JPS63111112A - Direct reduction apparatus for iron ore - Google Patents

Direct reduction apparatus for iron ore

Info

Publication number
JPS63111112A
JPS63111112A JP61256998A JP25699886A JPS63111112A JP S63111112 A JPS63111112 A JP S63111112A JP 61256998 A JP61256998 A JP 61256998A JP 25699886 A JP25699886 A JP 25699886A JP S63111112 A JPS63111112 A JP S63111112A
Authority
JP
Japan
Prior art keywords
soot
gas
iron
reduced iron
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61256998A
Other languages
Japanese (ja)
Inventor
Katsuaki Nishida
西田 勝亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61256998A priority Critical patent/JPS63111112A/en
Publication of JPS63111112A publication Critical patent/JPS63111112A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To improve the using efficiency of soot and to facilitate the production of sponge iron briquette by removing and recovering the soot sticking to the surface of sponge iron for preventing the development of cluster in a shaft furnace by inert gas recycling having a dust remover at the time of producing the sponge iron by reducing iron ore in the shaft furnace. CONSTITUTION:The granular iron ore 1 is charged in the shaft furnace 2 and by blowing the high temp. reducing gas generating from a reducing gas generator 7 from a tuyere 14 to produce the sponge iron 1a by solid reduction of the iron ore. In this case, the soot generated by incompletely burning the natural gas in a soot generator 20, is blown in the furnace from the tuyere 14, to prevent the development of cluster by sticking to the surface of iron ore. The sponge iron with soot stuck to the surface is flowed down from the upper inlet of lower discharging hopper 15b and then, by blowing N2 gas of N2 gas recycling piping 23 having the dust remover 25 from a nozzle 21a, the soot on the sponge iron surface is removed and recovered by the dust remover 25, to be reutilized in the shaft furnace. The sponge iron after removing the soot is easily made into briquette by a briquette machine.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鉄鉱石の直接還元装置のうち、主としてシャフ
ト炉式還元装置における還元鉄中の煤(Soot )除
去装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for removing soot from reduced iron in a shaft furnace type reduction device among direct reduction devices for iron ore.

〔従来の技術〕[Conventional technology]

本発明の対象とするシャフト炉式直接還元装置の概要を
第2図に示す略示的全体構成説明図によって説明する。
An overview of the shaft furnace type direct reduction apparatus to which the present invention is applied will be explained with reference to a schematic overall configuration explanatory diagram shown in FIG.

本装置は、粒状又ははレット状の鉄鉱石1をシャフト炉
(以下、炉と略称)2へ供給する原料コンベア3と原料
装入装置4と、還元鉄1aを炉2外へ排出する排出装置
5と、排出された還元鉄1aを、プリケラティングプラ
ントあるいは貯蔵ヤード(いずれも図示せず)へ搬送す
るコンテナ6と、例えば、水素(H2)等の還元ガス発
生炉7と、ガス圧縮機9、脱炭酸設備10、加熱炉8等
からなるリサイクル還元ガス系統11の主要部材で構成
されている。
This device includes a raw material conveyor 3 and a raw material charging device 4 that supply iron ore 1 in the form of granules or pellets to a shaft furnace (hereinafter referred to as the furnace) 2, and a discharge device that discharges reduced iron 1a to the outside of the furnace 2. 5, a container 6 for transporting the discharged reduced iron 1a to a pre-kerating plant or a storage yard (none of which are shown), a reducing gas generating furnace 7 such as hydrogen (H2), and a gas compressor. 9, a decarboxylation facility 10, a heating furnace 8, and other main components of a recycled reducing gas system 11.

原料装入装置4は炉2頂に取付けた上部ホッパ12aと
下部ホッパ12bと上、下2個のシール弁13a、13
1)からなシ、上、下ホラ/”12a。
The raw material charging device 4 includes an upper hopper 12a and a lower hopper 12b attached to the top of the furnace 2, and two upper and lower seal valves 13a, 13.
1) Karanashi, upper, lower hora/”12a.

121)間はシール弁13aによシ、下部ホツノ12b
と炉2間はシール弁131)によシ、それぞれ、ガス気
密に仕切られておシ、コンイア3から、所定のタイムス
ケシュニルに従って供給される原料1を大気に対し気密
を保持しながら炉2内へ供給可能である。炉2内には、
後述する切出装置15を介して、常に所定のレベルに鉄
鉱石1を滞留せしめると共に、炉体下部の外周に設けた
多数の羽口14から高温の還元ガス(H2等)を炉内へ
供給し、その排ガスを炉頂の管路11aから排出せしめ
ることによシ、鉄鉱石1を還元鉄1a、すなわち;海綿
法(Sponge 工ron)に還元可能に構成されて
いる。前記、炉頂の排ガスは、管路11aからガス圧縮
機9で吸引、加圧されて脱炭酸設備10に送られ、ここ
で所要純度に、さらに加熱炉8で高温の還元ガスに再生
された後管路11b1調整弁11C及び管路11dから
環状管11θを経て羽口14へ循環供給される。この場
合、脱炭酸設備10等における還元ガスの消耗分は還元
ガス発生炉7の新鮮ガスで補給する。一方、還元鉄排出
装g15は、炉2の底部に取付けた、例えば、テーブル
フィーダ等の切出装置15と、上部及び下部排出ホッパ
16a、16bと、上部及び下部の2重シール弁17a
、17bで構成されておシ、上部排出ホッパ16aは炉
2と一体構造をなし、上部2重シール弁17aを介して
、該排出ホッパ16a内、すなわち、炉2内が下部排出
ホッノに対しガス気密に仕切られている。下部排出ホッ
パ161)は下部シール弁171)で大気に対しガス気
密に支切られている。また、上、下ホラ−’16a。
121) between the seal valve 13a and the lower hot spring 12b
and the furnace 2 are separated gas-tightly by a seal valve 131), and the raw material 1 supplied from the container 3 according to a predetermined time schedule is transferred to the furnace 2 while maintaining airtightness from the atmosphere. Can be supplied within Inside the furnace 2,
Iron ore 1 is always retained at a predetermined level through a cutting device 15, which will be described later, and high-temperature reducing gas (H2, etc.) is supplied into the furnace from a large number of tuyeres 14 provided on the outer periphery of the lower part of the furnace body. By discharging the exhaust gas from a pipe line 11a at the top of the furnace, the iron ore 1 can be reduced to reduced iron 1a, that is, a sponge method. The exhaust gas at the top of the furnace is sucked through the pipe 11a by the gas compressor 9, pressurized, and sent to the decarboxylation equipment 10, where it is purified to the required purity and further regenerated into high-temperature reducing gas in the heating furnace 8. It is circulated and supplied to the tuyere 14 from the rear pipe line 11b1, the regulating valve 11C, and the pipe line 11d via the annular pipe 11θ. In this case, the amount of reducing gas consumed in the decarboxylation equipment 10 and the like is replenished with fresh gas from the reducing gas generating furnace 7. On the other hand, the reduced iron discharge device g15 includes a cutting device 15 such as a table feeder attached to the bottom of the furnace 2, upper and lower discharge hoppers 16a and 16b, and upper and lower double seal valves 17a.
, 17b, the upper discharge hopper 16a has an integral structure with the furnace 2, and the inside of the discharge hopper 16a, that is, the inside of the furnace 2 is connected to the lower discharge hopper via the upper double seal valve 17a. It is airtightly partitioned. The lower discharge hopper 161) is gas-tightly separated from the atmosphere by a lower seal valve 171). Also, the upper and lower hollers are '16a.

16t)の底部は、それぞれ還元鉄1bの重力による排
出を円滑にするため、適当な傾斜角を持つ逆円すい筒又
は角すい筒体をなしている。ここで、前記炉2内及び上
部排出ホッパ16a内は、通常、大気圧以上の所定の圧
力に保持される。煤発生炉20は天然ガス(NG)を圧
縮空気、またはI2索富化空気内によシネ完全燃焼させ
、媒含有還元ガスを発生する。なお、図中、18は排圧
弁、19は媒含有還元ガス供給管、30は予熱炉を示す
16t) respectively form an inverted conical cylinder or a square pyramidal cylinder with an appropriate inclination angle in order to smoothly discharge the reduced iron 1b by gravity. Here, the inside of the furnace 2 and the inside of the upper discharge hopper 16a are normally maintained at a predetermined pressure equal to or higher than atmospheric pressure. The soot generating furnace 20 completely burns natural gas (NG) in compressed air or I2 cable-enriched air to generate a medium-containing reducing gas. In the figure, 18 is an exhaust pressure valve, 19 is a medium-containing reducing gas supply pipe, and 30 is a preheating furnace.

以上の構成であるから、鉄鉱石1は炉2内を降下する間
に、羽口14から吹き込まれる還元ガスと接触して高純
度の海綿法1&に還元され、切出装置15を介して順次
上部排出ホッパ16FLへ排出される。前記ホッパ16
a内の海綿法1aは、一定量に達すると、上部2重シー
ル弁17aを開閉して重力によシ下部排出ホッパ161
)へ排出される。この場合、排圧弁18は閉とする。つ
ぎに、下部ホラ、t 161)内の海綿法1aをコンテ
ナ6へ排出する場合は、上部2重シール弁17aが閉状
態で排圧弁18を大気へ開放しホッパ161)内の圧力
(炉内圧に等しい)を大気圧とした後、下部2重シール
弁17bを開くことによシ重力で容易に排出できる。こ
こで、コンテナ6内の海綿法1aは粒状で、かつ高温(
例えば約800℃)であるため、次の処理工程である製
鋼工場、あるいは貯蔵ヤード等への搬送を容易にすると
共に、搬送、ならびに貯蔵期間中に大気によって生じる
表面の再酸化を防止するため、通常、炉2に隣接したブ
リケラティングプラントへ搬送し、ここで、所要の形状
のブリケットに圧縮成形した後、冷却し、貯蔵ヤー)#
あるいは、製鋼工場へ移送される。
With the above configuration, while the iron ore 1 descends in the furnace 2, it comes into contact with the reducing gas blown in from the tuyere 14 and is reduced to high-purity sponge 1&, which is sequentially passed through the cutting device 15. It is discharged to the upper discharge hopper 16FL. The hopper 16
In the sponge method 1a in a, when a certain amount is reached, the upper double seal valve 17a is opened and closed, and the lower discharge hopper 161 is discharged by gravity.
). In this case, the exhaust pressure valve 18 is closed. Next, when discharging the sponge 1a in the lower hopper (t161) to the container 6, the upper double seal valve 17a is closed and the exhaust pressure valve 18 is opened to the atmosphere. After bringing the pressure (equivalent to . . . ) to atmospheric pressure, it can be easily discharged by gravity by opening the lower double seal valve 17b. Here, the sponge material 1a in the container 6 is granular and has a high temperature (
(e.g., approximately 800°C) to facilitate transportation to the next processing step, such as a steel factory or storage yard, and to prevent re-oxidation of the surface caused by the atmosphere during transportation and storage. Usually, it is transported to a briquetting plant adjacent to the furnace 2, where it is compression-molded into briquettes of the desired shape, cooled, and stored in a storage yard.
Alternatively, it is transported to a steel factory.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述のような従来の直接還元装置では、処理する鉄鉱石
の銘柄に適応した還元ガスの性状、ならびに、炉内ガス
温度等の極めて高精度な操業条件の管理を行う必要があ
シ、これら諸東件のバラツキによシ、しばしば、炉2内
で鉄鉱石同志が結合し、いわゆる、クラスタ(C1us
ter)が発生し易く、このクラスタは順次大きさが拡
大し、その結果炉内に鉱石が閉塞する、いわゆる棚吊シ
現象が発生し、遂には操業不能という重大事故につなが
るという問題点がある。
In the conventional direct reduction equipment described above, it is necessary to control extremely precise operating conditions such as the properties of the reducing gas suitable for the brand of iron ore being processed and the gas temperature in the furnace. Due to the dispersion of iron ores, iron ores often combine with each other in the furnace 2, forming so-called clusters (C1us
ter), and these clusters gradually expand in size, resulting in ore clogging in the furnace, a so-called shelf-hanging phenomenon, which ultimately leads to a serious accident in which the furnace is unable to operate. .

そのため、前述の従来装置では、煤(Soot)を管路
19から環状管118へ供給し、還元ガス(H2等)と
共に羽口14から炉2内へ吹き込み、炉内の鉄鉱石1及
び還元鉄1aの表面に煤を付着させることによシフラス
タの発生を防止している。
Therefore, in the conventional apparatus described above, soot is supplied from the pipe line 19 to the annular pipe 118, and is blown into the furnace 2 through the tuyere 14 together with the reducing gas (H2, etc.), and the iron ore 1 and reduced iron in the furnace are By attaching soot to the surface of 1a, the occurrence of siffusion is prevented.

ところがこのように炉2内に煤を吹込むと、コンテナ6
へ排出される海綿法1aの表面には、前記煤が付着して
おシ、このまま、例えば、ロール形のブリケットマシン
で圧縮成形を行うと、付着煤のため海綿法1a同志の圧
着が阻害され所定の形状のブリケットに成形できないと
いう大きな問題が発生する。
However, when soot is blown into the furnace 2 in this way, the container 6
The soot adheres to the surface of the sponge 1a that is discharged to the container, and if compression molding is performed in this state, for example, in a roll-type briquette machine, the adhering soot will inhibit the compression bonding of the sponge 1a. A major problem arises in that briquettes cannot be formed into a predetermined shape.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前述のような問題を解決するために、(イ)下
部排出ホッパ内の上部に、該ホッパへ落下流入する還元
鉄の流路の周囲に窒素(N2)等の不活性ガスを吹付け
る環状の吹込フードを設ける。
In order to solve the above-mentioned problems, the present invention (a) blows an inert gas such as nitrogen (N2) into the upper part of the lower discharge hopper around the flow path of the reduced iron that falls and flows into the hopper; An annular blow hood is provided.

(ロ) 前記吹込フードへ不活性ガス(N2)を供給す
るブロワ及び管路を設ける。(ハ)前記ホツノ内に吹込
んだ不活性ガス(N2)を該下部排出ホッパ上部から、
前記ブロワの吸入側へ導入する管路(不活性ガス管路)
を設け、該管路に除血器を介在させる。
(b) A blower and a conduit are provided to supply inert gas (N2) to the blow hood. (c) Inert gas (N2) blown into the hot spring from the upper part of the lower discharge hopper,
Pipe line leading to the suction side of the blower (inert gas pipe line)
is provided, and a blood remover is interposed in the conduit.

〔作用〕[Effect]

下部排出ホッパ内で流入する還元鉄に吹込まれた不活性
ガスが煤を分離除去する。下部排出ホッパ上部の排ガス
管路から抜き出された煤を含有する不活性ガスは、除遍
器で煤を除去された後で再び下部排出ホッパ内の流入還
元鉄の周囲に吹込まれ、不活性ガスリサイクルを構成す
る。
The inert gas blown into the reduced iron flowing in the lower discharge hopper separates and removes soot. The soot-containing inert gas extracted from the exhaust gas pipe at the top of the lower discharge hopper is blown into the lower discharge hopper around the inflowing reduced iron after the soot is removed by a dethromer, and the inert gas is inert. Configure gas recycling.

〔実施例〕〔Example〕

以下、図面によって具体的に説明する。第1図は本発明
鉄鉱石直接還元装置の略示的全体構成説明図であるが、
第2図に示す従来装置と同一あるいは類似部材は同一符
号を付し、重複する構成説明は省略する。
A detailed explanation will be given below with reference to the drawings. FIG. 1 is a schematic overall configuration explanatory diagram of the iron ore direct reduction apparatus of the present invention.
Components that are the same or similar to those of the conventional device shown in FIG. 2 are designated by the same reference numerals, and redundant explanation of the configuration will be omitted.

本発明装置では図示の如く、還元鉄排出装置5の下部排
出ホッパ161)内において、上部排出ホッパ16aか
ら重力で落下装入される還元鉄の流入通路1bの周囲に
沿って周方向にほぼ等ピッチで、かつ、上下方向に配列
された複数のガスノズル21aを有するほぼ環状の吹込
フード21を取付け、これらのノズル21aに、例えば
窒素(N2)等の不活性ガスをブロワ22によシ管路2
31L1弁231)を経て供給し、落下中の還元鉄1a
にその周囲から吹きつけて、還元鉄1aに付着、あるい
は混入した煤を分離・飛散せしめ得る如く構成する。一
方、排出ホッパ161)の頂部の適宜位置に排ガス管路
23Qを取付け、前記ガスノズル21aから吹込まれた
不活性ガス(N2)と煤の混合ガスを、弁23d1管路
23e1ガス冷却器24、管路23f1除じん器25及
び管路23gを経て前記ブロワ22で吸引し、再度吹込
フード21に供給するリサイクルガス管路23を構成せ
しめる。なお要すれば除じん器25出口側にガス加熱器
(図示せず)を設は還元鉄の冷却を防止する。なお、前
記吹込フード21の内寸は、フード21内面が落下中の
還元鉄1aと接触しないでいどに近接させると共に、そ
の高さは、ホッパ16b内に滞留する還元鉄1aの頂部
とホッパ頂部間に適当な空間部を設け、ノズル211L
から吹込まれるガス(N2)によって、還元鉄1aに付
着及びZ□L人した煤を効率よく分離・飛散せしめると
共に、ガス(N2)と共に容易に排ガス管路23Cへ吸
引排出し得る如く設定される。
In the apparatus of the present invention, as shown in the figure, within the lower discharge hopper 161) of the reduced iron discharge device 5, the reduced iron flows approximately equally in the circumferential direction along the periphery of the inflow passage 1b, which is charged by gravity from the upper discharge hopper 16a. A substantially annular blowing hood 21 having a plurality of gas nozzles 21a arranged at pitches and in the vertical direction is attached, and an inert gas such as nitrogen (N2) is supplied to these nozzles 21a by a blower 22 through a conduit. 2
Reduced iron 1a is supplied through 31L1 valve 231) and is falling.
The structure is such that soot can be sprayed from around the reduced iron 1a to separate and scatter soot that has adhered to or mixed in the reduced iron 1a. On the other hand, an exhaust gas pipe 23Q is installed at an appropriate position on the top of the discharge hopper 161), and a mixed gas of inert gas (N2) and soot blown from the gas nozzle 21a is transferred to the valve 23d1, the pipe 23e1, the gas cooler 24, the pipe The recycled gas pipe 23 is configured to suction the gas by the blower 22 through the dust remover 25 and the pipe 23g, and supply it again to the blowing hood 21. If necessary, a gas heater (not shown) may be installed on the exit side of the dust remover 25 to prevent cooling of the reduced iron. The inner dimensions of the blowing hood 21 are such that the inner surface of the hood 21 is close to the falling reduced iron 1a without coming into contact with it, and the height is such that the top of the reduced iron 1a staying in the hopper 16b and the hopper An appropriate space is provided between the tops of the nozzle 211L.
It is set so that the soot that has adhered to and accumulated on the reduced iron 1a can be efficiently separated and scattered by the gas (N2) blown in from the exhaust gas pipe 23C, and can be easily sucked and discharged together with the gas (N2) into the exhaust gas pipe 23C. Ru.

つぎに、以上の構成から成る本発明装置の作用を述べる
。なお第1図は、下部排出ホッパ16b内へ還元鉄1a
を排出中の状態を示しており、不活性ガス(N2)は循
環供給中である。
Next, the operation of the apparatus of the present invention having the above configuration will be described. In addition, FIG. 1 shows reduced iron 1a into the lower discharge hopper 16b.
is being discharged, and inert gas (N2) is being circulated and supplied.

先づ、上部排出ホッパ16aから還元鉄1aを下部ホッ
パ16bへ排出するに先立って、ブロワ22を始動し弁
23b、23dを開いて、ガス(N2)を吹込フード2
1へ吹き込み、リサイクルさせた後、上部二重シール弁
17aを開く。かくて下部ホッパ16b内へ重力落下す
る還元鉄1aは吹込フード21を通過する間に、付着あ
るいは混在した煤をガスによシ分離・飛散されてガスと
共に管路23Cから、ガス冷却器24に導入され、ここ
でガス温度を所要の温度に冷却した後、除じん器25で
煤を含むダストを除去し、浄化されたガス(N2)はブ
ロワ22によシ吹込フード21へ循環供給される。要す
れば除じん器25出口側にガス加熱器(図示せず)を設
け、還元鉄の冷却を防止する。なお不活性ガスリサイク
ル管路23および下部排出ホッパ16)におけるガスの
消耗分は不活性ガス発生装置(図示せず)を設置し、不
活性ガスリサイクル管路23に接続し補給する。
First, before discharging the reduced iron 1a from the upper discharge hopper 16a to the lower hopper 16b, the blower 22 is started, the valves 23b and 23d are opened, and gas (N2) is blown into the hood 2.
1 and recycled, open the upper double seal valve 17a. Thus, while the reduced iron 1a falling by gravity into the lower hopper 16b passes through the blowing hood 21, the attached or mixed soot is separated and scattered by the gas, and the reduced iron 1a is sent together with the gas from the pipe 23C to the gas cooler 24. After the gas temperature is cooled to a required temperature, the dust containing soot is removed by the dust remover 25, and the purified gas (N2) is circulated and supplied to the blower hood 21 by the blower 22. . If necessary, a gas heater (not shown) is provided on the exit side of the dust remover 25 to prevent cooling of the reduced iron. Note that an inert gas generator (not shown) is installed and connected to the inert gas recycle line 23 to replenish the amount of gas consumed in the inert gas recycle line 23 and the lower discharge hopper 16).

ホッパ161)への還元鉄1aの排出が完了後、上記二
重シール弁17aを閉とし、完全にホラ/ぞ16b内の
煤が除去された後、弁231)、23(Lを閉、ならび
に、ブロワ22を停止し次回の排出作業に備える。以下
従来装置(第2図)におけると同様な手順に従って、コ
ンテナ6へ還元鉄1aを排出し、ブリケラティングプラ
ントへ搬送し、ブリケットに成形する。
After the discharge of the reduced iron 1a to the hopper 161) is completed, the double seal valve 17a is closed, and after the soot in the conch/hole 16b is completely removed, the valves 231) and 23 (L) are closed, and Then, the blower 22 is stopped to prepare for the next discharge operation.The reduced iron 1a is discharged into the container 6 according to the same procedure as in the conventional device (Fig. 2), transported to the briquetting plant, and formed into briquettes. .

なお以上例示の装置では、下部排出ホッパ16b円のガ
ス吹込ノズルをほぼ環状の吹込フードとしたが、ノズル
の形式は、これに限定するものではなく、要は、排出ホ
ッパ161)から排出される還元鉄1aの流下を阻害す
ることなく、かつ、還元鉄の落下中にガスが通過し得る
構造であれば良いととは勿論である。
Furthermore, in the apparatus illustrated above, the gas blowing nozzle of the lower discharge hopper 16b is made into a substantially annular blowing hood, but the shape of the nozzle is not limited to this, and in short, the gas is discharged from the discharge hopper 161). Of course, any structure is sufficient as long as it does not obstruct the flow of the reduced iron 1a and allows gas to pass through while the reduced iron is falling.

〔発明の効果〕〔Effect of the invention〕

還元鉄を上部排出ホッパから下部排出ホッパへ排出する
際に、下部ホッパ内へ重力落下中の還元鉄の流路の周囲
に取付けた、環状の吹込フードから、不活性ガス(M2
)を吹きつけ、還元鉄に付着及び混入した煤を分離・飛
散せしめることによシ、コンテナへ排出される還元鉄に
は従来装置のような煤の付着あるいは混入がなくカシ、
その結果、後段のブリケットマシンにおいて、本還元装
置から排出される還元鉄を用いて、極めて容易にかつ安
定して所期形状のブリケットを成形し、生産能率の向上
を図ることができる。下部排出ホツノモに吹込まれる不
活性ガスはリサイクル管路を流れて循環使用されるので
経済的である。
When discharging reduced iron from the upper discharge hopper to the lower discharge hopper, inert gas (M2
) to separate and scatter the soot that has adhered to and mixed in the reduced iron.The reduced iron discharged into the container is free of soot and dirt, unlike conventional equipment.
As a result, in the subsequent briquette machine, the reduced iron discharged from the reduction device can be used to form briquettes in a desired shape very easily and stably, thereby improving production efficiency. The inert gas that is blown into the bottom exhaust pipe flows through the recycling pipe and is recycled, making it economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一実施例に係るシャフト炉式直接
還元装置の全体構成説明図、第2図は従来のシャフト炉
式直接還元装置の全体構成説明図を示す。 1・・・鉄鉱石原料    1a・・・還元鉄1b・・
・還元鉄の流路   2・・・シャフト炉5・・・還元
鉄排出装置  16a、 16b・・・排出ホッパ20
・・・煤発生炉    21・・・吹込フード21a・
・・ガスノズル   22・・・ブロワ23・・・不活
性ガスリサイクル管路 24・・・ガス冷却器   25・・・除じん装置復代
理人 弁理士開本重文 外2名
FIG. 1 is an explanatory diagram of the overall configuration of a shaft furnace type direct reduction apparatus according to an embodiment of the present invention, and FIG. 2 is an explanatory diagram of the overall configuration of a conventional shaft furnace type direct reduction apparatus. 1...Iron ore raw material 1a...Reduced iron 1b...
・Reduced iron flow path 2...Shaft furnace 5...Reduced iron discharge device 16a, 16b...Discharge hopper 20
...Soot generating furnace 21...Blowing hood 21a.
...Gas nozzle 22...Blower 23...Inert gas recycling pipe 24...Gas cooler 25...Dust removal device sub-agent 2 patent attorneys and non-Kaimoto important literary figures

Claims (1)

【特許請求の範囲】[Claims] 微粒カーボン(スーツ)を添加した還元ガスをシャフト
炉内に供給して粒状又はペレット状の鉄鉱石を還元鉄に
還元し、該還元鉄を高温状態で炉外へ排出する鉄鉱石の
直接還元装置において、前記還元鉄の排出装置の下部排
出ホッパ内上部に、該ホッパへ落下流入する還元鉄の流
路に沿つて還元鉄の流れに対し周囲から不活性ガスを吹
き付けるほぼ環状の吹込フードを設け、前記吹込フード
へ不活性ガスを供給するブロワを含んだ管路と前記下部
排出ホッパ上部から不活性ガスを吸引して前記ブロワに
供給する除じん器を含んだ管路とからなる不活性ガスリ
サイクル管路を設け、還元鉄から分離された煤を不活性
ガスリサイクル管路の除じん器で除去するようにしたこ
とを特徴とする鉄鉱石の直接還元装置。
A direct reduction device for iron ore that supplies reducing gas added with fine carbon (suit) into a shaft furnace to reduce granular or pelleted iron ore to reduced iron, and discharges the reduced iron out of the furnace at a high temperature. In this method, a substantially annular blowing hood is provided at the upper part of the lower discharge hopper of the reduced iron discharge device for blowing an inert gas from the periphery against the flow of the reduced iron along the flow path of the reduced iron falling into the hopper. , an inert gas comprising a pipe line including a blower that supplies inert gas to the blowing hood, and a pipe line including a dust remover that sucks inert gas from the upper part of the lower discharge hopper and supplies it to the blower. A direct reduction device for iron ore, characterized in that a recycling pipe is provided and soot separated from reduced iron is removed by a dust remover in the inert gas recycling pipe.
JP61256998A 1986-10-30 1986-10-30 Direct reduction apparatus for iron ore Pending JPS63111112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61256998A JPS63111112A (en) 1986-10-30 1986-10-30 Direct reduction apparatus for iron ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61256998A JPS63111112A (en) 1986-10-30 1986-10-30 Direct reduction apparatus for iron ore

Publications (1)

Publication Number Publication Date
JPS63111112A true JPS63111112A (en) 1988-05-16

Family

ID=17300299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61256998A Pending JPS63111112A (en) 1986-10-30 1986-10-30 Direct reduction apparatus for iron ore

Country Status (1)

Country Link
JP (1) JPS63111112A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522889A (en) * 2009-04-03 2012-09-27 ポール ヴルス エス.エイ. Method and apparatus for producing directly reduced iron
JP2017057445A (en) * 2015-09-15 2017-03-23 株式会社神戸製鋼所 Reduced iron manufacturing apparatus
WO2023229515A1 (en) * 2022-05-25 2023-11-30 Hybrit Development Ab A method and an arrangement for a continuous production of sponge iron from iron ore
CN117680439A (en) * 2024-02-01 2024-03-12 山东济钢环保新材料有限公司 Be applied to dust filter equipment of ore processing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522889A (en) * 2009-04-03 2012-09-27 ポール ヴルス エス.エイ. Method and apparatus for producing directly reduced iron
JP2017057445A (en) * 2015-09-15 2017-03-23 株式会社神戸製鋼所 Reduced iron manufacturing apparatus
WO2017047314A1 (en) * 2015-09-15 2017-03-23 株式会社神戸製鋼所 Reduced iron production device
WO2023229515A1 (en) * 2022-05-25 2023-11-30 Hybrit Development Ab A method and an arrangement for a continuous production of sponge iron from iron ore
CN117680439A (en) * 2024-02-01 2024-03-12 山东济钢环保新材料有限公司 Be applied to dust filter equipment of ore processing
CN117680439B (en) * 2024-02-01 2024-04-30 山东济钢环保新材料有限公司 Be applied to dust filter equipment of ore processing

Similar Documents

Publication Publication Date Title
US9181594B2 (en) Process and device for producing pig iron or liquid steel precursors
JPS61183404A (en) Method and apparatus for producing sponge iron particles andmolten pig iron
US3850616A (en) Inert gas seal for product discharge from a shaft furnace
JP4946119B2 (en) Drying and preheating equipment for hopper and blast furnace raw materials
JPS63111112A (en) Direct reduction apparatus for iron ore
JP4966317B2 (en) Molten iron manufacturing equipment
RU2294967C2 (en) Melt cast iron producing plant providing drying and transporting iron ores and additives, melt cast iron production method with use of such plant
KR100240810B1 (en) A process for the production of molten pig iron or steel pre-products and a plant for carrying out the process
CN115896379B (en) Application method of European smelting furnace system for iron making by utilizing scrap steel
JPH03247716A (en) Device for removing dust sticking to rear surface of dispersing board of prereduction furnace of smelting reduction equipment
JPS63111110A (en) Direct reduction apparatus for iron ore
KR20000011757U (en) Sintered Ore Chiller
EP2425026B1 (en) Method for feeding a burden to a blast furnace
JP2608736B2 (en) Method of charging exhaust gas dust in smelting reduction furnace
JPS63111111A (en) Direct reduction apparatus for iron ore
JPS63111109A (en) Direct reduction apparatus for iron ore
JP4249259B2 (en) Sponge metal manufacturing method
JP7517379B2 (en) Method for pre-treating powdered raw materials to be fed into a refining furnace or a reaction furnace, and method for operating a refining furnace or a reaction furnace
JPH01111809A (en) Method for stopping operation of iron ore fluidized bed reduction apparatus
CN111270030B (en) Environment-friendly blast furnace shutdown and furnace charge thermal-state cleaning process method
KR102083540B1 (en) Apparatus for manufacturing molten iron and method for manufacturing thereof
KR102156855B1 (en) Device for preventing slag reverse flow of tuyere
JPH01242708A (en) Fluidized-bed reducing equipment for iron ore
JPH01129917A (en) Device for preheating and charging material in reduction furnace
KR20000038828A (en) Apparatus and method of manufacturing molten iron for falling ores