JP2817794B2 - Eye refractive power measuring device - Google Patents

Eye refractive power measuring device

Info

Publication number
JP2817794B2
JP2817794B2 JP1074189A JP7418989A JP2817794B2 JP 2817794 B2 JP2817794 B2 JP 2817794B2 JP 1074189 A JP1074189 A JP 1074189A JP 7418989 A JP7418989 A JP 7418989A JP 2817794 B2 JP2817794 B2 JP 2817794B2
Authority
JP
Japan
Prior art keywords
light
eye
receiving element
light source
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1074189A
Other languages
Japanese (ja)
Other versions
JPH02252435A (en
Inventor
和寿 内田
康文 福間
昭男 梅田
憲行 永井
靖久 石倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP1074189A priority Critical patent/JP2817794B2/en
Priority to EP89312398A priority patent/EP0373788B1/en
Priority to US07/443,111 priority patent/US5071245A/en
Priority to DE68922973T priority patent/DE68922973T2/en
Publication of JPH02252435A publication Critical patent/JPH02252435A/en
Application granted granted Critical
Publication of JP2817794B2 publication Critical patent/JP2817794B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は眼屈折力測定装置に、特に小児から乳幼児に
対しても有用である眼屈折力測定装置に関するものであ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eye refractive power measuring device, and more particularly to an eye refractive power measuring device useful for children to infants.

[従来の技術] 従来、眼屈折力測定装置としては、被検者の応答を基
に眼屈折力を測定する所謂自覚式検眼器、被検眼を他覚
的に測定する所謂オートレフラクトメータ等の装置が知
られている。
[Prior Art] Conventionally, as an eye refractive power measuring device, there are a so-called subjective ophthalmoscope for measuring eye refractive power based on a response of a subject, a so-called auto-refractometer for objectively measuring an eye to be examined, and the like. Devices are known.

然し乍ら、この種の装置で乳幼児の測定を行なう場
合、乳幼児の協力を得られない為自覚式検眼器では測定
ができず、又一般のオートレフラクトメータでは被検眼
の位置を固定しなくてはならないが、乳幼児の場合被検
眼の位置の固定が難しく、測定は極めて困難であるとい
う欠点を有していた。
However, when measuring infants with this kind of device, it is not possible to measure with a subjective ophthalmoscope because of the lack of cooperation of infants, and the position of the eye to be examined must be fixed with a general auto-refractometer. However, in the case of infants, it is difficult to fix the position of the eye to be examined, and the measurement is extremely difficult.

これらの欠点を解消する為、ストロボ光で被検眼眼底
を照明し、被検眼の瞳孔での光束の状態をカメラで撮影
し、その結果から被検眼の眼屈折力を測定するいわゆる
フォトレフラクション方式の測定方法が提案されてい
る。
In order to eliminate these drawbacks, a so-called photorefraction method is used in which the fundus of the subject's eye is illuminated with strobe light, the state of the luminous flux at the pupil of the subject's eye is photographed with a camera, and the eye refractive power of the subject's eye is measured from the result. Measurement methods have been proposed.

このフォトレフラクション方式の測定に於いては、被
検眼の光軸が少しずれても充分に測定をすることがで
き、被検眼を固定すことが困難である乳幼児の眼屈折力
の測定には有用であるとされているものである。
In this photorefraction method measurement, it is possible to sufficiently measure even if the optical axis of the eye to be examined is slightly deviated, and it is useful for measuring the refractive power of infants who have difficulty fixing the eye to be examined. It is supposed to be.

[発明が解決しようとする課題] この種の従来の装置に於いては、カメラの光軸に対
し、斜めの方向からストロボ光源により照明し、その時
の瞳孔像を単に撮像するだけであり、光源の位置により
測定できないディオプター値があり、又測定可能な範囲
が狭いという問題点を有していたものである。
[Problems to be Solved by the Invention] In a conventional apparatus of this kind, a strobe light source illuminates an optical axis of a camera from a diagonal direction, and a pupil image at that time is simply taken. There is a problem that there is a diopter value that cannot be measured depending on the position, and that the measurable range is narrow.

斯かる問題点を解決する為、本出願人は、先の出願、
特願昭63−238505号に於いて、被検眼眼底に光源像を投
影し、眼底で反射される光源からの光束をエッヂ状の遮
光部材で遮り、遮った光束を受光素子で受け、その光束
の光量分布状態を基に眼屈折力を測定する眼屈折力測定
装置を提案した。
In order to solve such a problem, the applicant of the present application
In Japanese Patent Application No. 63-238505, an image of a light source is projected on the fundus of the eye to be inspected, the light beam reflected from the fundus from the light source is blocked by an edge-shaped light blocking member, and the blocked light beam is received by a light receiving element. An eye-refractive-power measuring device for measuring the eye-refractive power based on the light quantity distribution state of the eye was proposed.

又、フォトレフラクション方式のものでは画像のピン
ト合せが必要であるが、従来のものではある一定の位置
にレンズのピントを設定しておき、そのピント範囲内に
被検者が行き、被検者の移動によりピント合せを行った
後眼屈折力の測定を行っていた。従って、測定に入る迄
の準備がかかり迅速な測定を行うことができなかったと
共にピント誤差も大きくて正確な測定値が得られないと
いう問題もあった。又、装置全体を移動させてピント合
せを行うことも可能であるが、その場合には装置全体を
移動させる為の移動機構が必要となり、装置全体が大型
になるという問題もあった。
In the case of the photorefractive method, it is necessary to focus the image, but in the conventional method, the focus of the lens is set at a certain fixed position, and the subject goes within the focus range. The eye refractive power was measured after focusing by moving the lens. Therefore, there is a problem in that preparations before the start of the measurement are required, rapid measurement cannot be performed, and a focus error is large, so that an accurate measured value cannot be obtained. It is also possible to perform focusing by moving the entire apparatus, but in that case, a moving mechanism for moving the entire apparatus is required, and there is a problem that the entire apparatus becomes large.

そこで本発明は先の出願に係る眼屈折力測定装置を基
本として、対物レンズだけの移動により迅速にピント合
せを行い更に誤差が少なく精度の高い測定を可能とする
眼屈折力測定装置を提供しようとするものである。
Therefore, the present invention is based on the eye refractive power measuring device according to the earlier application, and provides an eye refractive power measuring device that can quickly focus by moving only the objective lens and that can perform highly accurate measurement with less error. It is assumed that.

[課題を解決するための手段] 本発明は、被検眼眼底に光源像を投影する為の投影系
と、被検眼瞳孔と略共役位置に配置した受光素子上に前
記眼底からの光束を受光する受光系と、該受光系の光路
内に配置され受光光束の一部を遮光する為のエッヂ状の
遮光部材とを有し、前記受光系を構成する対物レンズの
移動により瞳孔像を受光素子上に結像させる様にすると
共に前記対物レンズの移動量と前記受光素子上に投影さ
れた光束の光量分布状態を基に被検眼の眼屈折力を測定
し得る様に構成したことを特徴とするものである。
Means for Solving the Problems According to the present invention, a projection system for projecting a light source image onto the fundus of the eye to be examined and a light receiving element arranged at a position substantially conjugate with the pupil of the eye to be examined receive light beams from the fundus. A light-receiving system, and an edge-shaped light-blocking member disposed in an optical path of the light-receiving system to block a part of the received light beam, and a pupil image is formed on the light-receiving element by moving an objective lens constituting the light-receiving system. And the eye refractive power of the eye to be examined can be measured based on the amount of movement of the objective lens and the amount of light distribution of the light beam projected on the light receiving element. Things.

[作用] 被検眼の眼屈折力の相違により、遮光部材による光束
を遮光する状態が異なってくる。この遮光の状態と眼屈
折力とは対応し、受光素子に投影された光束の状態、即
ち光量分布と被検眼、遮光部材、受光系との相対位置関
係、即ちレンズの移動量を基に眼屈折力を測定できる。
[Operation] The state in which the light-shielding member blocks light is different depending on the eye refractive power of the eye to be examined. The light-shielding state and the eye refractive power correspond to each other, and the state of the light beam projected on the light-receiving element, that is, the light amount distribution and the relative positional relationship between the subject's eye, the light-shielding member, and the light-receiving system, that is, the eye movement amount based on the movement amount of the lens. Refractive power can be measured.

[実 施 例] 以下図面を参照しつつ本発明の一実施例を説明する。Embodiment An embodiment of the present invention will be described below with reference to the drawings.

先ず、第2図(A)(B)(C)〜第13図に於いて先
に出願した眼屈折力測定装置について説明する。
First, a description will be given of the eye refractive power measuring device previously applied in FIGS. 2 (A), 2 (B) and 2 (C) to FIG.

第2図(A)(B)(C)に於いて、1は光源像を被
検眼3の眼底7に投影する為の投影系であり、2は眼底
7により反射された光束10を受光する為の受光系であ
り、投影系1及び受光系2は被検眼3に対向して配置さ
れる。
2 (A), 2 (B) and 2 (C), reference numeral 1 denotes a projection system for projecting a light source image onto the fundus 7 of the eye 3 to be inspected, and 2 a light beam 10 reflected by the fundus 7. The projection system 1 and the light receiving system 2 are arranged to face the subject's eye 3.

前記投影系1は、光源4及び光源4からの光束11を被
検眼3に向けて反射させる為のハーフミラー5から成
り、該投影系1は光源4からの光束11を瞳孔6を通して
眼底7上に光源4の像を形成する様に投影するもので、
被検眼3の眼屈折力が基準ディオプター値(基準屈折
力)の場合に眼底7上に光源4の像が合焦されるように
光源4と被検眼3との距離が設定されている。
The projection system 1 includes a light source 4 and a half mirror 5 for reflecting a light beam 11 from the light source 4 toward the subject's eye 3. The projection system 1 transmits the light beam 11 from the light source 4 onto a fundus 7 through a pupil 6. To form an image of the light source 4 on the
The distance between the light source 4 and the eye 3 is set so that the image of the light source 4 is focused on the fundus 7 when the eye refractive power of the eye 3 is a reference diopter value (reference refractive power).

前記受光系2は、対物レンズ8及び受光素子9から成
り、眼底7からの光束10はハーフミラー5を透過して受
光素子9上に導かれる。
The light receiving system 2 includes an objective lens 8 and a light receiving element 9, and a light beam 10 from the fundus 7 passes through the half mirror 5 and is guided onto the light receiving element 9.

該受光素子9は、エリアCCD、撮像管或はこれらの2
以上の集合体であり、受光素子9の受光面9aは対物レン
ズ8に関して被検眼3の瞳孔6と共役位置に配置され
る。
The light receiving element 9 includes an area CCD, an image pickup tube, or a combination thereof.
The light receiving surface 9a of the light receiving element 9 is arranged at a position conjugate with the pupil 6 of the subject's eye 3 with respect to the objective lens 8.

前記受光系2の光路内には、ハーフミラー5に関して
光源4と共役な位置に対物レンズ8の光軸Oを境界とし
て光束10の片側を遮光する為のエッヂ状の遮光部材12を
配置する。
In the optical path of the light receiving system 2, an edge-shaped light shielding member 12 for shielding one side of the light flux 10 with the optical axis O of the objective lens 8 as a boundary is disposed at a position conjugate with the light source 4 with respect to the half mirror 5.

第2図(A)に示す様に、被検眼3のディオプター値
が基準ディオプター値に比べて負のディオプター値の場
合には、光源4の像は眼底7の前方で結像され、この光
束により照明された眼底7上の内、光軸上の1点で反射
された光束10を考えると、この光束10は遮光部材12の前
方、即ち被検眼3側で集光され、対物レンズ8により受
光素子9上に投影される光束の上半分(斜線部分)が遮
光される。
As shown in FIG. 2 (A), when the diopter value of the eye 3 to be examined is a negative diopter value compared to the reference diopter value, the image of the light source 4 is formed in front of the fundus 7, and this light beam causes Considering the light beam 10 reflected at one point on the optical axis among the illuminated fundus 7, the light beam 10 is condensed in front of the light shielding member 12, that is, on the side of the eye 3 to be examined, and is received by the objective lens 8. The upper half (hatched portion) of the light beam projected onto the element 9 is shielded.

一方、第2図(B)に示す様に、被検眼のディオプタ
ー値が基準ディオプター値の場合には、光束10は遮光部
材12上に集光されるもので、光束10は遮光部材12上によ
って遮られない。
On the other hand, as shown in FIG. 2 (B), when the diopter value of the eye to be inspected is the reference diopter value, the light beam 10 is condensed on the light shielding member 12, and the light beam 10 is Not blocked.

又、第2図(C)に示す様に、被検眼3のディオプタ
ー値が基準ディオプター値より正の場合には、光源4の
像は眼底7の後方で結像するように投影され、前述と同
様に眼底7で反射された光束10は遮光部材12の後方、即
ち受光素子9側で集光され、受光素子9上に投影される
光束10は第2図(A)とは逆の部分の光束(図中では上
半分)が遮光される。
As shown in FIG. 2C, when the diopter value of the eye 3 is more positive than the reference diopter value, the image of the light source 4 is projected so as to form an image behind the fundus 7, and as described above. Similarly, the light beam 10 reflected by the fundus 7 is collected behind the light blocking member 12, that is, on the light receiving element 9 side, and the light beam 10 projected on the light receiving element 9 is a portion opposite to that of FIG. The light flux (the upper half in the figure) is shielded.

而して、受光面9aに投影される光束は基準ディオプタ
ー値に対して被検眼3のディオプター値の大小、正負に
よって光量分布状態が変化し、この光量分布状態を基に
ディオプター値が求められる。
Thus, the light flux projected on the light receiving surface 9a changes its light quantity distribution state with respect to the reference diopter value depending on the magnitude of the diopter value of the eye to be inspected 3 and the sign thereof, and the diopter value is determined based on this light quantity distribution state.

受光素子9はこの受光面9aに形成される光束の光量分
布を検出する為のものであり、前記演算器13は受光素子
9からの信号を基に、受光面9a上に形成される光束の光
量分布を検出し、基準となるディオプター値に対し被検
眼の眼屈折力が正か負かを判断すると共にその絶対値を
演算する。
The light receiving element 9 is for detecting the light amount distribution of the light beam formed on the light receiving surface 9a, and the arithmetic unit 13 is configured to detect the light amount distribution of the light beam formed on the light receiving surface 9a based on the signal from the light receiving element 9. The light amount distribution is detected, it is determined whether the eye refractive power of the eye to be examined is positive or negative with respect to a reference diopter value, and the absolute value is calculated.

尚、上記実施例では光束分離手段としてハーフミラー
を使用したが、ビームスプリッター、偏光プリズム等種
々の光束分離手段を用いることは勿論である。
In the above embodiment, a half mirror is used as a light beam separating means. However, it is a matter of course that various light beam separating means such as a beam splitter and a polarizing prism are used.

以下第3図(A)〜(E)に於いて、受光面9aに形成
される光束の光量分布状態を説明する。
In the following, the distribution of the amount of light of the light beam formed on the light receiving surface 9a will be described with reference to FIGS.

尚、第3図(A)〜(E)に於いて説明を簡略化する
為、光源4の光軸と受光系の光軸とを合致させ且遮光部
材12と対物レンズ8とを一致させている。この為、光源
4と対物レンズ8とは同一位置で重ね合わせて示してお
り、遮光部材12は省略して示している。
In order to simplify the explanation in FIGS. 3A to 3E, the optical axis of the light source 4 and the optical axis of the light receiving system are matched, and the light shielding member 12 and the objective lens 8 are matched. I have. For this reason, the light source 4 and the objective lens 8 are shown superimposed at the same position, and the light shielding member 12 is omitted.

第3図(A)〜(E)は被検眼の屈折力Dが基準屈折
力D0に対し負の場合を示しており、以下の説明は眼底か
らの反射光束は全て対物レンズ8によって受光面9a上に
投影されるものとする。
Figure 3 (A) ~ (E) is the light receiving surface by all reflected light beam objective lens 8 from the shows the case where the refractive power D of the eye is negative with respect to the reference power D 0, the following description fundus It shall be projected on 9a.

光源4と被検眼瞳孔6との距離をlに設定しこの光源
の像が眼底に合焦する被検眼の屈折力を基準屈折力D0
すると である。
Assuming that the distance between the light source 4 and the pupil 6 of the subject's eye is set to 1 and the refractive power of the subject's eye at which the image of this light source is focused on the fundus is the reference refractive power D 0 It is.

第3図(A)は被検眼の屈折力がD(<D0)の場合
の、光軸に対し直角方向にLの長さを有するスリット状
の光源4の軸上の一点S0からの投影光束を示すもので、
点S0の像は一旦、S0′に結像され、被検眼眼底7には、
ぼけた像として投影される。D0−Dが大きくなるに従い
投影される領域7aは広くなる。
FIG. 3 (A) shows a case where the refractive power of the subject's eye is D (<D 0 ) from one point S 0 on the axis of the slit-shaped light source 4 having a length L in a direction perpendicular to the optical axis. Indicates the projected light flux,
The image of the point S 0 is once formed on S 0 ′,
Projected as a blurred image. Region 7a where D 0 -D is projected in accordance with increase becomes wider.

第3図(B)は受光系2、及び、被検眼眼底7からの
反射光束の状態を示すものである。
FIG. 3B shows the state of the light beam reflected from the light receiving system 2 and the fundus 7 of the eye to be examined.

第3図(B)に示す様に、被検眼眼底7上の投影領域
の端部の点I-nからの光束を考えると、この点の像I-n
は被検眼瞳孔からl′の距離の位置に結像され、この光
束は対物レンズ8を介して被検眼瞳孔6と共役位置に配
置した受光素子9上に投影される。尚、このl′と被検
眼の屈折力Dの関係式は下記の通りである。
As shown in FIG. 3 (B), considering the light flux from a point I- n at the end of the projection area on the fundus 7 of the eye to be examined, an image I- n 'of this point is considered.
Is imaged at a position 1 'away from the pupil of the eye to be examined, and this light beam is projected via the objective lens 8 onto a light receiving element 9 arranged at a position conjugate with the pupil 6 of the eye to be examined. The relational expression between l 'and the refractive power D of the eye to be examined is as follows.

一方、この眼底上の一点から発した光束のエッヂ上で
の広がり幅Δは被検眼の瞳径をuとすると、第3図
(B)から明らかな様に、 であり、第(1)式、第(2)式より となり、被検眼3の屈折力Dと基準屈折力D0との差が大
になるに従い遮光部材12上の広がりは大きくなる。
On the other hand, assuming that the pupil diameter of the subject's eye is u, the spread width Δ of the light flux emitted from one point on the fundus is as shown in FIG. From the equations (1) and (2). Thus, as the difference between the refractive power D of the eye 3 to be examined and the reference refractive power D 0 increases, the spread on the light shielding member 12 increases.

次に、受光素子9上での光束の広がりについて述べ
る。受光素子9は、被検眼3の屈折力に関係なく常に、
対物レンズ8に関して被検眼瞳孔と共役に配置されてお
り、被検眼瞳孔6の径をu、対物レンズ8の倍率をβと
すると、受光素子9ではβuの径の領域(被検眼の屈折
力に影響を受けない)に光束が投影される。
Next, the spread of the light beam on the light receiving element 9 will be described. The light receiving element 9 is always irrespective of the refractive power of the eye 3 to be inspected.
Assuming that the objective lens 8 is arranged conjugate with the pupil of the eye to be inspected, the diameter of the pupil 6 of the eye to be inspected is u, and the magnification of the objective lens 8 is β, the light receiving element 9 has an area of the diameter of βu (the refractive power of the eye to be inspected). (Unaffected).

又、光軸に対して前記相-nと対称な点Inからの光束も
同様に被検眼瞳孔6からl′の位置に像In′を結像した
後、受光素子9上の同じ領域βuに投影される。光源4
を点光源として、遮光部材12が無いものとした時、これ
ら眼底7からの各点I-n、…I0、……In、からの光束の
積分が受光素子9上の光量分布を決めるものである。
Further, after forming an even as well the light flux from the eye pupil 6 'image I n to the position of' l from the phase -n symmetrical point I n with respect to the optical axis, the same area on the light receiving element 9 projected onto βu. Light source 4
As a point light source, when that there is no light blocking member 12, the points I -n from these fundus 7, ... I 0, ...... I n, the integral of the light beam from determining the light intensity distribution on the light receiving element 9 Things.

ここで、受光素子9上での光量分布について考察する
ため、受光素子9上の光束投影位置の端部位置P-n、す
なわち、光軸を中心とした座標位置−βu/2に入射する
光束を考えると、この位置に入射する光束は第3図
(C)での斜線Aの範囲の光束に限られることとなる。
又、同様に、光軸に対して、前記のP-n位置と対称な位
置Pnに入射する光束を考えると斜線A′範囲の光束に限
られることになる。してみると、被検眼道瞳孔6からl
の距離(光源4と共役位置)の位置に光軸の一方の光束
A′を遮断するエッヂ状の遮光部材12を配置すると受光
素子9上のP-nの位置に入射する光束は遮光部材12によ
り遮断されず、このP-nの位置から上方の位置にいくに
従って光束は徐々に遮光され、中心P0位置で光束の半分
が遮光され、Pnの位置になると全ての光束が遮断される
こととなるものである。従って、エッヂ状の遮光部材12
により受光素子19上には上方に行くにしたがって暗くな
り、Pnの点で光量が0となる一定傾斜の光量分布となる
ものである。
Here, in order to consider the light amount distribution on the light receiving element 9, the light flux incident on the end position P -n of the light beam projection position on the light receiving element 9, that is, the coordinate position -βu / 2 centered on the optical axis. In consideration of the above, the light beam incident on this position is limited to the light beam in the range of oblique line A in FIG. 3 (C).
Similarly, considering the light flux incident on the position Pn symmetrical to the P- n position with respect to the optical axis, the light flux is limited to the light flux in the range of the hatched line A '. Then, from the eye pupil 6 to be examined
Distance the light beam incident on the position of P -n on the light receiving element 9 and to place the edge-like light blocking member 12 for blocking one of the light beam A 'of the optical axis at the position of (the light source 4 and conjugate position) the light blocking member 12 not blocked by the light beam toward the upper position from the position of the P -n is gradually shading, half of the light beam is blocked by the center P 0 position, all of the light flux becomes a position of P n is blocked That is the thing. Therefore, the edge-shaped light shielding member 12
As a result, the light becomes darker as it goes upward on the light receiving element 19, and the light quantity distribution has a constant slope where the light quantity becomes 0 at the point Pn .

以上の第3図(A)〜(C)では、光源4の光軸上の
一点から発する光束のみを示したが、光源4の端部の一
点S-n(光源の大きさをLとすると−L/2の座標位置の
点)からの光束を考えると第3図(D)に示すようにな
る。この点S-nからの光束は、第3図(D)に示す被検
眼眼底7上のI-n点からIn点の領域に投影され、このI-n
点、In点からの反射光は、前述と同様に被検眼瞳孔6か
らl′の距離の位置でIn′、In′の像を結像した後、受
光素子9上のβuの径の領域に投影されるものである。
ここで、光源4の端部の点S-nから発する光束のうち、
受光素子9上の光束投影の端部位置P-nに入射する光束
は第3図(D)のBの斜線領域の光束となるものであ
る。
In FIGS. 3A to 3C described above, only the light flux emitted from one point on the optical axis of the light source 4 is shown. However, one point S -n at the end of the light source 4 (where the size of the light source is L) Considering the luminous flux from the point (-L / 2 coordinate position), the result is as shown in FIG. 3 (D). Light beam from the point S -n are projected from I -n point on the fundus 7 shown in FIG. 3 (D) in the region of I n points, this I -n
Point, the reflected light from I n points, after forming an image of, I n '' I n at a distance of 'l from the eye pupil 6 in the same manner as described above, the diameter of βu on the light receiving element 9 Is projected on the area of.
Here, of the luminous flux emitted from the point S- n at the end of the light source 4,
The light beam incident on the end position P- n of the light beam projection on the light receiving element 9 is a light beam in a hatched area B in FIG. 3 (D).

又、前記S-nの点と対称な光源4の一点Snからの光束
を考え、そのうち受光素子9上のP-nの点に入射する光
束を考えると第3図(E)のCの傾斜領域の光束とな
る。この様に、光源4がある大きさを有するものとして
考えた場合、受光素子9上の一点の光量は、光源4の各
点からの光束の総和として考えなければならない。
Further, the S consider the light beam from one point S n of the point symmetrical with the light source 4 -n, of which Figure 3 Given the light beams incident on the point P -n on the light receiving element 9 C of (E) It becomes a light flux in the inclined area. As described above, when the light source 4 is considered to have a certain size, the amount of light at one point on the light receiving element 9 must be considered as the sum of the light flux from each point of the light source 4.

第4図(A)は、この考え方に基づき、受光素子9上
のP-nの位置に入射する各光束を重ね合わせて示したも
のであり、光源上のS-nの位置から発する光束のうちP-n
の位置に入射する光束はBの領域であり(第3図(D)
参照)、光源上での位置が上方に行くにしたがってその
光束も上方に移動し、軸上の光源位置S0ではAの領域の
光束となり(第3図(C)参照)、光源上でのSnの位置
ではCの領域の光束となる(第3図(E)参照)。従っ
て、受光素子9上のP-nの点での光量は、これらの光束
の総和として考えられる。
FIG. 4 (A) shows the respective light beams incident on the position of P- n on the light receiving element 9 superimposed on the basis of this concept, and shows the light beams emitted from the position of Sn on the light source. Of which P -n
Is incident on the area B (FIG. 3 (D)).
), The light flux also moves upward as the position on the light source goes upward, and at the light source position S 0 on the axis, it becomes a light flux in the area A (see FIG. 3 (C)), and the light beam C region at the position of S n (see FIG. 3 (E)). Therefore, the light quantity at the point P- n on the light receiving element 9 can be considered as the sum of these light fluxes.

ここで、被検眼瞳孔6からlの距離の位置に遮光部材
12を配置した時の受光素子9上の点にP-nの光量を示す
模式図を第4図(B)に示す。第4図(B)は光源上の
位置が変化するにしたがって遮光部材12により光束がど
の様に遮光されるかを示すものである。第4図(B)の
横軸は光源上の座標位置、縦軸は光量を示すものであ
り、光源上での各点からの光束を考えると、座標位置の
−L/2(Lは光源の大きさ)点から0点までの光束は遮
光部材により遮光されず、座標位置の0点を過ぎると徐
々に遮光され、Δ(前述の光束の広がり)の位置で全て
の光束が遮断される事になるものである。ここで遮光さ
れない場合の光源上の各点からの光量をkとして光源上
での各点からの光量の寄与を示したものが第4図(B)
であり、斜線部の面積が受光素子上のP-nの点の光量に
対応するものである。この面積値Tは下記のようにな
る。
Here, a light shielding member is provided at a position of a distance 1 from the pupil 6 of the eye to be examined.
FIG. 4B is a schematic diagram showing the amount of P- n light at a point on the light receiving element 9 when 12 is arranged. FIG. 4 (B) shows how the light beam is blocked by the light blocking member 12 as the position on the light source changes. The horizontal axis in FIG. 4 (B) shows the coordinate position on the light source, and the vertical axis shows the light amount. Considering the light flux from each point on the light source, -L / 2 (L is the light source The light flux from the point () to the point 0 is not blocked by the light blocking member, but is gradually blocked after passing the coordinate point 0, and all the light flux is blocked at the position of Δ (the spread of the light flux). That is the thing. FIG. 4B shows the contribution of the light amount from each point on the light source, where k is the light amount from each point on the light source when the light is not blocked.
And the area of the hatched portion corresponds to the light amount at the point P- n on the light receiving element. This area value T is as follows.

同様にして、受光素子上での他の点についても考察す
る。第5図(A)は受光素子上での中心点P0に入射する
光束を第4図(A)と同様に示したものであり、光源上
のS-nの点からの光束の内P0の点に入射する光束はB0
斜線領域、光源上の中心S0の点からはA0の斜線領域、光
源上のSnの点からの光束はC0の斜線領域の光束となるも
のであり、受光素子9の中心に入射する光量は第5図
(B)の斜線領域の面積T0に対応することになる。すな
わち、光源の各点からの受光素子の中心点に入射する光
束を考えると、光源上の座標位置−L/2の位置から−Δ/
2の位置までは光束は遮光されず、−Δ/2位置を過ぎる
と徐々に光束が遮られΔ/2の位置で全ての光束が遮断さ
れることになり、この面積値を前述と同様に計算すると
下記値になる。
Similarly, other points on the light receiving element will be considered. FIG. 5 (A) shows the light beam incident on the center point P 0 on the light receiving element in the same manner as FIG. 4 (A), and P out of the light beam from the point S −n on the light source. The light flux incident on the point 0 is a shaded area of B 0 , the light flux from the point S 0 on the light source is the shaded area of A 0 , and the light flux from the point S n on the light source is the light flux of the shaded area C 0. is intended, the amount of light incident on the center of the light receiving element 9 will correspond to the area T 0 of the hatched region of FIG. 5 (B). That is, considering the light flux incident on the center point of the light receiving element from each point of the light source, -Δ /
The luminous flux is not blocked until the position of 2, and after passing the -Δ / 2 position, the luminous flux is gradually blocked, and all the luminous flux is blocked at the position of Δ / 2. The following values are calculated.

同様にして、受光素子上での点Pnに入射する光束の状
態、及びこの点での光量値を第6図(A)、第6図
(B)に示す。第6図(A)において、光源上のS-n
点からの光束の内Pnの点に入射する光束はB″の斜線領
域、光源上の中心S0の点からはA″の斜線領域、光源上
のP-nの点からの光束はC″の斜線領域の光束として示
す。この場合には、第6図(B)に示すように、光源の
各点から受光素子のPnの点に入射する光束を考えると、
光源上の−L/2の位置から−Δの位置までは光束は遮光
されず、−Δ位置を過ぎると徐々に光束が遮られ、0の
位置で全ての光束が遮断されることになり、この面積値
を計算すると下記値になる。
Similarly, FIGS. 6A and 6B show the state of the light beam incident on the point Pn on the light receiving element and the light amount value at this point. Figure 6 (A), the light beam incident on the point of the inner P n of the light beam from the point S -n on the light source B hatched "shaded area of, A is the center point S 0 on the light source" region, the light beam from a point P -n on the light source shown as light flux hatched area in C ". in this case, as shown in FIG. 6 (B), P n of the light receiving elements from each point light source Considering the luminous flux incident on the point
From the position of -L / 2 on the light source to the position of -Δ, the light beam is not blocked, and after passing the -Δ position, the light beam is gradually blocked, and all the light beams are blocked at the position of 0, When this area value is calculated, the following value is obtained.

これらの式(4)、(5)、(6)の結果からわかる
ように、受光素子9上の光量値は下方から上方にいくに
したがって、光量値は徐々に低くなるものであり、その
受光素子上での光量分布を図示すると第7図に示すよう
に直線的に変化する。
As can be seen from the results of Equations (4), (5), and (6), the light amount value on the light receiving element 9 gradually decreases as going from lower to upper. The light intensity distribution on the element changes linearly as shown in FIG.

前述の説明に於いては、眼底の一点から発する光束を
考えた場合の遮光部材12上での広がり幅Δが光源の大き
さLの1/2より小さな場合を想定して説明を行ったもの
である。
In the above description, the description has been made on the assumption that the spread width Δ on the light blocking member 12 when considering the light flux emitted from one point of the fundus is smaller than 1/2 of the size L of the light source. It is.

然し乍ら の場合、即ち基準ディオプター値D0に対する被検眼のデ
ィオプター値の偏差ΔDが所定量以上の場合には、第10
図に示すような直線変化は示さない。これを第4図ない
し第6図にしたがって説明を行う。前述のように の場合には、第4図(B)、第5図(B)、第6図
(B)はそれぞれ第11図、第12図、第13図、に示す様に
なり、この光量変化は第7図に示す様な直線変化を示さ
ないことになる。
However In other words, when the deviation ΔD of the diopter value of the subject's eye with respect to the reference diopter value D 0 is equal to or larger than a predetermined amount,
A linear change as shown in the figure is not shown. This will be described with reference to FIGS. 4 to 6. As aforementioned In the case of FIG. 4, FIGS. 4 (B), 5 (B), and 6 (B) are as shown in FIGS. 11, 12, and 13, respectively. It does not show a linear change as shown in FIG.

次に、第2図(B)で示す被検眼の屈折力が基準値で
ある場合、第2図(C)で示す被検眼の屈折力が基準値
より正の場合も、前記したと同様に受光素子9上の光量
分布を考察することができ、その場合被検眼の屈折力が
基準値である場合は、第8図に示す如く、均一分布、被
検眼の屈折力が正の場合は第7図で示したものと逆な分
布状態となる。
Next, when the refractive power of the subject's eye shown in FIG. 2 (B) is the reference value, and when the refractive power of the subject's eye shown in FIG. 2 (C) is more positive than the reference value, the same as described above. The light amount distribution on the light receiving element 9 can be considered. In this case, when the refractive power of the eye to be examined is a reference value, as shown in FIG. The distribution state is opposite to that shown in FIG.

上記した光量分布の傾斜がディオプター値(屈折力)
をそして、傾斜の方向がディオプター値の正負を表わ
す。以下第10図を参照して説明する。
The diopter value (refractive power) is the slope of the light amount distribution described above.
And the direction of the slope represents the sign of the diopter value. This will be described below with reference to FIG.

光量分布の傾きを と定義すると、 前記した光束の広がりΔ、即ちボケ量Δは、前記
(4)式より、 よって(7)式より 而して、(9)式は基準ディオプター値D0に対する被
検眼のディオプター値の偏差ΔDと が比例していることを示している。従って、画像処理部
15に於いて光量分布より を求めることにより被検眼のディオプター値を求めるこ
とが可能となる。
The slope of the light distribution Is defined as The spread Δ of the light beam, that is, the amount of blur Δ, is given by the above equation (4). Therefore, from equation (7) Thus, equation (9) gives the deviation ΔD of the diopter value of the subject's eye with respect to the reference diopter value D 0 . Are proportional. Therefore, the image processing unit
From the light intensity distribution at 15 , It is possible to obtain the diopter value of the eye to be examined.

次に、第1図に於いて本発明の一実施例を説明する。 Next, an embodiment of the present invention will be described with reference to FIG.

尚、第1図中第2図中で示したものと同一のものには
同符号を付してある。
1 that are the same as those shown in FIG. 2 are denoted by the same reference numerals.

対物レンズ8は光軸方向に移動可能に支持されてお
り、該対物レンズ8はラック・ピニオン或はナット・ス
クリュー等の駆動機構13を介してパルスモータ14等によ
って駆動される様になっている。
The objective lens 8 is supported so as to be movable in the optical axis direction, and is driven by a pulse motor 14 or the like via a drive mechanism 13 such as a rack and pinion or a nut and screw. .

又、前記受光素子9には該受光素子9からの信号を処
理・演算する画像処理部15を接続し、該画像処理部15に
は主制御部16が接続され、該主制御部16には駆動制御部
17が接続されている。該駆動制御部17によって駆動され
る前記パルスモータ14にはエンコーダ等の回転検出器18
が取付けられており、該回転検出器18からの検出結果
は、駆動制御部17へフィードバックされる。又、前記画
像処理部15には表示器19が接続され、画像処理部15の演
算結果が表示される様になっている。
The light receiving element 9 is connected to an image processing unit 15 for processing and calculating a signal from the light receiving element 9, and a main control unit 16 is connected to the image processing unit 15, and the main control unit 16 is connected to the image processing unit 15. Drive control unit
17 is connected. The pulse motor 14 driven by the drive control unit 17 includes a rotation detector 18 such as an encoder.
The detection result from the rotation detector 18 is fed back to the drive control unit 17. A display 19 is connected to the image processing unit 15 so that the calculation result of the image processing unit 15 is displayed.

前記した様に、本発明では被検眼瞳孔の像を受光素子
9上に結像させるが結像させる為の調整は以下の如く行
われる。
As described above, in the present invention, an image of the pupil of the eye to be inspected is formed on the light receiving element 9. The adjustment for forming the image is performed as follows.

受光素子9上の像のピントのずれ状態を画像処理部15
で演算して、その結果を前記主制御部16へ入力し、主制
御部16は画像処理部15からの信号に基づき前記駆動制御
部17へ駆動指令信号を発する。駆動制御部17は該駆動指
令信号に従って、パルスモータ14を駆動し対物レンズ8
をx又は−xの方向へ動かす、パルスモータ14の動き量
(対物レンズ8の動き量)は回転検出器18によって検出
され、該駆動制御部17へフィードバックされ、パルスモ
ータ14の動き量と駆動信号との一致がなされる。
The defocus state of the image on the light receiving element 9 is determined by the image processing unit 15.
, And inputs the result to the main control unit 16. The main control unit 16 issues a drive command signal to the drive control unit 17 based on a signal from the image processing unit 15. The drive control unit 17 drives the pulse motor 14 according to the drive command signal to drive the objective lens 8
The amount of movement of the pulse motor 14 (the amount of movement of the objective lens 8) for moving the object in the x or -x direction is detected by the rotation detector 18 and fed back to the drive control unit 17, so that the amount of movement of the pulse motor 14 A match with the signal is made.

上述の如くして、瞳孔6の位置に合せ対物レンズ8を
移動させると瞳孔6、遮光部材12、対物レンズ8、受光
素子9との相対位置は前述した基準の相対位置とは変化
したものとなる。
As described above, when the objective lens 8 is moved in accordance with the position of the pupil 6, the relative positions of the pupil 6, the light shielding member 12, the objective lens 8, and the light receiving element 9 are different from the above-described reference relative positions. Become.

ところが、前述した様にディオプター値の偏差ΔDは
光源4即ち遮光部材12と被検眼瞳孔6との距離l、倍率
βに関係するものであるから、前記(9)式は補正され
なければならない。
However, as described above, the deviation ΔD of the diopter value is related to the distance 1 between the light source 4, that is, the light blocking member 12 and the pupil 6 of the subject's eye, and the magnification β, so that the equation (9) must be corrected.

以下この補正について説明する。 Hereinafter, this correction will be described.

対物レンズ8を基準位置x=0に配した時、遮光部材
12からlだけ離れた基準位置に配置した瞳孔6の像が受
光面9a上で倍率βで結像されているものとする。その場
合、対物レンズ8の焦点距離をfとする対物レンズ8と
受光面9aとの距離m1はJ(1+β)である。
When the objective lens 8 is arranged at the reference position x = 0, the light shielding member
It is assumed that an image of the pupil 6 arranged at a reference position separated by 1 from 12 is formed on the light receiving surface 9a at a magnification β. In this case, the distance m 1 between the objective lens 8 having the focal length f of the objective lens 8 and the light receiving surface 9a is J (1 + β).

ここで、被検眼3が適正位置からずれ、その為対物レ
ンズ8をΔxだけ移動させて受光面9a上に瞳孔の像を結
像したとすると、その時の受光面9aと対物レンズ8との
距離m2は下記式で表わされる。
Here, assuming that the subject's eye 3 is displaced from the proper position and the objective lens 8 is moved by Δx to form an image of the pupil on the light receiving surface 9a, the distance between the light receiving surface 9a and the objective lens 8 at that time m 2 is represented by the following equation.

m2=m1−Δx=J(1+β)−Δx ……(10) 又、この距離m2は、レンズ移動後の倍率をβ′とする
と、J(1+β′)であるから(10)式は、 J(1+β)−Δx=J(1+β′) ……(11) となる。この(11)式より対物レンズ8をΔxだけ移動
させた後の倍率β′は となる。
m 2 = m 1 −Δx = J (1 + β) −Δx (10) Further, if the magnification after moving the lens is β ′, this distance m 2 is J (1 + β ′). Is J (1 + β) −Δx = J (1 + β ′) (11) From the equation (11), the magnification β 'after moving the objective lens 8 by Δx is Becomes

次に対物レンズ8をΔxだせ移動させて受光面9a上に
瞳孔6の像を結像させた後の、被検眼と遮光部材12との
距離(光源4との距離)l′について考察する。
Next, the distance (distance from the light source 4) between the eye to be examined and the light shielding member 12 after the objective lens 8 is moved by Δx to form an image of the pupil 6 on the light receiving surface 9a will be considered.

対物レンズ8の移動により生ずる遮光部材12と被検眼
3との距離の変化量Δl、遮光部材12と対物レンズ8と
の距離の変化量Δm、被検眼3と対物レンズ8との距離
の変化量Δnとの間には下記関係式が成立する。
The amount of change Δl in the distance between the light-shielding member 12 and the subject's eye 3 caused by the movement of the objective lens 8, the amount of change Δm in the distance between the light-shielding member 12 and the objective lens 8, and the amount of change in the distance between the subject's eye 3 and the objective 8 The following relational expression holds between Δn.

Δn=Δl+Δm ……(13) ここでΔmはレンズの移動量に外ならず、 Δm=Δx ……(14) である。又、倍率βの場合の対物レンズ8と被検眼との
距離は であり、対物レンズ8をΔxだけ移動させ倍率β′とな
った場合の距離は であり、Δnは となり前記(12)式を代入することにより となる。従って(13)〜(15)式より となる。よって対物レンズ8をΔxだけ移動させた場合
の被検眼3と遮光部材12との距離lXとなり、従って、対物レンズ8の移動に伴ない基準ディ
オプター値DOが下記DO′となる。
Δn = Δl + Δm (13) Here, Δm does not deviate from the movement amount of the lens, and Δm = Δx (14) In addition, the distance between the objective lens 8 and the subject's eye when the magnification is β is When the objective lens 8 is moved by Δx and the magnification becomes β ′, the distance is Where Δn is By substituting the equation (12), Becomes Therefore, from equations (13) to (15) Becomes Therefore, when the objective lens 8 is moved by Δx, the distance l X between the subject's eye 3 and the light shielding member 12 is Therefore, the reference diopter value D O accompanying the movement of the objective lens 8 becomes D O 'below.

而して前記(9)式は となる。 Thus, equation (9) is Becomes

而して、ピントが合った時の対物レンズ8の移動量Δ
xを回転検出器18より主制御部16へフィードバックする
ことで(17)式、(18)式の演算を行い、この演算で求
められた結果を基に(9′)式より正確なディオプター
値偏差を求めることができる。
Thus, the amount of movement Δ of the objective lens 8 when focusing is achieved
x is fed back from the rotation detector 18 to the main control unit 16 to calculate equations (17) and (18). Based on the result obtained in this calculation, a more accurate diopter value than equation (9 ') is obtained. The deviation can be determined.

得られたディオプター値偏差は、被検眼のディオプタ
ー値に換算されて表示器19に表示される。
The obtained diopter value deviation is converted into a diopter value of the subject's eye and displayed on the display 19.

[発明の効果] 以上述べた如く本発明によれば、被検者が測定の適当
な位置に移動する必要がなく、対物レンズだけを移動し
て容易にピント合せ調整を行うので測定時間を大幅に短
縮でき、測定の操作性を向上させ得ると共にピント合せ
を正確に行い得るので測定精度の向上も図り得る。
[Effects of the Invention] As described above, according to the present invention, the subject does not need to move to an appropriate position for measurement, and focus adjustment can be easily performed by moving only the objective lens. And the operability of the measurement can be improved, and the focusing can be performed accurately, so that the measurement accuracy can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の基本概略図、第2図(A)(B)
(C)は本発明の基本となる眼屈折力測定装置の概略を
示すと共に被検眼のディオプター値の相違による光束の
状態の相違を示す説明図、第3図(A)(B)(C)
(D)(E)は受光系及び被検眼眼底からの反射光束の
状態を示す説明図、第4図(A)、第5図(A)、第6
図(A)は受光素子に到達する光源各点の反射光束の状
態を示す説明図、第4図(B)、第5図(B)、第6図
(B)は遮光部材によって遮られた場合の各光束の光量
変化を示す説明図、第7図、第8図、第9図はディオプ
ター値に対応した受光面での光量分布状態を示す説明
図、第10図は光量分布状態よりディオプター値を求める
場合の説明図、第11図、第12図、第13図は遮光部材上で
の広がり幅Δが光源の1/2の大きさより大きな場合の遮
光部材によって遮光された場合の各光束の光量変化を示
す説明図である。 1は投影系、2は受光系、3は被検眼、4は光源、5は
ハーフミラー、8は対物レンズ、13は駆動機構、15は画
像処理部、16は主制御部、17は駆動制御部、18は回転検
出器を示す。
FIG. 1 is a basic schematic diagram of the present invention, and FIGS. 2 (A) and 2 (B).
(C) is an explanatory view showing an outline of an eye refractive power measuring apparatus which is a basis of the present invention and showing a difference in a state of a light beam due to a difference in a diopter value of an eye to be examined, and FIGS. 3 (A), (B), and (C).
(D) and (E) are explanatory diagrams showing the state of the light beam reflected from the light receiving system and the fundus of the eye to be examined, FIGS. 4 (A), 5 (A), and 6
FIG. 4A is an explanatory view showing the state of reflected light flux at each point of the light source reaching the light receiving element, and FIGS. 4B, 5B, and 6B are shielded by a light blocking member. FIG. 7, FIG. 8, FIG. 9, and FIG. 9 are explanatory diagrams showing a light amount distribution state on a light receiving surface corresponding to a diopter value, and FIG. FIG. 11, FIG. 12, FIG. 13, and FIG. 13 show the case where the light flux is shielded by the light shielding member when the spread width Δ on the light shielding member is larger than half the size of the light source. FIG. 4 is an explanatory diagram showing a change in light amount of the light. 1 is a projection system, 2 is a light receiving system, 3 is an eye to be examined, 4 is a light source, 5 is a half mirror, 8 is an objective lens, 13 is a driving mechanism, 15 is an image processing unit, 16 is a main control unit, and 17 is drive control. Reference numeral 18 denotes a rotation detector.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永井 憲行 東京都板橋区蓮沼町75番1号 東京光学 機械株式会社内 (72)発明者 石倉 靖久 東京都板橋区蓮沼町75番1号 東京光学 機械株式会社内 (56)参考文献 光学 Vol.18,No.10,PP. 545〜546 (58)調査した分野(Int.Cl.6,DB名) A61B 3/103──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Noriyuki Nagai 75-1, Hasunuma-cho, Itabashi-ku, Tokyo Inside Tokyo Optical Machinery Co., Ltd. (72) Inventor Yasuhisa Ishikura 75-1, Hasunuma-cho, Itabashi-ku, Tokyo Tokyo Optical Machinery Co., Ltd. (56) Reference Optics Vol. 18, No. 10, PP. 545-546 (58) Fields investigated (Int. Cl. 6 , DB name) A61B 3/103

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被検眼眼底に光源像を投影する為の投影系
と、被検眼瞳孔と略共役位置に配置した受光素子上に前
記眼底からの光束を受光する受光系と、該受光系の光路
内に配置された受光光束の一部を遮光する為のエッヂ状
の遮光部材とを有し、前記受光系を構成する対物レンズ
の移動により瞳孔像を受光素子上に結像させる様にする
と共に前記対物レンズの移動量と前記受光素子上に投影
された光束の光量分布状態を基に被検眼の眼屈折力を測
定し得る様に構成したことを特徴とする眼屈折力測定装
置。
A light source system for projecting a light source image on a fundus of a subject's eye; a light receiving system for receiving a light beam from the fundus on a light receiving element disposed at a position substantially conjugate with a pupil of the subject's eye; An edge-shaped light-blocking member for blocking part of the received light beam disposed in the optical path, such that a pupil image is formed on the light-receiving element by moving an objective lens constituting the light-receiving system. An eye-refractive-power measuring apparatus, characterized in that the eye-refractive-power measuring device is configured to be able to measure the eye-refractive power of the eye to be inspected based on the amount of movement of the objective lens and the light amount distribution of the light beam projected on the light receiving element.
JP1074189A 1988-12-06 1989-03-27 Eye refractive power measuring device Expired - Lifetime JP2817794B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1074189A JP2817794B2 (en) 1989-03-27 1989-03-27 Eye refractive power measuring device
EP89312398A EP0373788B1 (en) 1988-12-06 1989-11-29 Ocular refracting power measuring system
US07/443,111 US5071245A (en) 1988-12-06 1989-11-29 Ocular refracting power measuring system
DE68922973T DE68922973T2 (en) 1988-12-06 1989-11-29 Arrangement for determining the refractive power of the eye.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1074189A JP2817794B2 (en) 1989-03-27 1989-03-27 Eye refractive power measuring device

Publications (2)

Publication Number Publication Date
JPH02252435A JPH02252435A (en) 1990-10-11
JP2817794B2 true JP2817794B2 (en) 1998-10-30

Family

ID=13539975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1074189A Expired - Lifetime JP2817794B2 (en) 1988-12-06 1989-03-27 Eye refractive power measuring device

Country Status (1)

Country Link
JP (1) JP2817794B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105011898B (en) * 2015-08-04 2017-06-27 深圳市斯尔顿科技有限公司 A kind of self-service infrared eccentric photorefractor and self-help refraction method
CN110974152B (en) * 2019-12-30 2021-08-17 深圳硅基智能科技有限公司 Automatic focusing fundus camera

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
光学 Vol.18,No.10,PP.545〜546

Also Published As

Publication number Publication date
JPH02252435A (en) 1990-10-11

Similar Documents

Publication Publication Date Title
US4021102A (en) Auto-refractometer
US5353073A (en) Three-dimensional shape measurement system
JP4492847B2 (en) Eye refractive power measuring device
EP0392742B1 (en) Ophthalmological measurement method and apparatus
US4453808A (en) Apparatus for detecting the position of a patient&#39;s eye in ophthalmologic instruments
JP2817794B2 (en) Eye refractive power measuring device
JP2775276B2 (en) Eye refractive power measuring device
JPH035810B2 (en)
JP2939984B2 (en) Eye refractive power measuring device
JP2759413B2 (en) Eye position detection device
JP2817790B2 (en) Eye refractive power measuring device
JP2817795B2 (en) Eye refractive power measuring device
JPH09108185A (en) Ophthalmological device
JPH11235316A (en) Optometrical device
JP2817792B2 (en) Eye refractive power measuring device
JP2817793B2 (en) Eye refractive power measuring device
JP2817798B2 (en) Eye refractive power measuring device
JP3279698B2 (en) Measuring device for living eye
JP2775269B2 (en) Eye refractive power measuring device
JP2935368B2 (en) Eye refractive power measuring device
JPS6260645B2 (en)
JP2775268B2 (en) Eye refractive power measuring device
JP2806435B2 (en) Eye refractive power measuring device
JP2917256B2 (en) Eye refractive power measuring device
JP2939987B2 (en) Eye refractive power measuring device

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 10

EXPY Cancellation because of completion of term