JPS6260645B2 - - Google Patents
Info
- Publication number
- JPS6260645B2 JPS6260645B2 JP54094579A JP9457979A JPS6260645B2 JP S6260645 B2 JPS6260645 B2 JP S6260645B2 JP 54094579 A JP54094579 A JP 54094579A JP 9457979 A JP9457979 A JP 9457979A JP S6260645 B2 JPS6260645 B2 JP S6260645B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- lens
- mirror
- reflected
- receiving element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001514 detection method Methods 0.000 claims description 27
- 230000003287 optical effect Effects 0.000 claims description 16
- 230000004907 flux Effects 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 description 8
- 210000001747 pupil Anatomy 0.000 description 8
- 238000005286 illumination Methods 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000004397 blinking Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 210000004087 cornea Anatomy 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Landscapes
- Viewfinders (AREA)
- Automatic Focus Adjustment (AREA)
- Measurement Of Optical Distance (AREA)
- Focusing (AREA)
Description
【発明の詳細な説明】
本発明は能動型の測距装置に関し、殊に自動焦
点調節のための測距装置に適したものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an active distance measuring device, and is particularly suitable for a distance measuring device for automatic focus adjustment.
測距装置、そして特に自動あるいは半自動の焦
点調節を実現するための測距装置は大別して受動
型と能動型に分けられ、これまで多くの提案がな
される一方、既に自動焦点調節の行われる中級ス
テイルカメラあるいは小型シネカメラはアマチユ
アのカメラ愛好者に使用されている。処で現在実
用されている自動焦点調節カメラはほとんど受光
型の測距装置を利用しており、その理由として
は、投影系と受光系を精密に連動させる能動型は
機構が複雑になり易いためと考えられるが、能動
型は測距精度を向上させ得る能力を内在する点で
魅力がある。 Rangefinders, and especially rangefinders for achieving automatic or semi-automatic focus adjustment, can be broadly divided into passive and active types, and while many proposals have been made to date, there are already intermediate-level rangefinders that perform automatic focus adjustment. Still cameras or small cine cameras are used by amateur camera enthusiasts. Most of the automatic focusing cameras currently in use today use light-receiving type distance measuring devices. However, the active type is attractive because it has the inherent ability to improve ranging accuracy.
被測定対象物へ光束を投影し、反射光を捉えて
測距を行う能動型の装置は基本的には三角測量の
原理に基き、基線長を張る角度を測ることに相当
する手続によつて行われる。従来、知られた方法
に於いては被測定対象物で散乱反射された光束を
検出するために、2個の受光素子を設け、これら
素子で光束を受光し、その出力信号の差を利用し
て、焦点が対象物より前にあるか後にあるかを判
別するのが一般的である。しかしながら、この方
法では受光素子及びその増幅系で発生する信号の
ドリフト・ノイズなどにより差分出力は安定せ
ず、精度の低下を招いていた。 Active devices that project a beam of light onto an object to be measured and capture the reflected light to measure distance are basically based on the principle of triangulation, using a procedure equivalent to measuring the angle that extends the baseline length. It will be done. In conventional methods, two light receiving elements are provided to detect the light beam scattered and reflected by the object to be measured, these elements receive the light beam, and the difference between the output signals is used. It is common to determine whether the focal point is in front or behind the object. However, with this method, the differential output is not stable due to signal drift and noise generated in the light receiving element and its amplification system, resulting in a decrease in accuracy.
本発明はこの種の欠点を除去し、同一の受光素
子で検出可能な構成を提供して測距精度を向上さ
せる目的を有する。 The present invention aims to eliminate this type of drawback, provide a configuration that allows detection with the same light receiving element, and improve distance measurement accuracy.
以下、第1図乃至第6図に従つて基本的実施例
を説明する。 A basic embodiment will be described below with reference to FIGS. 1 to 6.
第1図中、符号Lは基線長である。またA1と
A2は例えば発光ダイオードの様な振幅変調可能
な光源で、急速な点滅がなされるが、タングステ
ンランプの様に応答性の悪い光源の場合はシヤツ
ターで点滅させても良い。Bは投影マスクで、第
2図に平面形態を描く様に間隔Sで隔たつた2つ
のスリツトB1とB2を備えており、これらスリツ
トが測距用マークとして機能する。また投影マス
クBはスリツトB1とB2の中間点を投影用レンズ
Cの光軸が貫く様に、そしてスリツトB1とB2が
基線長方向に並ぶ様に配置する。また各スリツト
B1とB2に対応させて光源A1とA2を配置する。 In FIG. 1, the symbol L is the base line length. Also with A 1
A 2 is a light source that can be amplitude modulated, such as a light emitting diode, and blinks rapidly, but if it is a light source with poor response, such as a tungsten lamp, it may be blinked by a shutter. Reference numeral B designates a projection mask, which is provided with two slits B1 and B2 separated by an interval S as shown in the plan view in FIG. 2, and these slits function as distance measurement marks. Further, the projection mask B is arranged so that the optical axis of the projection lens C passes through the midpoint between the slits B1 and B2 , and the slits B1 and B2 are aligned in the base line length direction. Also each slit
Light sources A 1 and A 2 are arranged to correspond to B 1 and B 2 .
Dは測距対象物である、Fは走査ミラーで、受
光用結像レンズGの光軸に垂直な軸を中心に回転
可能に、受光用レンズGの前方に配置する。Hは
検出マスクで、第3図に平面形態を描く様に間隔
tで隔たつた2つのスリツトH1とH2を備える。
間隔tは第2図の間隔Sより若干大きくしている
が、逆に若干小さくしても良く、その偏差量は2
つの検出スリツトの間に2つのマスク像が入るほ
ど大きくてはいけないし、また逆に2つのマスク
像の間に2つの検出スリツトが入るほど小さくて
もいけない。そしてスリツトH1とH2が検出区域
として機能し、スリツト間隔が受光用レンズGの
光軸で等分に振り分けられる様に基線長方向に並
ぶ。 D is an object to be measured, and F is a scanning mirror, which is arranged in front of the light-receiving lens G so as to be rotatable about an axis perpendicular to the optical axis of the light-receiving imaging lens G. H is a detection mask which includes two slits H 1 and H 2 separated by a distance t as shown in a plan view in FIG.
Although the interval t is slightly larger than the interval S in Fig. 2, it may be slightly smaller, and the deviation amount is 2.
It should not be so large that two mask images fit between two detection slits, nor should it be so small that two detection slits fit between two mask images. The slits H 1 and H 2 function as detection areas, and are arranged in the base line length direction so that the slit intervals are equally distributed along the optical axis of the light receiving lens G.
は光電変換素子で、検出マスクに近接配置す
る。 is a photoelectric conversion element, which is placed close to the detection mask.
以上の構成に於いて、光源A1を第6図1のチ
ヤートに従つて点滅し、また光源A2を第6図2
のチヤートに従つて点滅すると、すなわち光源
A1,A2を交互に点灯すると投影マスクBのスリ
ツトB1とB2はそれぞれ対応した光源A1とA2で順
次照明されるので、スリツトB1またはB2を発し
た光束は投影レンズGで収斂されて対象物D上に
スリツトの像すなわちマーク像を形成する。対象
物Dで反射された光束は走査ミラーFで走査さ
れ、受光用レンズGで検出マスクH上に結像され
る。第4,第5図はスリツトB1とB2の像B1′と
B2′の形成された検出マスクHを描いているが、
第4図の場合は走査ミラーの設定角度が最適な状
態を示しており、検出スリツトH1とH2へ等分に
投影スリツトの像B1′とB2′が掛つているため、光
源A1とA2が点滅した時でも光電変換素子への
入射光量が変化することはない。第7図1はその
時の素子からの出力信号を描いており、信号レ
ベルは後述の場合より低いが直流として現われ
る。 In the above configuration, the light source A 1 is blinked according to the chart in FIG. 6 1, and the light source A 2 is blinked according to the chart in FIG.
If it flashes according to the chart, i.e. the light source
When A 1 and A 2 are turned on alternately, the slits B 1 and B 2 of the projection mask B are sequentially illuminated by the corresponding light sources A 1 and A 2 , respectively, so that the light beam emitted from the slit B 1 or B 2 is transmitted to the projection lens. G and forms a slit image, that is, a mark image, on the object D. The light beam reflected by the object D is scanned by a scanning mirror F, and an image is formed on a detection mask H by a light receiving lens G. Figures 4 and 5 show images B 1 ' and slits B 1 and B 2 .
Although the detection mask H formed with B 2 ′ is depicted,
In the case of Fig. 4, the setting angle of the scanning mirror is optimal, and the projection slit images B 1 ' and B 2 ' are equally distributed over the detection slits H 1 and H 2 , so that the light source A Even when 1 and A2 blink, the amount of light incident on the photoelectric conversion element does not change. FIG. 71 depicts the output signal from the element at that time, and although the signal level is lower than in the case described later, it appears as a direct current.
他方、走査ミラーの角度が不適切な状態、例え
ば第5図の様に投影方向スリツトの像の内B1′は
検出スリツトH1にほとんど一致しているが、像
B2の方は検出スリツトH2にわずかに掛つている
程度である場合には第7図の2に示す交流を出力
する。またもし、走査ミラーFが最適位置から逆
方向に振れているならば、第7図の3に示す通り
逆位相の交流を出力する。従つて光源の点滅と出
力交流信号の位相関係を対比させれば、走査ミラ
ーを回転させるべき方向は決定される。そこで、
素子からの信号が直流になるまですなわち出力
が一定化するまで決定された方向へ走査ミラーを
回転させることで測距は達成されるわけで、距離
はミラーの回転量に相当する。 On the other hand, when the angle of the scanning mirror is inappropriate, for example, as shown in Fig. 5, the image B 1 ' of the slit in the projection direction almost matches the detection slit H 1 ,
B2 outputs an alternating current as shown in 2 in FIG. 7 when the detection slit H2 is only slightly crossed. If the scanning mirror F is oscillated in the opposite direction from the optimum position, it outputs an alternating current with an opposite phase as shown in 3 in FIG. Therefore, by comparing the phase relationship between the blinking of the light source and the output AC signal, the direction in which the scanning mirror should be rotated can be determined. Therefore,
Distance measurement is achieved by rotating the scanning mirror in a determined direction until the signal from the element becomes a direct current, that is, until the output becomes constant, and the distance corresponds to the amount of rotation of the mirror.
次に以上の測距装置を眼底カメラに適用した実
施例を説明するが、この装置は一眼レフレツスカ
メラあるいはフオーカシングレンズを通して測距
を行うシネカメラにも好適である。また第1図の
構成で2つのレンズCとGは固定であつて、検出
マスク上にできる2つのスリツト像は対象物が所
定位置からずれると共に等量ボケるが位相検出に
困難を来たすことはない。 Next, an embodiment will be described in which the distance measuring device described above is applied to a fundus camera, but this device is also suitable for a single-lens reflex camera or a cine camera that measures distance through a focusing lens. In addition, in the configuration shown in Figure 1, the two lenses C and G are fixed, and the two slit images formed on the detection mask will blur by the same amount as the object shifts from the predetermined position, but this will not cause difficulty in phase detection. do not have.
第8図の構成ではフオーカシングレンズを通し
て投光・受光を行うことで、ミラーを回転させる
機能を代用する。 In the configuration shown in FIG. 8, the function of rotating the mirror is substituted by projecting and receiving light through a focusing lens.
第8図で、Eは人眼、Efは眼底、Ecは角膜、
Epは瞳孔を示す。また1は対物レンズ、2は撮
影絞り、3は負のフオーカシングレンズ、4は撮
影レンズ、5はシヤツター、6は撮影フイルム
で、これらの部材は撮影系を構成する。但し、対
物レンズ1は眼底像を一且結像し、フオーカシン
グレンズ3と撮像レンズ4が共同してこの中間像
をフイルム6上に再結像する。 In Figure 8, E is the human eye, Ef is the fundus, Ec is the cornea,
Ep indicates the pupil. Further, 1 is an objective lens, 2 is a photographic diaphragm, 3 is a negative focusing lens, 4 is a photographic lens, 5 is a shutter, and 6 is a photographic film, and these members constitute a photographing system. However, the objective lens 1 forms a single fundus image, and the focusing lens 3 and the imaging lens 4 jointly form this intermediate image on the film 6 again.
次に10はタングステンランプのような観察光
源、11は集光ミラー、12はコンデンサーレン
ズ、13はストロボ管のような撮影用光源、14
は第2のコンデンサーレンズ、15はリングスリ
ツト板である。このリングスリツト板15は中央
の遮光円15aを囲む環状開口を有する。また光
源10と光源13は第1のコンデンサーレンズ1
2に関して共役で、光源13とリングスリツト板
15は第2のコンデンサーレンズ14に関して共
役である。16はリレーレンズ、17は有孔鏡
で、有孔鏡の開口は絞り2に入射する光束を遮ら
ない程度の寸法とする。また有孔鏡17とリング
スリツト板15をリレーレンズ16に関して共役
とし、有孔鏡17で反射した光束が対物レンズ1
によつてリングスリツト板の像を形成する位置
と、絞り2が対物レンズ1に関して共役になるよ
うに配置する。なお、作動距離が適切な時、リン
グスリツトの像が前眼部、例えば瞳孔Epの位置
に一致するように設定しておく。以上の10から
17および対物レンズ1が照明系を構成する。 Next, 10 is an observation light source such as a tungsten lamp, 11 is a condenser mirror, 12 is a condenser lens, 13 is a photography light source such as a strobe tube, and 14
1 is a second condenser lens, and 15 is a ring slit plate. This ring slit plate 15 has an annular opening surrounding a central light shielding circle 15a. Further, the light source 10 and the light source 13 are connected to the first condenser lens 1.
2, the light source 13 and the ring slit plate 15 are conjugate with respect to the second condenser lens 14. 16 is a relay lens; 17 is a perforated mirror; the aperture of the perforated mirror has a size that does not block the light flux entering the aperture 2; In addition, the perforated mirror 17 and the ring slit plate 15 are made conjugate with respect to the relay lens 16, so that the light beam reflected by the perforated mirror 17 is transmitted to the objective lens 1.
The image forming position of the ring slit plate is arranged so that the aperture 2 is conjugate with respect to the objective lens 1. Note that when the working distance is appropriate, the image of the ring slit is set to match the position of the anterior segment of the eye, for example, the pupil Ep. The above 10 to 17 and the objective lens 1 constitute an illumination system.
また20はクイツクリターンミラー、21はフ
イールドレンズで、フイールドレンズはミラー2
0に関してフイルム面6と共役な位置に設ける。
22は光路曲折鏡、23は接眼レンズで、接眼レ
ンズ23はフイールドレンズ21上の眼底像を観
察するためのものである。なお、接眼レンズの代
りに、フイールドレンズ上の像面にフオーカスし
たテレビカメラを設けても良い。 Also, 20 is a quick return mirror, 21 is a field lens, and the field lens is mirror 2.
It is provided at a position conjugate with the film surface 6 with respect to 0.
22 is an optical path bending mirror; 23 is an eyepiece; the eyepiece 23 is for observing the fundus image on the field lens 21; Note that a television camera focusing on the image plane on the field lens may be provided instead of the eyepiece.
次に本実施例の特徴的構成を説明する。まず絞
り2は第9図に描く様に、フイルム6に達す光束
を制限する開口2aと、例えば赤外線の様な測距
光束は通過させるが、撮影光束は完全に遮断する
フイルターを備えた窓2bと2cを有する。眼底
カメラの絞りは普通、対物レンズ1に関して角膜
Ecもしくは瞳孔Epと共役になるが、窓2bと2
cの外縁は、この絞りの像が瞳孔上に投影された
時に窓の像の外縁が瞳孔中に含まれる様に決定さ
れている。 Next, the characteristic configuration of this embodiment will be explained. First, as shown in FIG. 9, the diaphragm 2 has an aperture 2a that restricts the light beam reaching the film 6, and a window 2b that has a filter that allows distance measurement light beams such as infrared rays to pass through, but completely blocks photographic light beams. and 2c. The aperture of the fundus camera is normally set to the cornea with respect to objective lens 1.
It becomes conjugate with Ec or pupil Ep, but windows 2b and 2
The outer edge of c is determined so that when the image of this aperture is projected onto the pupil, the outer edge of the window image is included in the pupil.
次に30aと30bはマスク照明光源で、それ
ぞれ赤外線の発光ダイオードである。31は第1
0図に示す投影マスクで、線状スリツト31aと
31bを備える。32は投影レンズ、33は受光
レンズ、34は半鏡である。半鏡34は投影レン
ズ32と受光レンズ33を共軸関係にするため光
軸に対して45゜で配置されると共に、光路の半分
を覆つている。また半鏡34は仲介する光学系に
関して瞳孔Epあるいはその近傍と共役である。
35は赤外光を反射し、可視光を通過させる小型
鏡で、投影・検出部と眼底カメラの光学系を光学
的に結合する機能を持つ。36は第11図に示す
検出マスクで、第10図の場合よりも若干広い間
隔で線状スリツト36aと36bを備え、このマ
スクと投影マスク36は半鏡34に関して共役で
ある。37は光電変換素子、38は光源点滅の制
御回路、39は交流振幅位相検出回路、40はフ
オーカシングレンズ3を駆動するサーボ回路で、
位相検出回路39は、光源制御回路38による、
各時点ごとの点燈している方の光源を示す出力と
入射光量に対応する光電変換素子37の出力から
決定された、ピントを移動すべき方向を設定する
信号を発し、サーボ回路40はその信号に基づい
て信号が持続する限りフオーカシングレンズ3を
決定された方向へ移動させる。なお、サーボ回路
40はレリーズ信号によつて、フオーカシングレ
ンズ3をその時の位置に係止するものとする。 Next, 30a and 30b are mask illumination light sources, each of which is an infrared light emitting diode. 31 is the first
The projection mask shown in FIG. 0 includes linear slits 31a and 31b. 32 is a projection lens, 33 is a light receiving lens, and 34 is a half mirror. The half-mirror 34 is disposed at 45 degrees to the optical axis to bring the projection lens 32 and the light-receiving lens 33 into a coaxial relationship, and covers half of the optical path. Further, the half-mirror 34 is conjugate with the pupil Ep or its vicinity with respect to the intervening optical system.
35 is a small mirror that reflects infrared light and passes visible light, and has the function of optically coupling the projection/detection section and the optical system of the fundus camera. Reference numeral 36 denotes a detection mask shown in FIG. 11, which is provided with linear slits 36a and 36b at a slightly wider interval than in the case of FIG. 10, and this mask and the projection mask 36 are conjugate with respect to the half mirror 34. 37 is a photoelectric conversion element, 38 is a light source blinking control circuit, 39 is an AC amplitude phase detection circuit, 40 is a servo circuit that drives the focusing lens 3,
The phase detection circuit 39 is based on the light source control circuit 38.
The servo circuit 40 emits a signal to set the direction in which the focus should be moved, which is determined from the output indicating which light source is lit at each time and the output of the photoelectric conversion element 37 corresponding to the amount of incident light. Based on the signal, the focusing lens 3 is moved in the determined direction as long as the signal continues. It is assumed that the servo circuit 40 locks the focusing lens 3 at the current position based on the release signal.
以上の装置の作用を説明する。 The operation of the above device will be explained.
まず、観察用光源10及び回路38,39,4
0を駆動する。制御回路38によりマスク照明光
源30aと30bは交互に点燈し、投影マスクの
スリツト31aと31bは交互に照明される。ス
リツト31aもしくは31bを発したマーク光束
は投影レンズ32で結像作用を受け、半鏡34で
反射し、更に小型鏡35で反射してフイールドレ
ンス21上にスリツト像を結んだ後、クイツクリ
ターンミラー20、撮影レンズ4、フオーカシン
グレンズ3、絞りの窓2bを通つて再度、スリツ
ト像を結び、対物レンズ1を経て、瞳孔Epの片
側を通つて眼底Efへ投影される。眼底Efで散乱
反射した光束は瞳孔Epの反対側を射出し、対物
レンズで一且、スリツトの反射像を形成した後、
絞りの窓2bを通り、フオーカシングレンズ3、
撮影レンズ4を経てクイツクリターンミラー20
で反射し、フイールドレンズ21上にまたはその
附近にスリツト像を結び、小型鏡35で反射した
後、半鏡34に覆われていない光路を通つて受光
レンズ33に入射し、そこで結像作用を受けて検
出マスク36へ入射する。 First, the observation light source 10 and the circuits 38, 39, 4
Drive 0. The control circuit 38 turns on the mask illumination light sources 30a and 30b alternately, and the slits 31a and 31b of the projection mask are alternately illuminated. The mark light beam emitted from the slit 31a or 31b is subjected to an imaging action by the projection lens 32, reflected by the half mirror 34, and further reflected by the small mirror 35 to form a slit image on the field lens 21, and then returned to the quick return. The slit image is formed again through the mirror 20, photographic lens 4, focusing lens 3, and aperture window 2b, passes through the objective lens 1, passes through one side of the pupil Ep, and is projected onto the fundus Ef. The light beam scattered and reflected by the fundus Ef exits the opposite side of the pupil Ep, and after forming a reflected image of the slit in the objective lens,
Passing through the aperture window 2b, the focusing lens 3,
Quick return mirror 20 via photographic lens 4
The light is reflected by the light beam, forms a slit image on or near the field lens 21, is reflected by the small mirror 35, enters the light receiving lens 33 through an optical path not covered by the half mirror 34, and has an imaging effect there. The received light is incident on the detection mask 36.
検出マスク36上に交互に形成される投影スリ
ツト31aと31bの像は、投影マスク31と眼
底Efとの共役からの偏差方向に応じて、即ち投
影マスク31の像が眼底Efより前で結像するか
あるいは眼底Efより後で結像する状態となるか
に依つて、検出スリツト36aと36bの並んだ
方向へ位置ずれし、従つて、スリツト36aまた
は36bを通過する光量は光源31a,31bの
点燈に関連して増減あるいは等量となる。 The images of the projection slits 31a and 31b alternately formed on the detection mask 36 are determined depending on the direction of deviation from the conjugate of the projection mask 31 and the fundus Ef, that is, the image of the projection mask 31 is formed in front of the fundus Ef. Depending on whether the image is formed later than the fundus Ef, the position of the detection slits 36a and 36b is shifted in the direction in which they are lined up. Increase, decrease, or equal amount in relation to lighting.
光電変換素子37は入射光量に応じた電気信号
を出力するから、位相検出回路39はその出力と
マスク照明光源の点燈周期から、フオーカシング
レンズ3を移動すべき方向を決定し、サーボ回路
40を駆動してフオーカシングレンズ3を移動す
る。フオーカシングレンズ3がある位置に至る
と、光電変換素子37の出力信号はマスク照明光
源の点滅に係わらず一定となり、フオーカシング
レンズ3はその位置に静止する。カメラの操作者
は接眼レンズ23を覗きながら、眼底の所望の部
位がフアインダー視野に入る様にカメラ方向を微
調整してピントが変わつたとしても、サーボ回路
40が働いてピントを迅速に取直すものである。
従つて操作者は視野を確認し、レリーズを行う
と、撮影光源13の点燈、クイツクリターンミラ
ー20の跳上げ、シヤツター5の開放がなされ、
フイルム6は露光される。 Since the photoelectric conversion element 37 outputs an electric signal according to the amount of incident light, the phase detection circuit 39 determines the direction in which the focusing lens 3 should be moved based on the output and the lighting period of the mask illumination light source, and the servo circuit determines the direction in which the focusing lens 3 should be moved. 40 to move the focusing lens 3. When the focusing lens 3 reaches a certain position, the output signal of the photoelectric conversion element 37 becomes constant regardless of whether the mask illumination light source blinks, and the focusing lens 3 remains at that position. The camera operator finely adjusts the direction of the camera while looking through the eyepiece 23 so that the desired part of the fundus falls within the viewfinder's field of view. Even if the focus changes, the servo circuit 40 works to quickly refocus. It is something.
Therefore, when the operator confirms the field of view and releases the camera, the photographing light source 13 is turned on, the quick return mirror 20 is raised, and the shutter 5 is opened.
Film 6 is exposed.
以上説明した本発明に依れば、任意の位置にあ
る対象物の測距が可能であり、しかも同一の受光
素子で検出が行われるため、素子の性能に基因す
る難点を除去できるから、精密な焦点調節が可能
となる効果がある。 According to the present invention described above, it is possible to measure the distance to an object located at any position, and since the detection is performed using the same light receiving element, it is possible to eliminate the drawbacks caused by the performance of the element. This has the effect of enabling precise focus adjustment.
第1図は本発明の基本的実施例の断面図、第2
図と第3図は各々構成要素の平面図、第4図と第
5図は各々投影スリツト反射像と検出スリツトと
の関係を示す図。第6図1と2はマスク照明光源
の点燈波形図。第7図1,2,3は光電変換素子
の出力波形図。第8図は他の実施例の断面図。第
9図、第10図、第11図は各々、構成要素の平
面図。
図中、Lは基線長、Bは投影マスク、B1とB2
はスリツトあるいはマーク、Dは測距対象物、F
は走査ミラー、Hは検出マスク、H1とH2はスリ
ツトあるいは検出区域、1は対物レンズ、2は絞
り、3はフオーカシングレンズ、31は投影マス
ク、34は半鏡、36は検出マスク、は37は
光電変換素子あるいは受光素子である。
Fig. 1 is a sectional view of a basic embodiment of the present invention;
3 and 3 are respectively plan views of the constituent elements, and FIGS. 4 and 5 are diagrams showing the relationship between the projection slit reflected image and the detection slit, respectively. 6. FIGS. 1 and 2 are lighting waveform diagrams of the mask illumination light source. 7. FIGS. 1, 2, and 3 are output waveform diagrams of the photoelectric conversion element. FIG. 8 is a sectional view of another embodiment. FIG. 9, FIG. 10, and FIG. 11 are plan views of the constituent elements. In the figure, L is the baseline length, B is the projection mask, B 1 and B 2
is the slit or mark, D is the object to be measured, F
is a scanning mirror, H is a detection mask, H 1 and H 2 are slits or detection areas, 1 is an objective lens, 2 is an aperture, 3 is a focusing lens, 31 is a projection mask, 34 is a half-mirror, and 36 is a detection mask , 37 is a photoelectric conversion element or a light receiving element.
Claims (1)
た複数のマークを交互に投影する手段と、前記マ
ークの投影方向とは異なる方向に向かう前記対象
物からの反射光を受光する手段であつて前記対象
物で反射された前記マークの像の間隔とは異なつ
た間隔で基線長方向へ並んだ複数の検出区域を通
して単一の受光素子で受光する受光手段と、前記
マークの像が基線長方向に変位するように光路内
の所定光学部材を移動させる走査手段と、前記受
光素子の出力が前記マークの交互投影に拘らず一
定化するときの位相より前記対象物の位置を算出
する手段を有することを特徴とする測距装置。 2 前記対象物は被検眼眼底であり、被検眼前眼
部で前記マークからの光束と、被検眼眼底で反射
して前記受光素子へ向かう光束は分離される特許
請求の範囲第1項記載の測距装置。 3 前記走査手段は前記対象物から前記受光素子
に至る光路内のミラーを回転させて光軸を機械的
に変動させる特許請求の範囲第1項記載の測距装
置。 4 前記走査手段は前記マークを投影する光路及
び前記対象物から前記受光素子に至る光路に共用
されるフオーカシングレンズを光軸方向に移動さ
せる特許請求の範囲第1項記載の測距装置。[Scope of Claims] 1. Means for alternately projecting a plurality of marks substantially spaced at predetermined intervals in the baseline length direction onto an object, and reflected light from the object directed in a direction different from the projection direction of the marks. a light-receiving means for receiving light with a single light-receiving element through a plurality of detection areas arranged in the baseline length direction at intervals different from the intervals between images of the marks reflected by the object; scanning means for moving a predetermined optical member in the optical path so that the image of the mark is displaced in the base line length direction; A distance measuring device characterized by having means for calculating a position. 2. The object according to claim 1, wherein the object is the fundus of the eye to be examined, and the light flux from the mark at the anterior segment of the eye to be examined and the light flux reflected from the fundus of the eye to be examined and directed toward the light receiving element are separated. Ranging device. 3. The distance measuring device according to claim 1, wherein the scanning means mechanically changes the optical axis by rotating a mirror in the optical path from the object to the light receiving element. 4. The distance measuring device according to claim 1, wherein the scanning means moves a focusing lens, which is shared by an optical path for projecting the mark and an optical path from the object to the light receiving element, in the optical axis direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9457979A JPS5618711A (en) | 1979-07-23 | 1979-07-23 | Device for measuring distance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9457979A JPS5618711A (en) | 1979-07-23 | 1979-07-23 | Device for measuring distance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5618711A JPS5618711A (en) | 1981-02-21 |
JPS6260645B2 true JPS6260645B2 (en) | 1987-12-17 |
Family
ID=14114185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9457979A Granted JPS5618711A (en) | 1979-07-23 | 1979-07-23 | Device for measuring distance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5618711A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0190856U (en) * | 1987-11-30 | 1989-06-14 | ||
JPH064157U (en) * | 1992-06-25 | 1994-01-18 | 株式会社オノデラ | Bucket for power shovel |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07104477B2 (en) * | 1988-05-25 | 1995-11-13 | 株式会社精工舎 | Multi-ranger for autofocus camera |
JP2576716Y2 (en) * | 1991-11-12 | 1998-07-16 | 富士写真光機株式会社 | Emitter for auto focus |
US8165351B2 (en) * | 2010-07-19 | 2012-04-24 | General Electric Company | Method of structured light-based measurement |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5365753A (en) * | 1976-11-22 | 1978-06-12 | Toshiba Corp | Proximity distance detector |
-
1979
- 1979-07-23 JP JP9457979A patent/JPS5618711A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5365753A (en) * | 1976-11-22 | 1978-06-12 | Toshiba Corp | Proximity distance detector |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0190856U (en) * | 1987-11-30 | 1989-06-14 | ||
JPH064157U (en) * | 1992-06-25 | 1994-01-18 | 株式会社オノデラ | Bucket for power shovel |
Also Published As
Publication number | Publication date |
---|---|
JPS5618711A (en) | 1981-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5036347A (en) | Visual line detecting device and camera having the same | |
US4436388A (en) | Eye-fundus camera provided with automatic focusing function | |
US4251139A (en) | Eye examining instrument | |
US4257687A (en) | Eye examining instrument with photo-detecting system | |
JPS6454B2 (en) | ||
US4187014A (en) | Eye fundus camera | |
JPH0315452B2 (en) | ||
US4712894A (en) | Ophthalmoscopic instrument having working position detecting means | |
US3543666A (en) | Automatic ranging and focusing system | |
US4405215A (en) | Working position locating means for ophthalmologic apparatus | |
JPS6260645B2 (en) | ||
JP2749818B2 (en) | Eye gaze detection device | |
JPS6340112A (en) | Automatic focusing device | |
JPH0225487B2 (en) | ||
JPH04117777A (en) | Electronic still camera | |
JP2817798B2 (en) | Eye refractive power measuring device | |
JP3194790B2 (en) | Gaze direction detection device | |
JPH0759231B2 (en) | Anterior segment cross-section imaging device | |
JPH0226205B2 (en) | ||
JPS6215210B2 (en) | ||
JPS6241017B2 (en) | ||
JPS58160908A (en) | Optical device for focus detection | |
JPS6223454Y2 (en) | ||
JP3108135B2 (en) | Ophthalmic imaging equipment | |
JPS6255417B2 (en) |