JPH0575325B2 - - Google Patents

Info

Publication number
JPH0575325B2
JPH0575325B2 JP62097489A JP9748987A JPH0575325B2 JP H0575325 B2 JPH0575325 B2 JP H0575325B2 JP 62097489 A JP62097489 A JP 62097489A JP 9748987 A JP9748987 A JP 9748987A JP H0575325 B2 JPH0575325 B2 JP H0575325B2
Authority
JP
Japan
Prior art keywords
total reflection
reflection surface
light
displacement
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62097489A
Other languages
Japanese (ja)
Other versions
JPS63263401A (en
Inventor
Masakazu Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP9748987A priority Critical patent/JPS63263401A/en
Publication of JPS63263401A publication Critical patent/JPS63263401A/en
Publication of JPH0575325B2 publication Critical patent/JPH0575325B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)
  • Measurement Of Optical Distance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の目的〕 (産業上の利用分野) 本発明は、非接触変位測定装置に係り、特に光
の反射面からのにじみ出しを利用して、対象物体
との変位を高精度に測定する変位測定方法に関す
る。 (従来の技術) 従来、光を用いた非接触測定方式としては、第
5図のように、対象物体AにHe−Neレーザー光
Bを照射し、対象物体Aに当つた光のスポツトを
レンズ系Cなどで例えばPSD(osition
ensing iode)などのような、光電素子D(こ
の素子では、例えば10mm×10mmの光電素子面に当
つた光の位置(x,y)に比例した電圧が出力で
きる。)面に結像させ、この出力電圧からセンサ
Eと物体Aとの距離aiの変動を算出する方式があ
る。このような変位計は装置化され、市販されて
いる。 一方、別の方式としては、第6図のように、対
象物体FとセンサG面を図のような配置とし、セ
ンサG面からの反射光R1と対象物体からの反射
光R2の干渉を利用して、距離dの変動(変位)
を算出する方式などがある。この方式を装置化し
たものはあまり市販されている例がないが、測定
方式としては、きわめて一般的である。 しかるに、前者のPSDによる方式では、変位
aの分解能は一般的には数μm〜数10μm程度であ
り、光の波長の数100倍のオーダーである。また、
作動距離(work distance)は数mm〜数10mmが必
要である。また後者の干渉による方式では、変位
dの分解能は、光の数分の1波長オーダーであ
る。たとえば、図中の光路をlと置くと、良く知
られている干渉の条件から 2l=nλ、n=1,2,3、 λ:光の波長 を満すlについては、明るい縞が検出できる。ま
た、 2l=(m+1/2)λ、 m=1,2,3 を満すlについては、暗い縞が検出できる。した
がつて、これを利用した干渉による変位検出方式
では、最初に検出できるのは暗い縞でl=λ/4
(m=1のとき)であり、作動距離(work
distance)は、λ/4以上、分解能λ/(1〜
32)(ただし、内挿法を用いた場合)程度が一般
的である。 (発明が解決しようとする問題点) 本発明は、上述した従来の変位測定方式が、作
動距離が長く且つ測定精度にも限界があることを
顧慮してなされたもので、センサー面に非常に近
接した作動距離(具体的には波長λ以内)で、き
わめて高分解能(波長λの数十分の1〜数百分の
1)で対象物体との距離、もしくは物体の変位を
測定する変位測定方法を提供することを目的とす
る。 〔発明の構成〕 (問題点を解決するための手段と作用) 光を出射する光源と、上記光を入射する入射面
並びに入射面を介して内部に入射してきた光を全
反射し且つ非透過性の被測定物に対向して設けら
れる全反射面を有する光学的手段と、上記全反射
面からの光を受光して光電変換する光電変換手段
とを有し、全反射面近傍位置にて極小値を有する
反射光量と被測定物の変位量との関係を求す特性
曲線をあらかじめ記憶し、この特性曲線に基づい
て、変位測定するようにしたものである。 (実施例) 以下、本発明の一実施例を図面を参照して詳述
する。 第1図にこの実施例の変位測定方法に用いられ
る装置の構成を示している。この装置は、He−
Neレーザ光を出射するレーザ光源1と、レーザ
光束を通過反射させる光学部品2と、レーザ光束
の光量を測定するフオトダイオード、フオトトラ
ンジスタなどの光電センサ3と、光電センサ3の
出力(電圧または電流)を入力し後述する処理を
行うマイクロコンピユータを主体とする処理装置
4と、この処理装置4における処理結果である光
学部品2と対象物体5の間隔xまたは対象物体5
の変位量dxを表示する表示装置6とから構成さ
れている。ここでは、対象物体5は、金属ミラー
のように光が反射する物体とする。 つぎに、上記構成の変位測定装置を用いた本実
施例の変位測定方法について述べる。 まず、レーザ光源1から出射した光束L1は、
例えば第1図のような光学部品2の左側面点Aへ
入射角θi1で入射する。そして、透過光は、屈折
角θt1で光学部品内に進入する。今、光学部品2
の屈折率をnop、光学部品2外の媒質の屈折率
noutとすると、良く知られている屈折の法則又
はSnellの法則から sinθi1/sinθt1=nop/nout=nop−out となる。一般的には外の媒質を空気とするとnop
−out>1である。そして、光学部品2内部を進
む光束L2は、光学部品2の底面Sの点Bへ入射
角θ2で入射する。この発明では、入射角θ2は、θ2
>θ2 *を満すように設定されている。ただだしθ2 *
は臨界角でsinθ2 *=nout−op=nout/nop=1を
満す角度とする。 これは、いわゆる全反射の状態で、光束L2
すべての光が角θ2で反射して光束L3となつて、光
学部品の右側面へ向うことを示している。光学部
品2の右側面上の点Cでは、左側面点Aで生じた
のと同様に、屈折の法則より、 sinθi2/sinθt2=nop−out の関係を有する角θi2で、光束L4は光学部品を出
射する。この光束L4は先に述べた光電センサ3
へ向い、光電変換される。センサ3から得られた
出力は、電圧又は電流の形で処理装置4へ入力さ
れる。従来のマクロ的な光学では、光学部品2の
底面Sで全反射した光は、光学部品外では、存在
していないと考えるのが一般的である。しかし、
微視的に見ると、光学部品2と外界の媒質の境界
では、わずかに外界に光がにじみ出していること
が認められる。そこで、光学部品2の底面Sを第
2図のように拡大して示した。この光学部品2の
外界の媒質に対する屈折率nop−out=nとする
と、仮想の透過光LB′と光束L2を考え、先の屈折
の法則より、一般性を失わずに、 sinθim/sinθ2=n となる。そこで、これから sinθ2=sinθim/n
[Objective of the Invention] (Industrial Application Field) The present invention relates to a non-contact displacement measuring device, and in particular to a displacement measuring device that measures displacement with a target object with high precision using light seeping from a reflective surface. Regarding measurement methods. (Prior art) Conventionally, as shown in Fig. 5, a non-contact measurement method using light is such that a target object A is irradiated with a He-Ne laser beam B, and the spot of the light hitting the target object A is focused on a lens. For example, in system C, PSD ( Position S
An image is formed on the surface of a photoelectric element D (this element can output a voltage proportional to the position (x, y) of the light hitting the photoelectric element surface of, for example, 10 mm x 10 mm) such as sensing D iode). There is a method of calculating the variation in the distance ai between the sensor E and the object A from this output voltage. Such a displacement meter is commercially available. On the other hand, as another method, as shown in Fig. 6, the target object F and the sensor G surface are arranged as shown in the figure, and the reflected light R 1 from the sensor G surface and the reflected light R 2 from the target object interfere. Using , change (displacement) of distance d
There are methods for calculating. Although there are not many commercially available devices using this method, it is an extremely common measurement method. However, in the former method using PSD, the resolution of the displacement a is generally on the order of several μm to several tens of μm, which is on the order of several hundred times the wavelength of light. Also,
A working distance of several mm to several tens of mm is required. In the latter interference method, the resolution of the displacement d is on the order of a fraction of the wavelength of light. For example, if the optical path in the figure is set as l, then from the well-known interference condition, 2 l = nλ, n = 1, 2, 3, λ: For l that satisfies the wavelength of light, bright fringes will be detected. can. Furthermore, dark stripes can be detected for l that satisfies 2l=(m+1/2)λ, m=1, 2, 3. Therefore, in a displacement detection method using interference using this, the first thing that can be detected is a dark stripe with l = λ/4.
(when m=1), and the working distance (work
distance) is λ/4 or more, resolution λ/(1 to
32) (however, when using the interpolation method), it is common that the (Problems to be Solved by the Invention) The present invention was developed in consideration of the fact that the above-mentioned conventional displacement measurement method has a long working distance and has a limited measurement accuracy. Displacement measurement that measures the distance to the target object or the displacement of the object at a close working distance (specifically, within wavelength λ) and with extremely high resolution (1/10th to 1/100th of wavelength λ) The purpose is to provide a method. [Structure of the invention] (Means and effects for solving the problem) A light source that emits light, an incident surface that enters the light, and a device that totally reflects and non-transmits the light that enters the interior through the incident surface. an optical means having a total reflection surface provided opposite to the object to be measured, and a photoelectric conversion means for receiving light from the total reflection surface and photoelectrically converting the light from the total reflection surface, and at a position near the total reflection surface. A characteristic curve that determines the relationship between the amount of reflected light having a minimum value and the amount of displacement of the object to be measured is stored in advance, and the displacement is measured based on this characteristic curve. (Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings. FIG. 1 shows the configuration of an apparatus used in the displacement measuring method of this embodiment. This device is He-
A laser light source 1 that emits Ne laser light, an optical component 2 that passes through and reflects the laser beam, a photoelectric sensor 3 such as a photodiode or phototransistor that measures the amount of laser beam, and an output (voltage or current) of the photoelectric sensor 3. ) and performs processing to be described later. A processing device 4 mainly composed of a microcomputer that inputs the following information and performs processing to be described later, and the distance x between the optical component 2 and the target object 5 or the distance x between the optical component 2 and the target object 5, which is the processing result in this processor 4.
and a display device 6 that displays the amount of displacement dx. Here, the target object 5 is assumed to be an object that reflects light, such as a metal mirror. Next, the displacement measuring method of this embodiment using the displacement measuring device having the above configuration will be described. First, the luminous flux L 1 emitted from the laser light source 1 is
For example, the light is incident on a point A on the left side of the optical component 2 as shown in FIG. 1 at an incident angle θi 1 . The transmitted light then enters the optical component at a refraction angle θt1 . Now optical parts 2
The refractive index of nop is the refractive index of the medium outside optical component 2.
If nout, then sinθi 1 /sinθt 1 =nop/nout=nop−out from the well-known law of refraction or Snell's law. Generally, if the outside medium is air, nop
−out>1. The light beam L 2 traveling inside the optical component 2 is incident on the point B on the bottom surface S of the optical component 2 at an incident angle θ 2 . In this invention, the angle of incidence θ 2 is θ 2
> θ 2 * . Free stock θ 2 *
is a critical angle that satisfies sin θ 2 * =nout−op=nout/nop=1. This is a state of so-called total reflection, where all of the light beam L 2 is reflected at an angle θ 2 to become a light beam L 3 and directed toward the right side of the optical component. At the point C on the right side of the optical component 2, the light flux L 4 at an angle θi 2 having the relationship sin θi 2 /sin θt 2 = nop−out according to the law of refraction, similar to what occurred at the left side point A. emits the optical component. This luminous flux L 4 is the photoelectric sensor 3 mentioned earlier.
and undergoes photoelectric conversion. The output obtained from the sensor 3 is input to the processing device 4 in the form of voltage or current. In conventional macroscopic optics, it is generally considered that the light totally reflected by the bottom surface S of the optical component 2 does not exist outside the optical component. but,
When viewed microscopically, it is recognized that light slightly leaks into the outside world at the boundary between the optical component 2 and the outside medium. Therefore, the bottom surface S of the optical component 2 is shown enlarged as shown in FIG. Assuming that the refractive index of this optical component 2 with respect to the external medium is nop-out=n, considering the virtual transmitted light LB' and the luminous flux L2 , and without loss of generality from the previous law of refraction, sinθim/ sinθ2 =n. Therefore, from now on, sinθ 2 = sinθim/n

【化】 とすれば、光束L2′の位相項は[ ] Then, the phase term of the luminous flux L 2 ′ is

【化】 となる。すなわち、振幅が境界からの距離Zの指
数関数
[C] becomes. That is, the amplitude is an exponential function of the distance Z from the boundary

〔発明の効果〕〔Effect of the invention〕

本発明は、以下のような格別の効果を奏する。 (イ) 従来微小な間隔の測定方式としては、前述し
たように、光の干渉による方式が一般的であ
る。この方式は、作動距離が数波長で、測定の
分解能もλ/100のオーダであつた。 それに比し、本発明は、対象物体との非常に
近接した間隔(波長距離以内)を非常の高精度
(λ/10〜λ/1000)で測定することができる。 (ロ) 従来の光の干渉による測定方式では、光学部
品と対象物体の相対する面が干渉を起こす必要
があり、したがつて一般的には、干渉縞を観察
できる程度の広い平面が必要である。 しかし、本発明によれば、光束L2として普
通のHe−Neレーザ光源(ビーム径φ1mm)を用
いることができ、点Bにおいて必要な平面は
φ1mm程度でよく、先端のきわめて小さい非接
触変位計を構成することができる。 (ハ) 従来の光の干渉による方式では、測定範囲は
数波長と広いものの、フリンジ(縞)の解析の
ために画像を発生させこれを解析したり、そこ
まで複雑な処理を行なわないまでも、縞の移動
した数をカウントするなど、縞解析のための複
雑な処理回路が必要であつた。しかし、本発明
によれば単純な光量検出だけで、きわめて簡単
に高い分解能と精度で間隔を測定することがで
きる。 (ニ) また、本発明に先だつ特願昭61−256817号明
細書では、全反射面と対象物体が接触した所で
出力が最小となる特性であつたため、実際適用
の場合には全反射面に傷などが発生しやすいな
どの問題があつたが、本特許では、金属物体と
全反射面は1μm以下ではあるが、わずかに離れ
た所で極小値を発生するため、変位計として実
用化がきわめて高い利点がある。
The present invention has the following special effects. (a) As mentioned above, as a conventional method for measuring minute intervals, a method using optical interference is generally used. In this method, the working distance was several wavelengths, and the measurement resolution was on the order of λ/100. In contrast, the present invention can measure very close distances (within the wavelength distance) to the target object with very high accuracy (λ/10 to λ/1000). (b) In the conventional measurement method using light interference, it is necessary for the opposing surfaces of the optical component and the target object to cause interference, and therefore, generally, a plane large enough to observe interference fringes is required. be. However, according to the present invention, an ordinary He-Ne laser light source (beam diameter φ1 mm) can be used as the luminous flux L2 , the required plane at point B is only about φ1 mm, and a non-contact displacement sensor with an extremely small tip can be used. can be configured. (c) Conventional optical interference methods have a wide measurement range of several wavelengths, but it is difficult to generate and analyze images to analyze fringes, and it is not necessary to perform such complicated processing. , complex processing circuits were required for fringe analysis, such as counting the number of fringe movements. However, according to the present invention, the distance can be measured very easily with high resolution and accuracy by simply detecting the amount of light. (d) Furthermore, in the specification of Japanese Patent Application No. 61-256817, which precedes the present invention, the output is minimized at the point where the total reflection surface and the target object come into contact. However, in this patent, the distance between the metal object and the total reflection surface is less than 1 μm, but the minimum value is generated at a slight distance, so it can be put into practical use as a displacement meter. has extremely high advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の変位測定方法に用
いられる装置の構成図、第2図及び第3図は第1
図の測定原理の説明図、第4図は本発明の他の実
施例の変位測定方法に用いられる装置を示す図、
第5図及び第6図は従来技術の説明図である。 1…光源、2…光学部品(光学的手段)、3…
光電センサ(光電変換手段)、4…処理装置(演
算手段)、5…対象物体(被測定物)。
FIG. 1 is a block diagram of a device used in a displacement measuring method according to an embodiment of the present invention, and FIGS.
FIG. 4 is an explanatory diagram of the measurement principle in FIG. 4, and FIG.
FIGS. 5 and 6 are explanatory diagrams of the prior art. 1... Light source, 2... Optical component (optical means), 3...
Photoelectric sensor (photoelectric conversion means), 4... Processing device (calculation means), 5... Target object (measured object).

Claims (1)

【特許請求の範囲】 1 入射面及び全反射面を有する光学的手段の上
記全反射面に不透光性の被測定物を対向させる工
程と、上記入射面に光を入射させ上記入射面を介
して内部に入射してきた光を上記全反射面にて反
射させる工程と、上記全反射面にて反射した反射
光を受光して光電変換する工程と、上記光電変換
により得られた上記反射光量を示す電気信号に基
づいて上記被測定物の上記全反射面に対する間隔
又は変位と上記反射光量との関係を示し且つ上記
全反射面近傍位置にて上記反射光量が極小値とな
る特性曲線を求めて記憶させる工程と、この記憶
されている特性曲線に基づいて上記被測定物の上
記全反射面に対する間隔又は変位を算出する工程
とを具備することを特徴とする変位測定方法。 2 被測定物は金属からなることを特徴とする特
許請求の範囲第1項記載の変位測定方法。
[Claims] 1. The steps of: 1. Opposing a non-transparent object to be measured against the total reflection surface of an optical means having an entrance surface and a total reflection surface; a step of reflecting the light that has entered the interior through the total reflection surface on the total reflection surface, a step of receiving the reflected light reflected on the total reflection surface and photoelectrically converting it, and the amount of the reflected light obtained by the photoelectric conversion. Find a characteristic curve that shows the relationship between the distance or displacement of the object to be measured with respect to the total reflection surface and the amount of reflected light, and where the amount of reflected light has a minimum value at a position near the total reflection surface. A displacement measuring method comprising the steps of: storing the characteristic curve; and calculating the distance or displacement of the object to be measured with respect to the total reflection surface based on the stored characteristic curve. 2. The displacement measuring method according to claim 1, wherein the object to be measured is made of metal.
JP9748987A 1987-04-22 1987-04-22 Displacement measuring method Granted JPS63263401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9748987A JPS63263401A (en) 1987-04-22 1987-04-22 Displacement measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9748987A JPS63263401A (en) 1987-04-22 1987-04-22 Displacement measuring method

Publications (2)

Publication Number Publication Date
JPS63263401A JPS63263401A (en) 1988-10-31
JPH0575325B2 true JPH0575325B2 (en) 1993-10-20

Family

ID=14193685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9748987A Granted JPS63263401A (en) 1987-04-22 1987-04-22 Displacement measuring method

Country Status (1)

Country Link
JP (1) JPS63263401A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2685591B2 (en) * 1989-07-24 1997-12-03 株式会社日立製作所 Flying height measuring device for magnetic head slider
US5239183A (en) * 1991-04-30 1993-08-24 Dainippon Screen Mfg. Co., Ltd. Optical gap measuring device using frustrated internal reflection
JP2802868B2 (en) * 1992-12-22 1998-09-24 大日本スクリーン製造株式会社 Sensor for non-contact electric measurement of semiconductor wafer, method of manufacturing the same, and measurement method using the sensor
JPH06349920A (en) * 1993-06-08 1994-12-22 Dainippon Screen Mfg Co Ltd Electric charge measuring method of semiconductor wafer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3873209A (en) * 1973-12-10 1975-03-25 Bell Telephone Labor Inc Measurement of thin films by optical waveguiding technique
JPS63111403A (en) * 1986-10-30 1988-05-16 Toshiba Corp Displacement measuring instrument

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3873209A (en) * 1973-12-10 1975-03-25 Bell Telephone Labor Inc Measurement of thin films by optical waveguiding technique
JPS63111403A (en) * 1986-10-30 1988-05-16 Toshiba Corp Displacement measuring instrument

Also Published As

Publication number Publication date
JPS63263401A (en) 1988-10-31

Similar Documents

Publication Publication Date Title
JP3645933B2 (en) Apparatus and method for measuring the refractive index of materials
US6288786B1 (en) Digital range sensor system
CN104568389A (en) Bilateral dislocation differential confocal element parameter measuring method
JPH0511883B2 (en)
JPS60127403A (en) Thickness measuring apparatus
RU2670809C2 (en) Surface roughness measurement device
JP3492012B2 (en) Displacement information detection device
EP0234562B1 (en) Displacement sensor
US6215556B1 (en) Process and device for measuring the thickness of a transparent material using a modulated frequency light source
JPH0575325B2 (en)
US4865443A (en) Optical inverse-square displacement sensor
JPS63111403A (en) Displacement measuring instrument
JPS6432105A (en) Angle deviation measuring instrument for flat plate member
JPS60200108A (en) Optical type thickness measuring method and apparatus thereof
Butler et al. A novel non-contact sensor for surface topography measurement using a fibre optic principle
JPH064611U (en) Optical distance measuring device
JPS6317166B2 (en)
JP2911283B2 (en) Non-contact step measurement method and device
JPH06194125A (en) Method and apparatus for detecting deviation of object from focal point of objective lens or change in position
JPS63255606A (en) Displacement measuring apparatus
JP2851053B2 (en) Light beam incident angle detection sensor
JPS6266111A (en) Optical distance detecting device
JPH0711413B2 (en) Non-contact type surface profile measuring device
JP2018093085A (en) Solid image pick-up device
JPH0219403B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees