world at the boundary between the optical component (2) and the outside medium. Therefore, the bottom surface S of the optical component (2) is shown enlarged as shown in FIG. The refractive index nop − of this optical component (2) with respect to the external medium
When out = n, the virtual transmitted light and luminous flux are
Considering this, and according to the law of refraction, -θim/-θim=n without losing the killing effect. Therefore, if we set -θ-1θIm/n from now on, the luminous flux L! The phase term of is . That is, it can be seen that although the oscillating part is attenuated at the finger distance Z from the boundary, it still emits a wave m (luminous flux).

実質的な、光束の進入深さは、M=2/21tすなわち
、波長程度であるといわれている。
It is said that the substantial penetration depth of the luminous flux is M=2/21t, that is, approximately the wavelength.

そこで、このにじみ出している光を第2の物体に吸込ま
せることを考える。すなわち、先の光学部品(2)の底
4sに対象物体(5)を近ずけると、対象物坏(5)と
の間隔Xが波長オーダー(0,3〜0.6μm)の距離
以上離れている場合は、光束り、は点Bで全反射して、
光束L3.L4となって光電セ/す(3)に向う。
Therefore, let's consider having a second object absorb this oozing light. In other words, when the target object (5) is brought close to the bottom 4s of the optical component (2), the distance X from the target object (5) becomes greater than the distance of the wavelength order (0.3 to 0.6 μm). , the luminous flux is totally reflected at point B,
Luminous flux L3. Become L4 and head towards Photoden Center (3).

しかし、対象物体(5)が、(BLfkオーダまで、光
学部品(2)の底面Sに近ずくと、光束L2は、にじみ
出した光が対象物体(5)K吸い込まれて、その一部が
対象物体(5)の内部に流れ、その結果として、点Bで
反射して光束り8.L、となってセンナ(3)へ向う光
束が減少する。これを、光電センナ(3)の出力でとら
えたのが第3図で、光束L4の5gi度が物体(5)の
接近と共に急激に減少しているのが認められる。そこで
、光電センサ(3)の出力を測定し、この値(変化fl
)から間隔X(またはその変化1tdx)t、マイクロ
コンピュータ−を用いた処理装置(4)により算出し、
表示装ffl +6)に表示を行なう。処理装置(4)
で行なう間隔Xの算出は、間隔χが、第3図のように0
.15/jmから0.45/jmの範囲(a、bの範囲
)で光電センサ(3)出力とXの関係を直線りで近似し
て、出力から間隔xft求める。
However, when the target object (5) approaches the bottom surface S of the optical component (2) up to (BLfk order), the light flux L2 becomes It flows inside the object (5), and as a result, it is reflected at point B, resulting in a luminous flux of 8.L, which reduces the luminous flux heading towards the sensor (3).This is reflected by the output of the photoelectric sensor (3). What we captured in Figure 3 shows that the 5gi degree of the luminous flux L4 decreases rapidly as the object (5) approaches.Therefore, we measured the output of the photoelectric sensor (3) and calculated this value (change fl
) to the interval X (or its change 1tdx) t, calculated by a processing device (4) using a microcomputer,
Display on the display device ffl+6). Processing device (4)
When calculating the interval X, the interval χ is 0 as shown in Figure 3.
.. The relationship between the photoelectric sensor (3) output and X is approximated by a straight line in the range of 15/jm to 0.45/jm (range a, b), and the interval xft is determined from the output.

以上のように、この実施例の変位測定装置は、対象物体
(5)との非常に近接した間隔(波長距離以内)を極め
て高f#度(λ/10〜λ/1000 )で沖1定でき
る。また、測定に必要な平面の面積は、直径2」でよく
、先端の極めて小さい非接触変位計を構成することがで
きる。さらに、単純な光債恢出だけで間隔測定を行うこ
とができる利点を有している。
As described above, the displacement measuring device of this embodiment is capable of measuring a very close distance (within the wave length) to the target object (5) at an extremely high f# degree (λ/10 to λ/1000). can. Further, the area of the plane required for measurement may be 2'' in diameter, and a non-contact displacement meter with an extremely small tip can be constructed. Furthermore, it has the advantage that distance measurement can be performed by simply forming a light beam.

なお、本発明は、上記実施例に限ることなく、下記のよ
うに檀々変形可能である。
Note that the present invention is not limited to the above-mentioned embodiments, and can be modified in various ways as described below.

■第1図では光源としてHe−Neレーザ光を用いた例
を示したが、光源としては、その他アルゴンなどのレー
ザ光又は、半導体レーザ光、一般のハロゲンランプ、赤
外、紫外ラングなど、光学部品(2)t−透過しその底
面Sで全反射する光束を発生するものであればいかなる
光源も用いることが可能である。
■ Figure 1 shows an example using a He-Ne laser beam as a light source, but other light sources may include laser beams such as argon, semiconductor laser beams, general halogen lamps, infrared lamps, ultraviolet lamps, etc. Part (2) - Any light source can be used as long as it generates a beam of light that is transmitted through t and totally reflected at its bottom surface S.

■受光系としてはフォトダイオードなどの光電変換素子
を用いる例を示したが、光量を電気1バ号に変換できる
素子であれば、フォトダイオード。
(2) Although we have shown an example of using a photoelectric conversion element such as a photodiode as the light receiving system, a photodiode can be used as long as it is an element that can convert the amount of light into electricity.

フォトトランジスタ、フォトアルチプライヤなどの素子
または光電子倍増管が考えられる。また、特殊な例とし
ては、CCD素子や撮像管など、画像を対象としたもの
でも曳い。ただし、このような画像を対象とする変換器
(センサ)では、画像を処理してその撮像面に当ってい
る光量の認量を抽出する処理が心安となる。
Elements such as a phototransistor, a photomultiplier, or a photomultiplier tube can be considered. In addition, as a special example, it may also be used for images, such as a CCD element or an image pickup tube. However, in a converter (sensor) that targets such images, it is safe to process the image and extract the estimated amount of light hitting the imaging surface.

■第1図では光学部品(2)として図のような2等辺形
状のプリズムを考え、光束は左右側面で光が屈折するタ
イプのものを示した。しかし、この光学部品(2)の役
目は、その底面Sで光束が全反射する機能を持てば良く
この条件さえ整えば、種々のタイプの光学部品の形状が
可能である。
■ In Figure 1, an isosceles prism as shown in the figure is considered as the optical component (2), and the light beam is of the type in which the light is refracted at the left and right sides. However, the role of this optical component (2) is only to have the function of total reflection of the luminous flux at its bottom surface S, and as long as this condition is met, various types of optical component shapes are possible.

第4図の光学部品(2)はその例である。第1図では光
学部品(2)に光束が左右から入射するために、構成装
置が比較的大きくなっている。しかし、第4図ではこれ
を改善している。すなわち、光源(1)。
Optical component (2) in FIG. 4 is an example of this. In FIG. 1, since the light flux enters the optical component (2) from the left and right sides, the component device is relatively large. However, this is improved in Fig. 4. That is, the light source (1).

光電センサ(31はプリズム上方に設けられ、プリズム
(2)上面から垂直入射した光束は左右側と底面で全反
射して図のような光路となっている。光学部品(2)(
プリズム)底面で生ずる現象は、先に述べたのと同様で
ある。
The photoelectric sensor (31) is installed above the prism, and the light beam vertically incident from the top surface of the prism (2) is totally reflected on the left and right sides and the bottom surface, creating an optical path as shown in the figure.Optical component (2) (
The phenomenon that occurs at the bottom surface of the prism is the same as described above.

■本発明では、第1図のように、光学部品(2)の底面
Sで全反射した光を光゛1センサ(3)で受け、対象物
体(5)が接近した時、光束Ltが対象物体側に逃げ、
結果として、光束り、、L、としてセンサ(3)へ向う
光量が減少するのを検出する方式を採っている。
■In the present invention, as shown in Fig. 1, the light totally reflected by the bottom surface S of the optical component (2) is received by the light sensor (3), and when the target object (5) approaches, the light beam Lt is Escape to the object side,
As a result, a method is adopted in which a decrease in the amount of light directed toward the sensor (3) is detected as the luminous flux, L,.

これに対し、第5図では、原理は同じであるが、接近し
た対象物体(5)へ進入した光束り、を光電センサ(3
)で検出し、このセンサ(3)で検出できる光量が、対
象物体(5)が光学部品(2)の底面Sに接近するにつ
れて、増加することがら、間隔Xを測定する方式を示し
ている。光電センナ(3)以後の゛心気処理の構成は図
には示していないが第1図と同6Nである。
On the other hand, in Fig. 5, the principle is the same, but the light flux that has entered the approaching target object (5) is detected by the photoelectric sensor (3).
), and the amount of light that can be detected by this sensor (3) increases as the target object (5) approaches the bottom surface S of the optical component (2). . Although the structure of the hypochondrium treatment after the photoelectric sensor (3) is not shown in the figure, it is the same 6N as in FIG. 1.

同様X類似している。Similar X Similar.

〔発明の効果〕〔Effect of the invention〕

本発明は、以下のような格別の効果を奏する。 The present invention has the following special effects.

(ハ)従来微小な間隔の測定方式としては、前述したよ
うに、光の干渉による方式が一般的である。
(c) As a conventional method for measuring minute intervals, a method using optical interference is generally used, as described above.

この方式は、作動距離が数波長で、測定の分解能もλ〜
’/1000オーダであった。
This method has a working distance of several wavelengths and a measurement resolution of λ~
'/1000 order.

それに比し、本発明は、対象物体との非常に近接した間
隔(波長距離以内)を非常の高精度(”/i。
In contrast, the present invention can measure very close distances (within the wave length) to the target object with very high precision (''/i.

〜”/1000)で測定することができる。~”/1000).

(ロ)従来の光の干渉による測定方式では、光学部品と
対象物体の相対する面が干渉を起こす必要があり、した
がって一般的には、干渉縞を観察できる程度の広い平面
が必要である。
(b) In the conventional measurement method using interference of light, it is necessary for the opposing surfaces of the optical component and the target object to cause interference, and therefore, generally, a plane large enough to observe interference fringes is required.

しかし、本発明によれば、光束り、として普通のHe−
Neレーザ光源(ビーム径φ11璽)を用いることがで
き、点Bにおいて必要な平面はφ2龍程度でよく、先端
のきわめて小さい非接触変位計t−構成することができ
る。
However, according to the present invention, ordinary He-
A Ne laser light source (beam diameter 11 mm) can be used, the required plane at point B is about 2 mm, and a non-contact displacement meter with an extremely small tip can be constructed.

(ハ)従来の光の干渉による方式では、測定範囲は数波
長と広いものの、フリンジ(縞)の解析のために画像全
発生させこれを解析したり、そこまで複雑な処理を行な
わないまでも、縞の移動した数をカウントするなど、縞
解析のための複雑な処理回路が必要であった。しかし、
本発明によれば単純な光量検出だけで、きわめて簡単に
高い分解能と精度で間隔を測定することができる。
(c) Conventional optical interference methods have a wide measurement range of several wavelengths, but they do not require the generation and analysis of the entire image to analyze fringes, or the need for such complicated processing. , complex processing circuits were required for stripe analysis, such as counting the number of stripes that moved. but,
According to the present invention, distances can be measured very easily with high resolution and accuracy by simply detecting the amount of light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の変位測定装置の構成図、第
2図及び第3図は第1図の測定原理の説明図、第4図及
び第5図は本発明の他の実施例の変位測定装置を示す図
、第6図及び第7図は従来技術の説明図である。 (1)二元 源。 (2)二元学部品(光学的手段)。 (3)二元電センサ(光電変換手段)。 (4):処理装4&(演算手段)。 (5)二対象物体(被測定物)。 代理人 弁理士  則 近 憲 佑 同     竹 花 喜久男 \く \」 wSZ  図 第3図 154図 J′ 第5図 菖2 第6図 に−F 第7図
Fig. 1 is a configuration diagram of a displacement measuring device according to an embodiment of the present invention, Figs. 2 and 3 are explanatory diagrams of the measurement principle of Fig. 1, and Figs. 4 and 5 are illustrations of other embodiments of the present invention. FIGS. 6 and 7, which show an example displacement measuring device, are explanatory diagrams of the prior art. (1) Dual source. (2) Dualistic components (optical means). (3) Binary electric sensor (photoelectric conversion means). (4): Processing device 4 & (calculating means). (5) Two target objects (objects to be measured). Agent Patent Attorney Nori Ken Yudo Takehana Kikuo\ku\'' wSZ Figure 3 Figure 154 Figure J' Figure 5 Iris 2 Figure 6 -F Figure 7

Claims (3)

【特許請求の範囲】[Claims] (1)光を出射する光源と、上記光を入射する入射面並
びに上記入射面を介して内部に入射してきた光を全反射
し且つ被測定物に対面して設けられる全反射面を有する
光学的手段と、上記被測定物の変位に応じて上記全反射
面にて全反射された全反射光の変化を示す電気信号を出
力する光電変換手段と、上記電気信号を入力し上記全反
射面と上記被測定物との間隔と上記電気信号とが関数関
係を有することに基づいて上記間隔又は変位を演算する
演算手段とを具備することを特徴とする変位測定装置。
(1) An optical system having a light source that emits light, an entrance surface that receives the light, and a total reflection surface that totally reflects the light that has entered the interior through the entrance surface and is provided facing the object to be measured. photoelectric conversion means for outputting an electrical signal indicating a change in the total reflection light totally reflected by the total reflection surface according to the displacement of the object to be measured; and calculating means for calculating the distance or displacement based on the fact that the distance between the object to be measured and the electrical signal has a functional relationship.
(2)光電変換手段は、全反射面にて全反射した全反射
光を受光して光電変換することを特徴とする特許請求の
範囲第1項記載の変位測定装置。
(2) The displacement measuring device according to claim 1, wherein the photoelectric conversion means receives and photoelectrically converts the totally reflected light totally reflected by the total reflection surface.
(3)光電変換手段は、全反射面にて全反射せずして被
測定物側に漏れ且つ上記被測定物を透過した光を受光し
て光電変換することを特徴とする特許請求の範囲第1項
記載の変位測定装置。
(3) Claims characterized in that the photoelectric conversion means receives and photoelectrically converts the light that leaks to the object to be measured without being totally reflected on the total reflection surface and passes through the object to be measured. 1. Displacement measuring device according to item 1.
JP25681786A 1986-10-30 1986-10-30 Displacement measuring instrument Pending JPS63111403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25681786A JPS63111403A (en) 1986-10-30 1986-10-30 Displacement measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25681786A JPS63111403A (en) 1986-10-30 1986-10-30 Displacement measuring instrument

Publications (1)

Publication Number Publication Date
JPS63111403A true JPS63111403A (en) 1988-05-16

Family

ID=17297843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25681786A Pending JPS63111403A (en) 1986-10-30 1986-10-30 Displacement measuring instrument

Country Status (1)

Country Link
JP (1) JPS63111403A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263401A (en) * 1987-04-22 1988-10-31 Toshiba Corp Displacement measuring method
JPH04132236A (en) * 1990-09-22 1992-05-06 Dainippon Screen Mfg Co Ltd Electric measurement device for semiconductor wafer
JPH04329303A (en) * 1991-04-30 1992-11-18 Dainippon Screen Mfg Co Ltd Optical measurement device
US5239183A (en) * 1991-04-30 1993-08-24 Dainippon Screen Mfg. Co., Ltd. Optical gap measuring device using frustrated internal reflection
JPH05335392A (en) * 1992-06-02 1993-12-17 Dainippon Screen Mfg Co Ltd Sensor for noncontact electric measurement of semiconductor water
US5475319A (en) * 1993-06-08 1995-12-12 Dainippon Screen Mfg. Co., Ltd. Method of measuring electric charge of semiconductor wafer
US5554939A (en) * 1992-12-22 1996-09-10 Dainippon Screen Manufacturing Co., Ltd. Non-destructive measuring sensor for semiconductor wafer and method of manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263401A (en) * 1987-04-22 1988-10-31 Toshiba Corp Displacement measuring method
JPH0575325B2 (en) * 1987-04-22 1993-10-20 Tokyo Shibaura Electric Co
JPH04132236A (en) * 1990-09-22 1992-05-06 Dainippon Screen Mfg Co Ltd Electric measurement device for semiconductor wafer
JPH04329303A (en) * 1991-04-30 1992-11-18 Dainippon Screen Mfg Co Ltd Optical measurement device
US5239183A (en) * 1991-04-30 1993-08-24 Dainippon Screen Mfg. Co., Ltd. Optical gap measuring device using frustrated internal reflection
JPH05335392A (en) * 1992-06-02 1993-12-17 Dainippon Screen Mfg Co Ltd Sensor for noncontact electric measurement of semiconductor water
US5554939A (en) * 1992-12-22 1996-09-10 Dainippon Screen Manufacturing Co., Ltd. Non-destructive measuring sensor for semiconductor wafer and method of manufacturing the same
US5475319A (en) * 1993-06-08 1995-12-12 Dainippon Screen Mfg. Co., Ltd. Method of measuring electric charge of semiconductor wafer

Similar Documents

Publication Publication Date Title
JP6252958B2 (en) Photodetection device and photodetection system
JPS6379003A (en) Light probe for measuring shape
JPH04115108A (en) Three-dimensional scanner
CN106931888A (en) A kind of double light path type laser displacement sensor
JPS63111403A (en) Displacement measuring instrument
JP2001504592A (en) Distance measuring method and distance measuring device
JPH08114421A (en) Non-contact type measuring device for measuring thickness ofmaterial body comprising transparent material
JPS6319506A (en) Detecting method for drop of dropping liquid
JPS63263401A (en) Displacement measuring method
JPS58216903A (en) Thickness measuring device
JPS5979122A (en) Laser power measuring device
JPH032544A (en) Rain drop measuring instrument
JPS58169008A (en) Optical position measuring device
JPS63255606A (en) Displacement measuring apparatus
JP2911283B2 (en) Non-contact step measurement method and device
JPH0310146A (en) Reflecting optical fiber type infrared-ray moisture meter
JPS6238312A (en) Distance detecting device
JPH0357914A (en) Optical probe
JP3491988B2 (en) Laser doppler speedometer
JPH0534437A (en) Laser distance measuring apparatus
JP2805040B2 (en) Eye refractive power measuring device
JP2016017755A (en) Device and method for measuring distance
RU104303U1 (en) DEVICE FOR LASER TRIANGULATION
JPS63153442A (en) Measuring instrument for optical characteristic of beam splitter
SU1182337A1 (en) Photoelectric apparatus for measuring liquid viscosity