JP2805040B2 - Eye refractive power measuring device - Google Patents

Eye refractive power measuring device

Info

Publication number
JP2805040B2
JP2805040B2 JP6140730A JP14073094A JP2805040B2 JP 2805040 B2 JP2805040 B2 JP 2805040B2 JP 6140730 A JP6140730 A JP 6140730A JP 14073094 A JP14073094 A JP 14073094A JP 2805040 B2 JP2805040 B2 JP 2805040B2
Authority
JP
Japan
Prior art keywords
light
eye
refractive power
light source
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6140730A
Other languages
Japanese (ja)
Other versions
JPH07323006A (en
Inventor
繁 坂本
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP6140730A priority Critical patent/JP2805040B2/en
Publication of JPH07323006A publication Critical patent/JPH07323006A/en
Application granted granted Critical
Publication of JP2805040B2 publication Critical patent/JP2805040B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は眼屈折力測定装置、特に
実時間で眼屈折力の変化を測定できる眼屈折力測定装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eye-refractive-power measuring apparatus, and more particularly to an eye-refractive-power measuring apparatus capable of measuring a change in eye refractive power in real time.

【0002】[0002]

【従来の技術】従来、多角的眼屈折力測定装置としては
特開平2−154732号公報に示すようないわゆるオ
ートレフラクトメータ等の装置が知られている。
2. Description of the Related Art Hitherto, as a multilateral eye refractive power measuring apparatus, an apparatus such as a so-called auto-refractometer as disclosed in JP-A-2-154732 has been known.

【0003】[0003]

【発明が解決しようとする課題】然しながら、オートレ
フラクトメータでは被験者の眼球の位置を装置に対しあ
る定まった位置に固定して測定する必要があり、連続的
な測定はもとより、作業をしながらの測定は不可能であ
った。
However, in the auto-refractometer, it is necessary to fix the position of the subject's eyeball at a certain fixed position with respect to the apparatus, and the measurement must be performed not only during continuous measurement but also during operation. Measurement was not possible.

【0004】本発明は上記実情に鑑み頭部に測定部を装
着した状態で測定が可能となるように小型軽量とし、か
つ測定にあたって被験者は一定の姿勢例えば正面視状態
を保つ必要がなく、また連続的に実時間で眼屈折力デー
タを得ることができる眼屈折力測定装置を提供しようと
するものである。
[0004] In view of the above circumstances, the present invention is small and lightweight so that measurement can be performed with the measurement unit attached to the head, and it is not necessary for the subject to maintain a fixed posture, for example, a front view state, for measurement. It is an object of the present invention to provide an eye-refractive-power measuring device capable of continuously obtaining eye-refractive-power data in real time.

【0005】[0005]

【課題を解決するための手段】本発明の眼屈折力測定装
置は、被験眼を照明し眼底に光源像を結ばせる投光系
と、被験眼瞳孔と光学的に略共役な位置に置かれ、被験
眼眼底よりの反射光束分布を検出する受光系とを有し、
上記受光系が、上記投光系の光源と共役の関係となる位
置に置かれた分割手段によって光軸の両側に2分割され
た2つの撮影光学系から成り、この2つの光学系で検出
した反射光束分布の互いに対応する点同志の光量差を求
める手段と、その2点以上についての光量差を求める手
段と、この光量差の比をパラメータとして被験眼の眼屈
折力を測定する手段とより成ることを特徴とする。
An eye refractive power measuring apparatus according to the present invention is provided with a light projecting system for illuminating a test eye and forming a light source image on a fundus, and at a position optically conjugate with a pupil of the test eye. Having a light receiving system for detecting the reflected light flux distribution from the fundus of the test eye,
The light receiving system is composed of two photographing optical systems that are divided into two on both sides of the optical axis by a dividing unit that is placed at a position conjugate with the light source of the light projecting system, and the two optical systems detect the light. means for determining the light amount difference comrades points corresponding to each other of the reflected light flux distribution, the hand for obtaining the light amount difference for that two or more points
And a means for measuring the eye refractive power of the subject's eye using the ratio of the light amount difference as a parameter.

【0006】本発明の眼屈折力測定装置においては、上
記光源の幅をその光軸と直角方向に延長せしめる。
In the eye-refractive-power measuring apparatus of the present invention, the width of the light source is extended in a direction perpendicular to the optical axis.

【0007】本発明の眼屈折力測定装置においては、上
記受光系を2分割する分割手段が、光軸上に稜を持った
二面ミラーより成る。
In the eye-refractive-power measuring apparatus according to the present invention, the dividing means for dividing the light receiving system into two parts comprises a two-sided mirror having a ridge on the optical axis.

【0008】本発明の眼屈折力測定装置においては、検
出器上の被験眼の瞳孔と共役な関係にある部分ではその
大部分の領域で被験眼の眼屈折力に応じ光量差がゼロで
ない値をもち、この値は眼屈折力に対応し、少なくとも
2点以上の光量差の比によって得られるパラメータを基
に眼屈折力を測定できる。瞳孔と共役な関係にある部分
以外では、光源光量を適切な値に設定することにより概
ねゼロとすることができる。
In the eye-refractive-power measuring apparatus of the present invention, in a portion conjugate with the pupil of the subject's eye on the detector, the light amount difference is not zero according to the eye-refractive power of the subject's eye in most of the region. This value corresponds to the eye refractive power, and the eye refractive power can be measured based on a parameter obtained by a ratio of a light amount difference between at least two points. Except for a portion conjugate with the pupil, the light source light amount can be set to approximately zero by setting the light source light amount to an appropriate value.

【0009】[0009]

【実施例】以下図面によって本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】本発明の第1の実施例においては、図1に
示すように被験眼1に投光系2及び受光系3を夫々共通
のハーフミラー4を介して対向配置し、上記投光系2を
介してある大きさを持った線状あるいは矩形の均一光源
5により被験眼1を照明しその眼底6に光源像を形成す
る。この光源像は受光系3に対しては瞳孔7を裏面より
照明する2次光源の作用をする。なお、光源は可視光あ
るいは被験者に影響を与えないための近赤外光のいずれ
であってもよい。
In the first embodiment of the present invention, as shown in FIG. 1, a light projecting system 2 and a light receiving system 3 are arranged opposite to a subject's eye 1 via a common half mirror 4, respectively. The test eye 1 is illuminated by a linear or rectangular uniform light source 5 having a certain size through 2 to form a light source image on the fundus 6. This light source image acts on the light receiving system 3 as a secondary light source for illuminating the pupil 7 from the back. The light source may be either visible light or near-infrared light that does not affect the subject.

【0011】上記受光系3は、光軸上に稜を持ったプリ
ズム型2面ミラー8により分割された開口面積の等しい
撮影光学系9及び9′により構成し、この各撮影光学系
9,9′はCCDなどの2次元イメージャ、撮影管ある
いは複数個の光量センサーなど光電変換素子よりなる検
出器10及び10′及びレンズ11及び11′とによっ
て構成し、上記検出器10,10′は上記レンズ11,
11′に関して被験眼瞳孔7と共役な位置に配置せしめ
る。
The light receiving system 3 is constituted by photographing optical systems 9 and 9 'having the same aperture area and divided by a prism type two-surface mirror 8 having a ridge on the optical axis. ′ Is constituted by detectors 10 and 10 ′ comprising photoelectric conversion elements such as a two-dimensional imager such as a CCD, a photographic tube or a plurality of light amount sensors, and lenses 11 and 11 ′, and the detectors 10 and 10 ′ are the lens 11,
11 'is placed at a position conjugate with the pupil 7 of the eye under test.

【0012】また、上記検出器10及び10′よりの出
力は減算器12に加えて後述するように被験眼1から撮
影光学系9及び9′に入射する光の光量差を求め、演算
器13によりこの光量差の比に基くパラメータを算出
し、このパラメータを用いて眼屈折力D(ディオプタ
ー)を求めその値を表示器14に表示せしめる。
The outputs from the detectors 10 and 10 'are used in addition to a subtractor 12 to determine the difference in the amount of light incident on the photographing optical systems 9 and 9' from the subject's eye 1 as described later. Then, a parameter based on the ratio of the light quantity difference is calculated, and the eye refractive power D (diopter) is obtained using the parameter, and the value is displayed on the display unit 14.

【0013】図2は、眼球が近くを見ている時、即ち被
験眼瞳孔7から網膜共役点Oまでの視距離Lが二面ミラ
ー8の稜までの距離L0 より短い時の図であり、瞳孔7
内の点Pは眼底6に形成された光源像を2次光源として
照明を受け、網膜共役点Oを通ったのち、二面ミラー8
により分割され、撮影光学系9及び9′に導かれ、レン
ズ11,11′により集光されて検出器10及び10′
上の点Q及びQ′に至る。
[0013] Figure 2, when the eye is looking near, i.e. be a diagram when viewing distance L from the subject eye pupil 7 to the retina conjugate point O is shorter than the distance L 0 to the crest of the secondary mirror 8 Pupil 7
Is illuminated with the light source image formed on the fundus 6 as a secondary light source, passes through the retinal conjugate point O, and then enters the two-sided mirror 8.
, And guided to the photographing optical systems 9 and 9 ′, and condensed by the lenses 11 and 11 ′.
This leads to points Q and Q '.

【0014】この点QとQ′上の光量は、点Pの位置が
瞳孔7の中心より偏位していること及び二面ミラー8の
作用により図3A,図3Bに示すように互いに異なるよ
うになる。
The light amounts on the points Q and Q 'are different from each other as shown in FIGS. 3A and 3B due to the fact that the position of the point P is deviated from the center of the pupil 7 and the action of the two-sided mirror 8. become.

【0015】図3A,図3Bにおいて横軸は光量、縦軸
は検出器10,10′の位置を示す。
In FIGS. 3A and 3B, the horizontal axis indicates the light amount, and the vertical axis indicates the positions of the detectors 10 and 10 '.

【0016】また、瞳孔7以外の点Rは光源より直接照
明を受ける拡散面上の点であり、撮影光学系9,9′の
開口面積が等しいため検出器10,10′上の点S及び
S′の光量は互いに等しく、点Rの位置が光軸に対して
変化してもこの関係は変わらない。
A point R other than the pupil 7 is a point on the diffusion surface which is directly illuminated by the light source. Since the aperture areas of the photographing optical systems 9, 9 'are equal, the points S and S on the detectors 10, 10' are equal. The light amounts of S 'are equal to each other, and this relationship does not change even if the position of the point R changes with respect to the optical axis.

【0017】これらの光量関係から、減算器12による
減算結果は図3Cに示すようになり、瞳孔7以外の部分
はすべてゼロとなる。なお、図3Cから明らかなよう
に、図3A及び図3Bに現れていた瞳孔7内のノイズ
N,N′は互いに打ち消され、また、(Q −Q′
地点の光量と、(Q −Q′ )地点の光量の差から2
倍の光量変化が得られ、検出分解能が2倍に向上するよ
うになる。
From the relationship between the light amounts, the result of the subtraction by the subtractor 12 is as shown in FIG. 3C, and all parts other than the pupil 7 become zero. In addition, as is clear from FIG. 3C.
3A and 3B, the noise in the pupil 7 appears.
N, N 'is canceled each other and, (Q 1 -Q' 1)
From the difference between the light quantity at the point and the light quantity at the point (Q 2 −Q ′ 2 ), 2
Twice the amount of light change, and the detection resolution is doubled.
Swell.

【0018】図4は眼球が遠方を見ている時、すなわち
視距離Lが二面ミラー8の稜までの距離L0 より長いと
きの受光光路の説明図であり、上述の説明と同様、検出
器10及び10′の光量分布は図5A及び図5Bに示す
ようになり、減算器12の出力は図5Cに示すように瞳
孔7以外の部分がゼロであり瞳孔7内部の光量差の分布
は図3Cの場合と逆となる。
[0018] FIG. 4 is an explanatory view of a light receiving optical path when time, i.e. viewing distance L is longer than the distance L 0 to the crest of the dihedral mirror 8 which eye is looking at distant place, similar to the above description, the detection 5A and FIG. 5B, the output of the subtracter 12 is zero in the parts other than the pupil 7 as shown in FIG. 5C, and the distribution of the light quantity difference inside the pupil 7 is The opposite is the case with FIG. 3C.

【0019】図6は、演算器13が算出したパラメータ
により眼屈折力D(ディオプター)を求める方法を説明
するためのものである。
FIG. 6 is a diagram for explaining a method of obtaining the eye refractive power D (diopter) from the parameters calculated by the calculator 13.

【0020】眼底6に形成される光源像の大きさは被験
眼1が光源5を見張る角度によって決まる。被験眼1の
眼屈折力Dの変化によっては上記光源像にボケを生じ像
が拡大するが、以下の光量評価の目的のためには積分に
よってボケの効果は除去されてしまうのでボケのない光
源像によって考察を進めても問題はない。
The size of the light source image formed on the fundus 6 is determined by the angle at which the subject's eye 1 watches the light source 5. Depending on the change in the eye refractive power D of the eye to be examined 1, the light source image is blurred and the image is enlarged. However, for the purpose of the following light amount evaluation, the effect of the blur is removed by integration, so the light source without blur is used. There is no problem if we proceed with the image.

【0021】網膜共役点Oの位置は視位置で眼底6と共
役であるため、眼底6の光源像を2次光源と考えたと
き、この2次光源の像がここに形成される。眼屈折力D
と視距離Lとの関係は数1により示される。
Since the position of the retinal conjugate point O is conjugate with the fundus 6 at the viewing position, when the light source image of the fundus 6 is considered as a secondary light source, an image of this secondary light source is formed here. Eye refractive power D
And the viewing distance L are shown by Equation 1.

【0022】[0022]

【数1】 (Equation 1)

【0023】上記眼屈折力を求めることは視距離Lを求
めることに帰着する。瞳孔7の中心の点Pcから受光系
3に入射する光束の二面ミラー8の稜の位置での直径C
は投光系2の光源5の大きさによって決まる固有の値で
あり、受光系3内の二面ミラー8によって等分割される
ので、ひとつの撮影光学系には常に全光束の1/2が入
射することになる。
Obtaining the eye refractive power results in obtaining the viewing distance L. The diameter C of the light beam incident on the light receiving system 3 from the center point Pc of the pupil 7 at the edge of the two-sided mirror 8
Is a unique value determined by the size of the light source 5 of the light projecting system 2, and is equally divided by the two-sided mirror 8 in the light receiving system 3, so that one half of the total luminous flux is always in one photographing optical system. Will be incident.

【0024】点Pが図6に示すように瞳孔7内で光軸か
らの高さがaの点Pからの光束は網膜共役点Oを経て受
光系3に入り、二面ミラー8の稜の位置では上記光束の
中心と光軸との隔たりはbとなる。
As shown in FIG. 6, the light flux from the point P having a height a from the optical axis in the pupil 7 enters the light receiving system 3 via the retinal conjugate point O as shown in FIG. At the position, the distance between the center of the light beam and the optical axis is b.

【0025】上記a,b,L,L0 間の関係は数2で示
される。
The relationship among a, b, L, and L 0 is shown by equation ( 2).

【0026】[0026]

【数2】 (Equation 2)

【0027】上記の値bは撮影光学系9,9′のひとつ
に入射する光束と両方に入射する全光束IO との比より
求められる。上記点Pcから撮影光学系の一つに入射す
る光量は(1/2)IO となり、(1/2)IO =k・
C/2(ここでkは比例係数である)となり、また点P
から2つの撮影光学系9,9′に夫々入射される光量を
I及びI′とすると、I=k〔(1/2)C−b〕,
I′=k〔(1/2)C+b〕となる。従って光量差
(I−I′)の全光束IO に対する比をとると数3が得
られる。
The above value b is obtained from the ratio of the light beam incident on one of the photographing optical systems 9 and 9 'to the total light beam IO incident on both of them. The amount of light incident on one of the photographing optical systems from the point Pc is (1/2) I O , and (1/2) I O = k ·
C / 2 (where k is a proportional coefficient) and the point P
Let I and I 'denote the amounts of light incident on the two photographing optical systems 9 and 9', respectively, and I = k [(1/2) Cb],
I '= k [(1/2) C + b]. Therefore, when the ratio of the light amount difference (I-I ') to the total luminous flux I O is obtained, Expression 3 is obtained.

【0028】[0028]

【数3】 (Equation 3)

【0029】ここで(I−I′)/IO は測定値、Cは
上述のごとく既定値であるので数4によりbが求められ
る。
Here, (II ') / I O is a measured value, and C is a predetermined value as described above.

【0030】[0030]

【数4】 (Equation 4)

【0031】数1〜4をまとめると眼屈折力Dを求める
数5が得られる。
When Equations 1 to 4 are put together, Equation 5 for obtaining the eye refractive power D is obtained.

【0032】[0032]

【数5】 (Equation 5)

【0033】上記光量IO は減算器12への入力前の信
号から被験眼瞳孔面中心の光量によって求められる他、
瞳孔範囲内の光量を積分して平均した値からも求められ
る。また2つの撮影光学系9,9′に夫々入射される光
量の和(I+I′)によって求めてもよい。
The light amount I O is obtained from the signal before input to the subtractor 12 by the light amount at the center of the pupil plane of the subject eye.
It is also obtained from a value obtained by integrating and averaging the light amounts in the pupil range. Alternatively, it may be obtained from the sum (I + I ′) of the amounts of light incident on the two photographing optical systems 9 and 9 ′.

【0034】本発明の第2の実施例においては図7に示
すように、光源5の幅をその光軸と直角な方向に、例え
ば光源5の幅の1/2だけ左方に延長して延長光源15
を形成し、この延長光源15からの光をハーフミラー4
で折り曲げ被験眼1に入射せしめる。
In the second embodiment of the present invention, as shown in FIG. 7, the width of the light source 5 is extended in a direction perpendicular to the optical axis, for example, to the left by half the width of the light source 5. Extended light source 15
And the light from the extended light source 15 is
To bend into the eye 1 to be examined.

【0035】この場合、光源5の延長部分からの光束は
眼底6に斜線で示す2次光源を生ぜしめ、延長光源15
の中心は光軸より離れているため眼底6での反射光は受
光系3中の2つの撮影光学系9,9′のうち一方9にの
み入射する。
In this case, the luminous flux from the extended portion of the light source 5 generates a secondary light source indicated by oblique lines on the fundus 6 and the extended light source 15
Is separated from the optical axis, the reflected light from the fundus 6 enters only one of the two photographing optical systems 9 and 9 'in the light receiving system 3.

【0036】この場合の2つの撮影光学系9,9′の光
量分布は図8A及び図8Bのようになり、減算器12の
出力は図8Cのようになる。
In this case, the light quantity distribution of the two photographing optical systems 9, 9 'is as shown in FIGS. 8A and 8B, and the output of the subtractor 12 is as shown in FIG. 8C.

【0037】瞳孔中央部の光量差は図8Cに示すように
(1/2)IO となり、この値からIO が求められる。
このようにすれば総ての測定値を減算器12の出力から
得られるので信号処理系統が少なくて済むと共に、信号
処理に当たって処理すべき瞳孔部分を抽出するプロセス
も単純な二値化回路で済むという利点もある。
As shown in FIG. 8C, the light quantity difference at the central portion of the pupil is (1/2) I O , and I O is obtained from this value.
In this way, since all the measured values can be obtained from the output of the subtractor 12, the number of signal processing systems can be reduced, and the process of extracting the pupil portion to be processed in the signal processing can be performed by a simple binarizing circuit. There is also an advantage.

【0038】なお、延長光源15は光源5と独立した点
状光源であってもよく、その位置も眼底反射光が一方の
検出器のみに入射するような位置関係であればどこでも
よい。
The extended light source 15 may be a point light source independent of the light source 5, and its position may be any position as long as the fundus reflected light is incident on only one of the detectors.

【0039】また、受光系3の分割は上記のようなプリ
ズム型二面ミラー8によるものの他、図9に示すように
2枚のミラー8a,8bによって実現してもよい。
The division of the light receiving system 3 may be realized by two mirrors 8a and 8b as shown in FIG. 9 in addition to the above-described prism type two-sided mirror 8.

【0040】また、検出器10,10′が左右反転像に
対応できるものであれば図10のごとく1枚のミラー8
cによっても実現できる。
If the detectors 10 and 10 'are capable of supporting a left-right inverted image, one mirror 8 as shown in FIG.
It can also be realized by c.

【0041】[0041]

【発明の効果】上記のように本発明の眼屈折力測定装置
においては、検出器の光量差がゼロでない部分のみに着
目してパラメータを算出し、眼屈折力を求めるようにし
たので、データ処理量が少なくてすみ実時間で眼屈折力
を測定できる他、測定の繰り返し速度を高めることがで
きるため眼屈折力の時間的な変化も連続して測定できる
という優れた効果を発揮する。
As described above, in the eye-refractive-power measuring apparatus of the present invention, the parameters are calculated by focusing only on the portion where the light amount difference of the detector is not zero, and the eye-refractive power is obtained. Since the amount of processing is small, the eye refractive power can be measured in real time, and the repetition rate of the measurement can be increased, so that the temporal change of the eye refractive power can be continuously measured, thereby exhibiting an excellent effect.

【0042】また、被験眼が装置に正対していない場合
でも測定される眼屈折力と真の眼屈折力の間には、装置
の光軸と視方向のなす方位及び角度に依存して個々の眼
によってきまる一定の関係があるので、事前にこの関係
を求めておくならば、被験者はいちいち装置の光軸に眼
をあわせることなく自由な方向を見ながらでも連続的な
測定が可能となる。
Even when the eye to be examined is not directly facing the apparatus, there is an individual difference between the measured eye refractive power and the true eye refractive power depending on the azimuth and angle between the optical axis of the apparatus and the viewing direction. Since there is a certain relationship determined by the eyes of the subject, if this relationship is determined in advance, the subject can perform continuous measurement without looking at the optical axis of the device each time without looking in any direction .

【0043】更に瞳孔直径が上記検出の過程で容易に得
られる他、被験眼の瞳孔近傍には照明光の角膜による反
射により光源の虚像が生じており、この虚像は眼球の視
方向が変化すると共にその位置を変えるので、虚像の位
置を検出する処理装置を併用するならば被験眼の視方向
も同時に測定することが可能である。
Further, the pupil diameter can be easily obtained in the above-described detection process, and a virtual image of the light source is generated near the pupil of the subject's eye due to the reflection of the illumination light by the cornea, and the virtual image changes the visual direction of the eyeball. In addition, since the position is changed at the same time, if the processing device for detecting the position of the virtual image is used together, it is possible to simultaneously measure the visual direction of the subject's eye.

【0044】したがって、本発明によれば、眼の三大機
能といわれる調節、眼球運動、瞳孔反応が同時に実時間
で連続して測定できるという多くの効果が得られる。
Therefore, according to the present invention, there can be obtained many effects that accommodation, eye movement, and pupil reaction, which are said to be the three major functions of the eye, can be simultaneously measured in real time.

【0045】また、検出器10′出力波形は、検出器1
0出力に対しほぼ同レベルであるが傾きが逆となり、減
算処理後の出力波形は減算により、瞳孔内のみ傾きが2
倍となり瞳孔外はほぼゼロレベルとなるため、検出分解
能が2倍向上する。また、瞳孔外はほぼゼロレベルとな
るため、検出必要部である瞳孔部の抽出が短時間で可能
となり画像処理が簡単になるから、高速画像処理が可能
となる。更に、検出光源以外の外光は検出ノイズとなり
計測精度を低下させる要因となるが、本発明装置によれ
ば検出ノイズが除去され高精度計測が保持される等種々
な利益がある。
The output waveform of the detector 10 'is
0 output is almost the same level, but the slope is reversed,
The output waveform after the arithmetic processing has a slope of 2 only in the pupil by subtraction.
Doubled and almost zero level outside the pupil, so detection resolution
The performance is improved twice. The outside of the pupil is almost at zero level.
As a result, the pupil part, which is a necessary detection part, can be extracted in a short time
And image processing is simplified, so high-speed image processing is possible.
Becomes Furthermore, external light other than the detection light source becomes detection noise.
Although this may cause a decrease in measurement accuracy, the device according to the present invention
For example, there are various benefits such as removal of detection noise and maintenance of high precision measurement .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の眼屈折力測定装置の基本構成の説明図
である。
FIG. 1 is an explanatory diagram of a basic configuration of an eye refractive power measuring device according to the present invention.

【図2】本発明の眼屈折力測定装置において被験眼が近
方をみている場合の光束の状態を示す説明図である。
FIG. 2 is an explanatory diagram showing a state of a light beam when the subject's eye is looking near in the eye refractive power measuring device of the present invention.

【図3A】本発明の眼屈折力測定装置における検出器上
の光量分布の説明図である。
FIG. 3A is an explanatory diagram of a light amount distribution on a detector in the eye refractive power measuring device of the present invention.

【図3B】本発明の眼屈折力測定装置における検出器上
の光量分布の説明図である。
FIG. 3B is an explanatory diagram of a light amount distribution on a detector in the eye refractive power measuring device of the present invention.

【図3C】図3Aと図3Bに示す光量分布の差の説明図
である。
FIG. 3C is an explanatory diagram of a difference between light amount distributions shown in FIGS. 3A and 3B.

【図4】本発明の眼屈折力測定装置において被験眼が遠
方をみている場合の光束の状態を示す説明図である。
FIG. 4 is an explanatory diagram showing a state of a luminous flux when the subject's eye is looking far in the eye refractive power measuring device of the present invention.

【図5A】本発明の眼屈折力測定装置における検出器上
の光量分布の説明図である。
FIG. 5A is an explanatory diagram of a light amount distribution on a detector in the eye refractive power measuring device of the present invention.

【図5B】本発明の眼屈折力測定装置における検出器上
の光量分布の説明図である。
FIG. 5B is an explanatory diagram of a light amount distribution on a detector in the eye refractive power measuring device of the present invention.

【図5C】図5Aと図5Bに示す光量分布の差の説明図
である。
FIG. 5C is an explanatory diagram of the difference between the light amount distributions shown in FIGS. 5A and 5B.

【図6】本発明の眼屈折力測定装置おいて光束の状態か
ら眼屈折力を演算する場合の説明図である。
FIG. 6 is an explanatory diagram in a case where an eye refractive power is calculated from a state of a light beam in the eye refractive power measuring device of the present invention.

【図7】本発明の眼屈折力測定装置の第2の実施例の説
明図である。
FIG. 7 is an explanatory view of a second embodiment of the eye-refractive-power measuring apparatus of the present invention.

【図8A】本発明の眼屈折力測定装置の第2の実施例に
おける検出器上の光量分布の説明図である。
FIG. 8A is an explanatory diagram of a light amount distribution on a detector in a second embodiment of the eye refractive power measuring device of the present invention.

【図8B】本発明の眼屈折力測定装置の第2の実施例に
おける検出器上の光量分布の説明図である。
FIG. 8B is an explanatory diagram of a light amount distribution on a detector in a second embodiment of the eye refractive power measuring device of the present invention.

【図8C】図8Aと図8Bに示す光量分布の差の説明図
である。
FIG. 8C is an explanatory diagram of a difference between light amount distributions shown in FIGS. 8A and 8B.

【図9】本発明の眼屈折力測定装置における2面ミラー
の代わりに2枚のミラーを用いた場合の説明図である。
FIG. 9 is an explanatory diagram in the case where two mirrors are used instead of the two-sided mirror in the eye refractive power measuring device of the present invention.

【図10】本発明の眼屈折力測定装置における2面ミラ
ーの代わりに1枚のミラーを用いた場合の説明図であ
る。
FIG. 10 is an explanatory diagram in the case where one mirror is used instead of the two-sided mirror in the eye refractive power measurement device of the present invention.

【符号の説明】[Explanation of symbols]

1 被験眼 2 投光系 3 受光系 4 ハーフミラー 5 光源 6 眼底 7 瞳孔 8 プリズム型2面ミラー 8a ミラー 8b ミラー 8c ミラー 9 撮影光学系 9′ 撮影光学系 10 検出器 10′ 検出器 11 レンズ 11′ レンズ 12 減算器 13 演算器 14 表示器 15 延長光源 Reference Signs List 1 test eye 2 light projecting system 3 light receiving system 4 half mirror 5 light source 6 fundus 7 pupil 8 prism type two-sided mirror 8a mirror 8b mirror 8c mirror 9 photographing optical system 9 'photographing optical system 10 detector 10' detector 11 lens 11 ′ Lens 12 subtractor 13 arithmetic unit 14 display 15 extended light source

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) A61B 3/103──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int.Cl. 6 , DB name) A61B 3/103

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被験眼を照明し眼底に光源像を結ばせる
投光系と、被験眼瞳孔と光学的に略共役な位置に置か
れ、被験眼眼底よりの反射光束分布を検出する受光系と
を有し、上記受光系が、上記投光系の光源と共役の関係
となる位置に置かれた分割手段によって光軸の両側に2
分割された2つの撮影光学系から成り、この2つの光学
系で検出した反射光束分布の互いに対応する点同志の光
量差を求める手段と、その2点以上についての光量差
求める手段と、この光量差の比をパラメータとして被験
眼の眼屈折力を測定する手段とより成ることを特徴とす
る眼屈折力測定装置。
1. A light projecting system for illuminating a subject's eye and forming a light source image on the fundus, and a light receiving system located at a position optically substantially conjugate with a pupil of the subject's eye and detecting a distribution of a light beam reflected from the fundus of the subject's eye And the light receiving system is arranged on both sides of the optical axis by dividing means placed at a position conjugate with the light source of the light projecting system.
It consists divided two imaging optical system, and means for determining the light amount difference of each other corresponding points comrades reflected light flux distribution detected by the two optical systems, the light amount difference for that two or more points
An eye-refractive-power measuring apparatus, comprising: a means for determining the light-refractive-power difference ;
【請求項2】 上記光源の幅をその光軸と直角方向に延
長せしめた請求項1記載の眼屈折力測定装置。
2. The eye refractive power measuring device according to claim 1, wherein the width of the light source is extended in a direction perpendicular to the optical axis.
【請求項3】 上記受光系を2分割する分割手段が、光
軸上に稜を持った二面ミラーより成る請求項1または2
記載の眼屈折力測定装置。
3. The splitting means for splitting the light receiving system into two parts comprises a two-sided mirror having a ridge on an optical axis.
An eye refractive power measurement device as described in the above.
JP6140730A 1994-06-01 1994-06-01 Eye refractive power measuring device Expired - Lifetime JP2805040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6140730A JP2805040B2 (en) 1994-06-01 1994-06-01 Eye refractive power measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6140730A JP2805040B2 (en) 1994-06-01 1994-06-01 Eye refractive power measuring device

Publications (2)

Publication Number Publication Date
JPH07323006A JPH07323006A (en) 1995-12-12
JP2805040B2 true JP2805040B2 (en) 1998-09-30

Family

ID=15275382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6140730A Expired - Lifetime JP2805040B2 (en) 1994-06-01 1994-06-01 Eye refractive power measuring device

Country Status (1)

Country Link
JP (1) JP2805040B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2775276B2 (en) * 1988-09-22 1998-07-16 株式会社トプコン Eye refractive power measuring device

Also Published As

Publication number Publication date
JPH07323006A (en) 1995-12-12

Similar Documents

Publication Publication Date Title
US5129400A (en) Ophthalmological measurement method and apparatus
EP0392743B1 (en) Ophthalmological measurement method and apparatus
EP0314471B1 (en) Three-dimensional shape measurement apparatus
US3639041A (en) System and method for scanning the depth of the optic fundus
EP0316093B1 (en) Velocity distribution measurement apparatus
EP0392742B1 (en) Ophthalmological measurement method and apparatus
JPH02295535A (en) Instrument for measuring pupil spacing without need of any moving part
JPH05317256A (en) Intraocular size measuring instrument
JP2805040B2 (en) Eye refractive power measuring device
JP3576656B2 (en) Alignment detection device for ophthalmic instruments
JPH0417048B2 (en)
JP2805039B2 (en) Eye refractive power measuring device
JP2775276B2 (en) Eye refractive power measuring device
JP2817794B2 (en) Eye refractive power measuring device
SU935072A1 (en) Method of registering operator eye motions
JP2817796B2 (en) Eye refractive power measuring device
JP2806435B2 (en) Eye refractive power measuring device
JP2775268B2 (en) Eye refractive power measuring device
JPS628731A (en) Apparatus for measuring eye refractive power
JP2817790B2 (en) Eye refractive power measuring device
JP2817795B2 (en) Eye refractive power measuring device
JP3406359B2 (en) Ophthalmic equipment
JP2817792B2 (en) Eye refractive power measuring device
JP3046062B2 (en) Eye refractive power measuring device
JPS5922922B2 (en) Optical system focal position detection device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term